Clinical Findings in SMR Neurofeedback Protocol Training in Women with Fibromyalgia Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Design and Procedure
2.3. Outcome Measures
2.4. EEG Data Acquisition and Preprocessing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mease, P.; Arnold, L.M.; Choy, E.H.; Clauw, D.J.; Crofford, L.J.; Glass, J.M. Fibromyalgia syndrome module at OMERACT 9: Domain construct. J. Rheumatol. 2009, 36, 2318–2329. [Google Scholar] [CrossRef] [Green Version]
- Nadal-Nicolás, Y.; Rubio-Arias, J.Á.; Martínez-Olcina, M.; Reche-García, C.; Hernández-García, M.; Martínez-Rodríguez, A. Effects of Manual Therapy on Fatigue, Pain, and Psychological Aspects in Women with Fibromyalgia. Int. J. Environ. Res. Public Health 2020, 17, 4611. [Google Scholar] [CrossRef] [PubMed]
- Garg, N.; Deodhar, A. New and modified fibromyalgia diagnostic criteria: Ambiguity, uncertainty, and difficulties complicate diagnosis and management. J. Musculoskel. Med. 2012, 29, 1–5. [Google Scholar]
- Bazzichi, L.; Giacomelli, C.; Consensi, A.; Atzeni, F.; Batticciotto, A.; Di Franco, M.; Casale, R.; Sarzi-Puttini, P. One year in review 2016: Fibromyalgia. Clin. Exp. Rheumatol. 2016, 34, S145–S149. [Google Scholar]
- Moix, J.; Casado, M.I. Terapias psicológicas para el entrenamiento del dolor crónico. Clin. Salud. 2011, 22, 41–50. [Google Scholar]
- Gelonch, O.; Garolera, M.; Rosselló, L.; Pifarré, J. Disfunción cognitiva en la fibromialgia. Rev. Neurol. 2013, 56, 573–588. [Google Scholar] [CrossRef] [Green Version]
- Yunus, M. Editorial review: An update on central sensitivity syndromes and the issues of nosology and psychobiology. Curr. Rheumatol. Rev. 2015, 11, 70–85. [Google Scholar] [CrossRef]
- Howe, R.; Sterman, M. Cortical-subcortical EEG correlates of suppressed motor behavior during sleep and waking in the cat. Electroencephalogr. Clin. Neurophysiol. 1972, 32, 681–695. [Google Scholar] [CrossRef]
- Staud, R.; Vierck, C.; Cannon, R.; Mauderli, A.; Price, D. Abnormal sensitization and temporal summation of second pain (wind-up) in patients with fibromyalgia syndrome. Pain 2001, 91, 165–175. [Google Scholar] [CrossRef]
- Gómez-Argüelles, J.M.; Maestú-Unturbe, C.; Gómez-Aguilera, E.J. Neuroimagen en fibromialgia. Rev. Neurol. 2018, 67, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Desmeule, J.A.; Cedraschi, C.; Rapiti, E. Neurophysiologic evidence for a central sensitization in patients with fibromyalgia. Arthritis Rheum. 2003, 48, 1420–1429. [Google Scholar] [CrossRef]
- Boehme, R.; van Ettinger-Veenstra, H.; Olausson, H.; Gerdle, B.; Nagi, S.S. Anhedonia to Gentle Touch in Fibromyalgia: Normal Sensory Processing but Abnormal Evaluation. Brain Sci. 2020, 10, 306. [Google Scholar] [CrossRef]
- Hsu, M.C.; Harris, R.E.; Sundgren, P.C. No consistent difference in gray matter volume between individuals with fibromyalgia and age-matched healthy subjects when controlling for affective disorder. Pain 2009, 143, 262–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cifre, I.; Sitges, C.; Fraiman, D. Disrupted functional connectivity of the pain network in fibromyalgia. Psychosom. Med. 2012, 74, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Donaldson, C.C.S.; Sella, G.E.; Mueller, H.H. Fibromyalgia: A retrospective study of 252 consecutive referrals. Can J. Clin. Med. 1998, 5, 116–127. [Google Scholar]
- Navarro-López, J.; Moral-Bergós, R.; Marijuán-Pedro, C. Significant new quantitative EGG patterns in fibromyalgia. Eur. J. Psychiat. 2015, 29, 277–292. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Elvira, R.; Oltra-Cucarella, J.; Carrobles, J.A.; Moltó, J.; Flórez, M.; Parra, S.; Agudo, M.; Saez, C.; Guarino, S.; Costea, R.M.; et al. Enhancing the Effects of Neurofeedback Training: The Motivational Value of the Reinforcers. Brain Sci. 2021, 11, 457. [Google Scholar] [CrossRef] [PubMed]
- Yucha, C.; Montgomery, D. Evidenced-Based Practice in Biofeedback and Neurofeedback, 2nd ed.; Association for Applied Psychophysiology and Biofeedback: Wheat Ridge, CO, USA, 2008. [Google Scholar]
- Marzbani, H.; Marateb, H.; Mansourian, M. Methodological Note: Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic Clin. Neurosci. 2016, 7, 143–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, M.; Hakimian, S.; Sherlin, L.; Fregni, F. New Insights Into Neuromodulatory Approaches for the Treatment of Pain. J. Pain 2008, 9, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Budzynski, T. Introduction to Quantitative EEG and Neurofeedback; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef]
- Kober, S.E.; Witte, M.; Stangl, M.; Väljamäe, A.; Neuper, C.; Wood, G. Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clin. Neurophysiol. 2015, 126, 82–95. [Google Scholar] [CrossRef] [PubMed]
- Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain-computer communication. Proc. IEEE Inst. Electr. Electron. Eng. 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Campos-da-Paz, V.K.; Garcia, A.; Campos-da-Paz-Neto, A.; Tomaz, C. SMR Neurofeedback Training Facilitates Working Memory Performance in Healthy Older Adults: A Behavioral and EEG Study. Front Behav. Neurosci. 2018, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Witte, M.; Kober, S.E.; Ninaus, M.; Neuper, C.; Wood, G. Control beliefs can predict the ability to up-regulate sensorimotor rhythm during neurofeedback training. Front Hum. Neurosci. 2013, 7, 478. [Google Scholar] [CrossRef] [Green Version]
- Egner, T.; Gruzelier, J. Learned self-regulation of EEG frequency components affects attention and event-related brain potentials in humans. Neuroreport 2001, 12, 4155–4159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanoğlu, E.; Ulaş, U.; Özdağ, F.; Odabaşı, Z.; Çakçı, A.; Vural, O. Auditory Event-related brain potentials in fibromyalgia syndrome. Rheumatol. Int. 2005, 25, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Ozgocmen, S.; Cimen, O.; Ardicoglu, O. Relationship between Chest Expansion and Respiratory Muscle Strength in Patients with Primary Fibromyalgia. J. Clin. Rheumatol. 2002, 21, 19–22. [Google Scholar] [CrossRef]
- Ozgocmen, S. Auditory P300 even trelated potentials and serotonin reuptake inhibitor treatment in patients with fibromyalgia. Annals. Rheum. Dis. 2003, 62, 551–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terrasa, J.L.; Barros-Loscertales, A.; Montoya, P.; Muñoz, M.A. Self-Regulation of SMR Power Led to an Enhancement of Functional Connectivity of Somatomotor Cortices in Fibromyalgia Patients. Front Neurosci. 2020, 14, 236. [Google Scholar] [CrossRef] [Green Version]
- Vučković, A.; Altaleb, M.K.H.; Fraser, M.; McGeady, C.; Purcell, M. EEG Correlates of Self-Managed Neurofeedback Treatment of Central Neuropathic Pain in Chronic Spinal Cord Injury. Front Neurosci. 2019, 13, 762. [Google Scholar] [CrossRef] [Green Version]
- Kayıran, S.; Dursun, E.; Ermutlu, N.; Dursun, N.; Karamrsel, S. Neurofeedback in fibromyalgia syndrome. Agrı 2007, 19, 47–53. [Google Scholar] [PubMed]
- Kayıran, S.; Dursun, E.; Dursun, N.; Ermutlu, N.; Karamürsel, S. Neurofeedback Intervention in Fibromyalgia Syndrome; a Randomized, Controlled, Rater Blind Clinical Trial. Appl. Psychophysiol. Biofeedback 2010, 35, 293–302. [Google Scholar] [CrossRef]
- Coben, R.; Evans, J.E. Neurofeedack and Neuromodulation. Techniques and Applications; Academic Press: San Diego, CA, USA, 2011; pp. 25–44. [Google Scholar]
- Luciano, J.V.; Aguado, J.; Serrano-Blanco, A.; Calandre, E.P.; Rodriguez-Lopez, C.M. Dimensionality, reliability, and validity of the Revised Fibromyalgia Impact Questionnaire in two Spanish samples. Arthritis Care Res. 2013, 65, 1682–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salguerio, M.; Garcia-Leiva, J.M.; Ballesteros, J.; Hidalgo, J.; Molina-Barea, R. Validation of a Spanish version of the Revised Fibromyalgia Impact Questionnaire (FIQR). Health Qual. Life Outcomes 2013, 11, 132. [Google Scholar] [CrossRef] [Green Version]
- Ahlers, S.J.; van der Veen, A.M.; van Dijk, M. The use of the Behavioral Pain Scale to assess pain in conscious sedated patients. Anesth. Analg. 2010, 110, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Lobo, A.; Pérez-Echeverría, M.J.; Artal, J. Validity of the scaled version of the General Health Questionnaire (GHQ-28) in a Spanish population. Psychol. Med. 1986, 16, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Chakrabarti, D. Research into Design for Communities, Vol 1. Smart Innovation, Systems and Technologies; Springer: Singapore, 2017. [Google Scholar]
- ProComp Infiniti System. Available online: https://thoughttechnology.com/procomp-infiniti-system-w-biograph-infiniti-software-t7500m/ (accessed on 11 June 2021).
- Williams, D.A.; Gracely, R.H. Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia. Arthritis Res. Ther. 2006, 8, 224. [Google Scholar] [CrossRef] [Green Version]
- Caro, X.; Winter, E. EEG Biofeedback Treatment Improves Certain Attention and Somatic Symptoms in Fibromyalgia: A Pilot Study. Appl. Psychophysiol. Biofeedback 2011, 36, 193–200. [Google Scholar] [CrossRef]
- Sterman, M. Basic Concepts and Clinical Findings in the Treatment of Seizure Disorders with EEG Operant Conditioning. Clin. EEG Neurosci. 2000, 31, 45–55. [Google Scholar] [CrossRef]
- Santoro, M.; Cronan, T. A Systematic Review of Neurofeedback as a Treatment for Fibromyalgia Syndrome Symptoms. J. Musculoskelet. Pain 2014, 22, 286. [Google Scholar] [CrossRef]
- Sarmento, F.; Tanaka, H.; Cordeiro, E.; Suzuki, K. Effectiveness of Biofield Therapy for Patients Diagnosed With Fibromyalgia. Altern. Ther. 2019, 6, 20–26. [Google Scholar]
- Mueller, H.H.; Donaldson, C.C.S.; Nelson, D.V.; Layman, M. Treatment of fibromyalgia incorporating EEG-driven stimulation: A clinical outcomes study. J. Clin. Psychol. 2001, 57, 933–952. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.V.; Bennett, R.M.; Barkhuizen, A.; Sexton, G.J.; Jones, K.D.; Esty, M.L.; Ochs, L.; Donaldson, C.C.S. Neurotherapy of fibromyalgia? Pain Med. 2010, 11, 912–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, L.; Li, G.; Yang, L.; Yang, L.; Petridis, L. Influencia del entrenamiento en rehabilitación psicológica de las emociones negativas y calidad de vida en pacientes con dolor crónico. Rev. Argent Clín. Psicol. 2016, 25, 99–106. [Google Scholar]
- Rogel, A.; Guez, J.; Getter, N.; Keha, E.; Cohen, T.; Amor, T.; Todder, D. Transient Adverse Side Effects During Neurofeedback Training: A Randomized, Sham-Controlled, Double Blind Study. Appl. Psychophysiol. Biofeedback 2015, 40, 209–218. [Google Scholar] [CrossRef]
Characteristics | (n = 37) | N (%) |
---|---|---|
Mean age, years (SD) | 54.92 (7.89) | 37 |
Pain symmetry | Yes | 24 (64.8) |
No | 13 (35.2) | |
Mean years since clinical diagnosis of FM | <5 | 11 (29.7) |
5–15 | 14 (37.8) | |
15–25 | 10 (27.1) | |
<25 | 2 (5.4) | |
Sick leave | Yes, at this moment | 12 (32.4) |
No, at this moment | 7 (18.9) | |
Never | 18 (48.7) | |
Pharmacological medication 1 | Yes | 35 (94.6) |
No | 2 (5.4) | |
Physiotherapy treatment 1 | Yes | 19 (51.4) |
No | 18 (48.6) | |
Psychological treatment 1 | Yes | 15 (40.5) |
No | 22 (59.5) |
Amplitude of Waves during Treatment Sessions | Pre- and Post-Test Analysis | |||||||
---|---|---|---|---|---|---|---|---|
Sessions | SMR (µV) | Theta Waves (µV) | Ratio (µV) | Wave (Conditions)/Variables | Pre-Test Mean ± SD | Post-Test Mean ± SD | Wilcoxon Signed-Rank Test (p) | d |
Mean ± SD | Mean ± SD | Mean ± SD | ||||||
1 | 5.31 ± 4.94 | 14.86 ± 8.70 | 0.428 ± 0.079 | SMR | ||||
2 | 5.92 ± 3.89 | 12.97 ± 8.41 | 0.458 ± 0.094 | A1 | 5.63 ± 3.84 | 7.72 ± 2.45 | <0.001 | 0.773 |
3 | 4.77 ± 3.01 | 10.57 ± 6.48 | 0.503 ± 0.114 | A2 | 6.32 ± 1.27 | 7.40 ± 2.59 | 0.007 | 0.529 |
4 | 4.60 ± 2.20 | 10.34 ± 4.31 | 0.469 ± 0.135 | A3 | 6.85 ± 2.12 | 7.33 ± 2.38 | 0.026 | 0.213 |
5 | 5.29 ± 3.31 | 11.16 ± 8.80 | 0.478 ± 0.102 | A4 | 6.58 ± 2.98 | 6.69 ± 1.49 | 0.272 | 0.047 |
6 | 4.96 ± 2.60 | 10.57 ± 5.99 | 0.482 ± 0.116 | Theta wave | ||||
7 | 5.74 ± 3.02 | 10.30 ± 6.83 | 0.513 ± 0.129 | A1 | 14.29 ± 8.14 | 9.51 ± 9.34 | <0.001 | 0.546 |
8 | 6.50 ± 3.28 | 11.52 ± 7.61 | 0.488 ± 0.106 | A2 | 11.92 ± 8.47 | 9.78 ± 8.71 | 0.026 | 0.286 |
9 | 6.95 ± 3.22 | 12.47 ± 7.54 | 0.493 ± 0.111 | A3 | 14.46 ± 7.02 | 10.96 ± 6.04 | 0.019 | 0.534 |
10 | 5.64 ± 2.24 | 10.26 ± 3.60 | 0.585 ± 0.208 | A4 | 14.89 ± 7.76 | 12.69 ± 5.53 | <0.001 | 0.327 |
11 | 6.04 ± 2.51 | 11.49 ± 5.45 | 0.484 ± 0.101 | Ratio | ||||
12 | 6.89 ± 4.82 | 12.15± 2.08 | 0.504 ± 0.114 | A1 | 0.48 ± 0.19 | 0.63 ± 0.17 | <0.001 | 0.832 |
13 | 6.06 ± 2.90 | 10.47 ± 4.86 | 0.488 ± 0.103 | A2 | 0.53 ± 0.17 | 0.65 ± 0.15 | 0.002 | 0.749 |
14 | 5.96 ± 3.00 | 11.54 ± 6.77 | 0.473 ± 0.102 | A3 | 0.43 ± 0.21 | 0.55 ± 0.16 | <0.001 | 0.643 |
15 | 5.87 ± 2.82 | 9.82 ± 3.69 | 0.513 ± 0.117 | A4 | 0.47 ± 0.18 | 0.45 ± 0.22 | 0.312 | 0.100 |
16 | 6.37 ± 2.76 | 10.04 ± 5.37 | 0.557 ± 0.146 | FIQR | 76.70 ± 17.41 | 63.5 ± 9.56 | <0.001 | 0.940 |
17 | 5.62 ± 2.28 | 9.46 ± 4.93 | 0.586 ± 0.145 | VAS | 8.4 ± 2.4 | 6.3 ± 2.8 | <0.001 | 0.805 |
18 | 6.12 ± 2.67 | 9.36 ± 5.10 | 0.603 ± 0.148 | GHQ-28 | 17.4 ± 8.80 | 13.5 ± 5.35 | 0.011 | 0.536 |
19 | 6.56 ± 2.33 | 8.98 ± 4.15 | 0.648 ± 0.168 | Somatic | 3.21 ± 1.37 | 2.42 ± 1.05 | 0.002 | 0.659 |
20 | 6.46 ± 2.87 | 8.97 ± 4.64 | 0.633 ± 0.133 | Anxiety | 6.08 ± 1.85 | 4.42 ± 1.49 | <0.001 | 0.988 |
Friedman Test (p) | 0.010 | <0.001 | <0.001 | Social | 6.24 ± 1.04 | 5.36 ± 1.28 | <0.001 | 0.755 |
Depression | 1.92 ± 0.98 | 1.31 ± 0.73 | <0.001 | 0.706 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa-Torres, C.; Cubo-Delgado, S. Clinical Findings in SMR Neurofeedback Protocol Training in Women with Fibromyalgia Syndrome. Brain Sci. 2021, 11, 1069. https://doi.org/10.3390/brainsci11081069
Barbosa-Torres C, Cubo-Delgado S. Clinical Findings in SMR Neurofeedback Protocol Training in Women with Fibromyalgia Syndrome. Brain Sciences. 2021; 11(8):1069. https://doi.org/10.3390/brainsci11081069
Chicago/Turabian StyleBarbosa-Torres, Carlos, and Sixto Cubo-Delgado. 2021. "Clinical Findings in SMR Neurofeedback Protocol Training in Women with Fibromyalgia Syndrome" Brain Sciences 11, no. 8: 1069. https://doi.org/10.3390/brainsci11081069
APA StyleBarbosa-Torres, C., & Cubo-Delgado, S. (2021). Clinical Findings in SMR Neurofeedback Protocol Training in Women with Fibromyalgia Syndrome. Brain Sciences, 11(8), 1069. https://doi.org/10.3390/brainsci11081069