A Systematic Review of Sleep in Patients with Disorders of Consciousness: From Diagnosis to Prognosis
Abstract
:1. Introduction
2. An Overview of Sleep EEG in Patients with DOC
3. Sleep Stage Classification in Patients with DOC
3.1. Sleep Stage
3.2. Methods in Diagnosis of DOC
4. Diagnosis of Patients with DOC Using Sleep EEG
4.1. Sleep–Wake Cycle
4.2. Rapid Eye Movement Sleep and Slow-Wave Sleep
4.3. Sleep Spindles
5. Prognostic Value of Sleep
5.1. Standard Spindles
5.2. Organized Sleep–Wake Patterns
5.3. Factors of Sleep Abnormalities
6. Future Challenges and Directions
6.1. PSG Recordings in DOC
6.2. Sleep Scoring Rules in Patients with DOC
6.3. Environmental Factor
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cologan, V.; Drouot, X.; Parapatics, S.; Delorme, A.; Gruber, G.; Moonen, G.; Laureys, S. Sleep in the unresponsive wakefulness syndrome and minimally conscious state. J. Neurotrauma 2013, 30, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Landsness, E.; Bruno, M.-A.; Noirhomme, Q.; Riedner, B.; Gosseries, O.; Schnakers, C.; Massimini, M.; Laureys, S.; Tononi, G.; Boly, M. Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain 2011, 134, 2222–2232. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.-A.; Vanhaudenhuyse, A.; Thibaut, A.; Moonen, G.; Laureys, S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness. J. Neurol. 2011, 258, 1373–1384. [Google Scholar] [CrossRef]
- Schnakers, C.; Vanhaudenhuyse, A.; Giacino, J.; Ventura, M.; Boly, M.; Majerus, S.; Moonen, G.; Laureys, S. Diagnostic accuracy of the vegetative and minimally conscious state: Clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 2009, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Kondziella, D.; Friberg, C.K.; Frokjaer, V.G.; Fabricius, M.; Møller, K. Preserved consciousness in vegetative and minimal conscious states: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2016, 87, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Xia, X.; Li, X. A review of resting-state electroencephalography analysis in disorders of consciousness. Front. Neurol. 2017, 8, 471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, M.X. Where does EEG come from and what does it mean? Trends Neurosci. 2017, 40, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Anastassiou, C.A.; Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 2012, 13, 407–420. [Google Scholar] [CrossRef]
- Schiff, N.D. Central thalamic contributions to arousal regulation and neurological disorders of consciousness. Ann. N. Y. Acad. Sci. 2008, 1129, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Qiu, L.; Lin, Q.; Xiao, J.; Huang, Y.; Huang, H.; Zhou, X.; Shi, X.; Wang, F.; He, Y.; et al. Hybrid asynchronous brain–computer interface for yes/no communication in patients with disorders of consciousness. J. Neural Eng. 2021, 18, 056001. [Google Scholar] [CrossRef]
- Pan, J.; Xie, Q.; He, Y.; Wang, F.; Di, H.; Laureys, S.; Yu, R.; Li, Y. Detecting awareness in patients with disorders of consciousness using a hybrid brain–computer interface. J. Neural Eng. 2014, 11, 056007. [Google Scholar] [CrossRef]
- Claassen, J.; Doyle, K.; Matory, A.; Couch, C.; Burger, K.M.; Velazquez, A.; Okonkwo, J.U.; King, J.-R.; Park, S.; Agarwal, S.; et al. Detection of brain activation in unresponsive patients with acute brain injury. N. Engl. J. Med. 2019, 380, 2497–2505. [Google Scholar] [CrossRef]
- Pan, J.; Xie, Q.; Qin, P.; Chen, Y.; He, Y.; Huang, H.; Wang, F.; Ni, X.; Cichocki, A.; Yu, R.; et al. Prognosis for patients with cognitive motor dissociation identified by brain-computer interface. Brain 2020, 143, 1177–1189. [Google Scholar] [CrossRef] [PubMed]
- de Biase, S.; Gigli, G.L.; Lorenzut, S.; Bianconi, C.; Sfreddo, P.; Rossato, G.; Basaldella, F.; Fuccaro, M.; Corica, A.; Tonon, D.; et al. The importance of polysomnography in the evaluation of prolonged disorders of consciousness: Sleep recordings more adequately correlate than stimulus-related evoked potentials with patients′ clinical status. Sleep Med. 2014, 15, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.P. The role of sleep in cognition and emotion. Ann. N. Y. Acad. Sci. 2009, 1156, 168–197. [Google Scholar] [CrossRef]
- Diekelmann, S.; Born, J. The memory function of sleep. Nat. Rev. Neurosci. 2010, 11, 114–126. [Google Scholar] [CrossRef]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9, S23–S28. [Google Scholar] [CrossRef] [Green Version]
- Besedovsky, L.; Lange, T.; Born, J. Sleep and immune function. Pflüg. Arch. Eur. J. Physiol. 2011, 463, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Arnaldi, D.; Terzaghi, M.; Cremascoli, R.; De Carli, F.; Maggioni, G.; Pistarini, C.; Nobili, F.; Moglia, A.; Manni, R. The prognostic value of sleep patterns in disorders of consciousness in the sub-acute phase. Clin. Neurophysiol. 2016, 127, 1445–1451. [Google Scholar] [CrossRef]
- Hobson, J.A.; Pace-Schott, E.F. The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 2002, 3, 679–693. [Google Scholar] [CrossRef]
- Wielek, T.; Lechinger, J.; Wislowska, M.; Blume, C.; Ott, P.; Wegenkittl, S.; del Giudice, R.; Heib, D.P.J.; Mayer, H.A.; Laureys, S.; et al. Sleep in patients with disorders of consciousness characterized by means of machine learning. PLoS ONE 2018, 13, e0190458. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, Y.G.; Gais, S.; Müller, F.; Schönauer, M.; Schäpers, B.; Born, J.; Kotchoubey, B. Night sleep in patients with vegetative state. J. Sleep Res. 2017, 26, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Wislowska, M.; del Giudice, R.; Lechinger, J.; Wielek, T.; Heib, D.P.J.; Pitiot, A.; Pichler, G.; Michitsch, G.; Donis, J.; Schabus, M. Night and day variations of sleep in patients with disorders of consciousness. Sci. Rep. 2017, 7, 266. [Google Scholar] [CrossRef] [PubMed]
- Malinowska, U.; Chatelle, C.; Bruno, M.-A.; Noirhomme, Q.; Laureys, S.; Durka, P.J. Electroencephalographic profiles for differentiation of disorders of consciousness. Biomed. Eng. Online 2013, 12, 109. [Google Scholar] [CrossRef] [Green Version]
- Zieleniewska, M.; Duszyk, A.; Różański, P.; Pietrzak, M.; Bogotko, M.; Durka, P. Parametric description of EEG profiles for assessment of sleep architecture in disorders of consciousness. Int. J. Neur. Syst. 2019, 29, 1850049. [Google Scholar] [CrossRef]
- Rundo, J.V.; Downey, R. Polysomnography. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 381–392. ISBN 978-0-444-64032-1. [Google Scholar]
- Fiorillo, L.; Puiatti, A.; Papandrea, M.; Ratti, P.-L.; Favaro, P.; Roth, C.; Bargiotas, P.; Bassetti, C.L.; Faraci, F.D. Automated sleep scoring: A review of the latest approaches. Sleep Med. Rev. 2019, 48, 101204. [Google Scholar] [CrossRef]
- Phan, H.; Andreotti, F.; Cooray, N.; Chen, O.Y.; De Vos, M. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Trans. Biomed. Eng. 2019, 66, 1285–1296. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.; Andreotti, F.; Cooray, N.; Chén, O.Y.; De Vos, M. SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 400–410. [Google Scholar] [CrossRef] [Green Version]
- Chambon, S.; Galtier, M.N.; Arnal, P.J.; Wainrib, G.; Gramfort, A. A deep learning architecture for temporal sleep stage classification using multivariate and multimodal time series. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 758–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supratak, A.; Dong, H.; Wu, C.; Guo, Y. DeepSleepNet: A Model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 1998–2008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Supratak, A.; Guo, Y. TinySleepNet: An efficient deep learning model for sleep stage scoring based on raw single-channel EEG. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 641–644. [Google Scholar]
- Zhu, T.; Luo, W.; Yu, F. Convolution- and attention-based neural network for automated sleep stage classification. Int. J. Environ. Res. Public Health 2020, 17, 4152. [Google Scholar] [CrossRef]
- Dimitriadis, S.I.; Salis, C.; Linden, D. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates. Clin. Neurophysiol. 2018, 129, 815–828. [Google Scholar] [CrossRef]
- Alickovic, E.; Subasi, A. Ensemble SVM method for automatic sleep stage classification. IEEE Trans. Instrum. Meas. 2018, 67, 1258–1265. [Google Scholar] [CrossRef] [Green Version]
- Boostani, R. A comparative review on sleep stage classification methods in patients and healthy individuals. Comput. Methods Programs Biomed. 2017, 140, 77–91. [Google Scholar] [CrossRef]
- Mousavi, S.; Afghah, F.; Acharya, U.R. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS ONE 2019, 14, e0216456. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.; Zhang, J.; Wang, F.; Liu, W.; Huang, H.; Tang, W.; Liao, H.; Li, M.; Wu, J.; Li, X.; et al. Automatic sleep staging based on EEG-EOG signals for depression detection. Intell. Autom. Soft Comput. 2021, 28, 53–71. [Google Scholar] [CrossRef]
- Chen, T.; Huang, H.; Pan, J.; Li, Y. An EEG-based brain-computer interface for automatic sleep stage classification. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; IEEE: New York, NY, USA; pp. 1988–1991. [Google Scholar]
- Forgacs, P.B.; Conte, M.M.; Fridman, E.A.; Voss, H.U.; Victor, J.D.; Schiff, N.D. Preservation of electroencephalographic organization in patients with impaired consciousness and imaging-based evidence of command-following: EEG in consciousness disorders. Ann. Neurol. 2014, 76, 869–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanhaudenhuyse, A.; Noirhomme, Q.; Tshibanda, L.J.-F.; Bruno, M.-A.; Boveroux, P.; Schnakers, C.; Soddu, A.; Perlbarg, V.; Ledoux, D.; Brichant, J.-F.; et al. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 2010, 133, 161–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crupi, D.; Hulse, B.K.; Peterson, M.J.; Huber, R.; Ansari, H.; Coen, M.; Cirelli, C.; Benca, R.M.; Ghilardi, M.F.; Tononi, G. Sleep-dependent improvement in visuomotor learning: A causal role for slow waves. Sleep 2009, 32, 1273–1284. [Google Scholar] [CrossRef]
- Luaute, J.; Maucort-Boulch, D.; Tell, L.; Quelard, F.; Sarraf, T.; Iwaz, J.; Boisson, D.; Fischer, C. Long-term outcomes of chronic minimally conscious and vegetative states. Neurology 2010, 75, 246–252. [Google Scholar] [CrossRef] [PubMed]
- De Salvo, S. Neurophysiological assessment for evaluating residual cognition in vegetative and minimally conscious state patients: A pilot study. Funct. Neurol. 2015. [Google Scholar] [CrossRef]
- Aricò, I.; Naro, A.; Pisani, L.R.; Leo, A.; Muscarà, N.; Salvo, S.D.; Silvestri, R.; Bramanti, P.; Calabrò, R.S. Could combined sleep and pain evaluation be useful in the diagnosis of disorders of consciousness (DOC)? Preliminary findings. Brain Inj. 2015, 30, 159–163. [Google Scholar] [CrossRef]
- Rossi Sebastiano, D.; Visani, E.; Panzica, F.; Sattin, D.; Bersano, A.; Nigri, A.; Ferraro, S.; Parati, E.; Leonardi, M.; Franceschetti, S. Sleep patterns associated with the severity of impairment in a large cohort of patients with chronic disorders of consciousness. Clin. Neurophysiol. 2018, 129, 687–693. [Google Scholar] [CrossRef]
- Gibson, R.M.; Ray, L.B.; Laforge, G.; Owen, A.M.; Fogel, S.M. 24-h polysomnographic recordings and electrophysiological spectral analyses from a cohort of patients with chronic disorders of consciousness. J. Neurol. 2020, 267, 3650–3663. [Google Scholar] [CrossRef]
- Gottshall, J.L.; Rossi Sebastiano, D. Sleep in disorders of consciousness: Diagnostic, prognostic, and therapeutic considerations. Curr. Opin. Neurol. 2020, 33, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Blume, C.; Lechinger, J.; Santhi, N.; Del Giudice, R.; Gnjezda, M.-T.; Pichler, G.; Scarpatetti, M.; Donis, J.; Michitsch, G.; Schabus, M. Significance of circadian rhythms in severely brain-injured patients: A clue to consciousness? Neurology 2017, 88, 1933–1941. [Google Scholar] [CrossRef] [Green Version]
- Cruse, D.; Thibaut, A.; Demertzi, A.; Nantes, J.C.; Bruno, M.-A.; Gosseries, O.; Vanhaudenhuyse, A.; Bekinschtein, T.A.; Owen, A.M.; Laureys, S. Actigraphy assessments of circadian sleep-wake cycles in the Vegetative and Minimally Conscious States. BMC Med. 2013, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Weer, A.-S.; Da Ros, M.; Berré, J.; Mélot, C.; Goldman, S.; Peigneux, P. Environmental influences on activity patterns in altered states of consciousness: Activity patterns in disorders of consciousness. Eur. J. Neurol. 2011, 18, 1432–1434. [Google Scholar] [CrossRef] [PubMed]
- Oksenberg, A.; Arons, E.; Sazbon, L.; Mizrahi, A.; Radwan, H. Sleep-related erections in vegetative state patients. Sleep 2000, 23, 1–5. [Google Scholar] [CrossRef]
- Kondziella, D.; Bender, A.; Diserens, K.; van Erp, W.; Estraneo, A.; Formisano, R.; Laureys, S.; Naccache, L.; Ozturk, S.; Rohaut, B.; et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 2020, 27, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Cologan, V.; Schabus, M.; Ledoux, D.; Moonen, G.; Maquet, P.; Laureys, S. Sleep in disorders of consciousness. Sleep Med. Rev. 2010, 14, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Dang-Vu, T.T.; Schabus, M.; Desseilles, M.; Albouy, G.; Boly, M.; Darsaud, A.; Gais, S.; Rauchs, G.; Sterpenich, V.; Vandewalle, G.; et al. Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. USA 2008, 105, 15160–15165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oksenberg, A.; Gordon, C.; Arons, E.; Sazbon, L. Phasic activities of rapid eye movement sleep in vegetative state patients. Sleep 2001, 24, 703–706. [Google Scholar] [CrossRef] [PubMed]
- Crowley, K.; Sullivan, E.V.; Adalsteinsson, E.; Pfefferbaum, A.; Colrain, I.M. Differentiating pathologic delta from healthy physiologic delta in patients with alzheimer disease. Sleep 2005, 28, 865–870. [Google Scholar] [CrossRef]
- Gottselig, J.M.; Bassetti, C.L.; Achermann, P. Power and coherence of sleep spindle frequency activity following hemispheric stroke. Brain 2002, 125, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Mertel, I.; Pavlov, Y.G.; Barner, C.; Müller, F.; Diekelmann, S.; Kotchoubey, B. Sleep in disorders of consciousness: Behavioral and polysomnographic recording. BMC Med. 2020, 18, 350. [Google Scholar] [CrossRef]
- Scarpino, M.; Lolli, F.; Hakiki, B.; Atzori, T.; Lanzo, G.; Sterpu, R.; Portaccio, E.; Romoli, A.M.; Morrocchesi, A.; Amantini, A.; et al. Prognostic value of post-acute EEG in severe disorders of consciousness, using American Clinical Neurophysiology Society terminology. Neurophysiol. Clin. 2019, 49, 317–327. [Google Scholar] [CrossRef]
- Scarpino, M.; Lolli, F.; Hakiki, B.; Lanzo, G.; Sterpu, R.; Atzori, T.; Portaccio, E.; Draghi, F.; Amantini, A.; Grippo, A.; et al. EEG and Coma Recovery Scale-Revised prediction of neurological outcome in Disorder of Consciousness patients. Acta Neurol. Scand. 2020, 142, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Valente, M.; Placidi, F.; Oliveira, A.J.; Bigagli, A.; Morghen, I.; Proietti, R.; Gigli, G.L. Sleep organization pattern as a prognostic marker at the subacute stage of post-traumatic coma. Clin. Neurophysiol. 2002, 113, 1798–1805. [Google Scholar] [CrossRef]
- Alekseeva, E.; Alasheev, A.; Belkin, A.; Kudrinskikh, N.; Nikov, P. Prognostic evaluation of sleep in patients in a vegetative state. Anesteziol. Reanimatol. 2010, 4, 38–42. [Google Scholar]
- Kang, X.; Li, L.; Wei, D.; Xu, X.; Zhao, R.; Jing, Y.; Su, Y.; Xiong, L.; Zhao, G.; Jiang, W. Development of a simple score to predict outcome for unresponsive wakefulness syndrome. Crit. Care 2014, 18, R37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avantaggiato, P.; Molteni, E.; Formica, F.; Gigli, G.L.; Valente, M.; Lorenzut, S.; de Biase, S.; Arcieri, S.; Locatelli, F.; Strazzer, S. Polysomnographic sleep patterns in children and adolescents in unresponsive wakefulness syndrome. J. Head Trauma Rehabil. 2015, 30, 334–346. [Google Scholar] [CrossRef] [PubMed]
Reference | N (UWS/MCS) | Sleep–Wake Cycle | SWS | REM | Spindles | Main Results |
---|---|---|---|---|---|---|
Landsness et al. (2011) [2] | 5/6 | 5/5 UWS 6/6 MCS | not reported | 0/5 UWS 5/6 MCS | 0/5 UWS 6/6 MCS | MCS showed an alternating sleep pattern; UWS preserved behavioral sleep but no sleep EEG patterns; |
Cologan et al. (2013) [1] | 10/10 | 3/10 UWS 5/10 MCS | 4/10 UWS 7/10 MCS | 3/10 UWS 9/10 MCS | 4/10 UWS 6/10 MCS | The presence of rest periods did not always indicate retention electrophysiological sleep–wake cycles that should no longer be used to differentiate UWS from MCS |
Forgacs et al. (2014) [40] | 8/23 | 5/8 UWS 22/23 MCS | 2/8 UWS 13/23 MCS | 2/8 UWS 9/23 MCS | 4/8 UWS 18/23 MCS | EEG was well organized in patients with evidence of concealed command-following; Preservation of specific EEG characteristic could be used to differentiate UWS from MCS; |
De Biase et al. (2014) [14] | 27/5 | 22/27 UWS 5/5 MCS | not reported | 4/27 UWS 5/5 MCS | 15/27 UWS 5/5 MCS | The concomitant presence of sleep spindles and REM sleep correlated with patients diagnosis |
Aricò et al. (2015) [45] | 8/6 | 5/8 UWS 6/6 MCS | not reported | 2/8 UWS 5/6 MCS | 1/8 UWS 4/6 MCS | MCS showed more preserved sleep pattern, preserved NREM/REM sleep distribution, and physiologic hypnic figures than UWS |
Arnaldi et al. (2016) [19] | 20/6 | 17/20 UWS 6/6 MCS | not reported | 5/20 UWS 3/6 MCS | 17/20 UWS 6/6 MCS | The boundaries between UWS and MCS were elusive |
Sebastiano et al. (2018) [46] | 55/31 | not reported | 16/55 UWS 31/31 MCS | 23/55 UWS 21/31 MCS | 5/55 UWS 8/31 MCS | The presence of SWS was the most appropriate factor to differentiate UWS from MCS |
Gibson et al. (2020) [47] | 8/3 | 8/8 UWS 3/3 MCS | 4/8 UWS 3/3 MCS | 5/8 UWS 3/3 MCS | 4/8 UWS 1/3 MCS | MCS tended to exhibit more preserved sleep pattern than UWS |
Reference | N (UWS/MCS) | Follow Up, Months | Methods | Prognostic Factors | Main Results |
---|---|---|---|---|---|
Valente et al. (2002) [62] | 19/5 | 12–34 | 24-h PSG | The presence of organized sleep patterns | Organized sleep patterns can predict favorable outcomes more accurately than GCS, age and neuroimaging |
Alekseeva et al. (2010) [63] | 64/0 | 2 | EEG, 24-h PSG | General sleep patterns | Preserved sleep patterns were more observed in the patients with a good outcome than in the patients with a poor outcome |
Landsness et al. (2011) [2] | 6/5 | 12 | EEG, PSG | Sleep patterns, sleep cycles, spindles, homoeostatic regulation of slow-wave activity | Homoeostatic regulation of slow-wave activity might be a reliable feature that predicts positive outcomes |
Cologan et al. (2013) [1] | 10/10 | 6 | EEG, 24-h PSG | Sleep–wake cycles, standard sleep stages, spindles | Sleep spindles were found more in patients who clinically improved within 6 months |
Forgacs et al. (2014) [40] | 8/23 | 6 | EEG | EEG background | The overall brain metabolism of subjects with severely abnormal EEG background is significantly lower than those with normal/mildly abnormal or moderately abnormal EEG background |
De Biase et al. (2014) [14] | 27/5 | 3–144 | 24-h PSG | Sleep–wake cycles, spindles and REM sleep | The integrity of the preservation of sleep elements (sleep–wake cycle, sleep spindles, K-complexes, and REM sleep) is often positively correlated with clinical scores |
Kang et al. (2014) [64] | 56/0 | 12 | PSG | Motor response, type of BI, EEG reactivity, spindles and N20 | Motor response, type of BI, EEG reactivity, sleep spindles and N20 are important factors in predicting the recovery of awareness |
Avantaggiato et al. (2015) [65] | 27/0 | 36 | 14-h PSG | The presence of an organized sleep pattern, REM sleep, spindles | In the subacute stage, the presence of organized sleep patterns, REM sleep and sleep spindles often predict more favorable outcomes |
Arnaldi et al. (2016) [19] | 20/6 | 6–38 | 24-h PSG | Persistent and more organized sleep patterns | Sleep patterns were valuable predictors of a favorable outcome in subacute patients |
Wislowska et al. (2017) [23] | 18/17 | 1–150 | 24-h PSG | Density of slow waves and spindles | The density of slow waves and sleep spindles was a reliable prognostic factors |
Sebastianoet al. (2018) [46] | 55/31 | 25 | 24-h PSG | The presence of NREM sleep, SWS | The existence of NREM sleep (namely, SWS) reflects that the circuits and structures required for DOC patients to maintain this stage of sleep are better protected |
Gibson et al. (2020) [47] | 8/3 | not reported | 24-h PSG | Sleep microarchitecture | Sleep microarchitecture can help delineate the nature and consequences of severe acquired brain injury and provide complimentary insight into the primary and secondary symptoms of the DOC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Wu, J.; Liu, J.; Wu, J.; Wang, F. A Systematic Review of Sleep in Patients with Disorders of Consciousness: From Diagnosis to Prognosis. Brain Sci. 2021, 11, 1072. https://doi.org/10.3390/brainsci11081072
Pan J, Wu J, Liu J, Wu J, Wang F. A Systematic Review of Sleep in Patients with Disorders of Consciousness: From Diagnosis to Prognosis. Brain Sciences. 2021; 11(8):1072. https://doi.org/10.3390/brainsci11081072
Chicago/Turabian StylePan, Jiahui, Jianhui Wu, Jie Liu, Jiawu Wu, and Fei Wang. 2021. "A Systematic Review of Sleep in Patients with Disorders of Consciousness: From Diagnosis to Prognosis" Brain Sciences 11, no. 8: 1072. https://doi.org/10.3390/brainsci11081072
APA StylePan, J., Wu, J., Liu, J., Wu, J., & Wang, F. (2021). A Systematic Review of Sleep in Patients with Disorders of Consciousness: From Diagnosis to Prognosis. Brain Sciences, 11(8), 1072. https://doi.org/10.3390/brainsci11081072