Cognitive Function during the Prodromal Stage of Alzheimer’s Disease in Down Syndrome: Comparing Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Consensus Disease Status
2.3. Measures
- The Beery Buktenica Developmental Test of Visual-Motor Integration—long form (VMI; [30]) assesses visual-motor integration skills. The total raw score is used.
- The Boston Naming Test [33] measures confrontational picture-naming abilities. The measure of performance is total correct, with or without a semantic cue.
- An adaptation of the Category Fluency Test [34] with slightly liberalized scoring measures semantic fluency. Participants are asked to generate as many words as they can within one of three categories (food, animals, clothing) in 20 s. The measure of performance is the total number of words generated in two categories, excluding repetitions.
- The Cats and Dogs Task [20] assesses response inhibition using a Stroop test paradigm [35]. The measure of performance is the amount of time used to name all of the animals as printed on the sheet (Naming condition) subtracted from the amount of time used to state the opposite animal (Switch condition). The number of errors on the Naming and Switch conditions are also recorded.
- The Cued Recall Test [36] assesses verbal learning and memory. The measure of performance is total number correct across three test trials.
- An enhanced version of the DSMSE [32] that expands the number of items included in tests of short-term memory (from 3 to 9 objects) assesses several different abilities. Three subscale scores are used: Language, Memory, and Visual Spatial.
- The Rapid Assessment of Developmental Disabilities, Second Edition (RADD-2) [39] is a battery of items from commonly used tests, including the Wechsler Intelligence Scale for Children, 4th Edition; Hawaii Early Learning Profile [40]; and Merrill-Palmer-Revised Scales of Early Childhood [41]. The Digit Span Forward, Expressive Language, Hand Movements, Imitation, Receptive Language, and Similarities subscales are used. Since the Hand Movements and Imitations subscales both assess motor coordination, they were combined into one score for our analyses, labeled “sensorimotor”.
- Purdue Pegboard [42] assesses hand dexterity. The measure of performance is the number of pairs completed with both hands simultaneously within one minute.
- The Rivermead Behavioural Memory Test [43] assesses visual memory and recognition. The measures of performance are the number correct during the identification trial and the number correct minus the number incorrect during the recognition trial.
- The Tinetti Balance and Gait Assessment Tool [45] assesses gait and balance on a three-point ordinal scale with a range of 0 to 2. A score of 0 represents the most impairment, whereas a score of 2 represents independence. We only administered the Gait tool, and that score is presented.
2.4. Statistical Analyses
3. Results
3.1. Demographics
3.2. Test Outcomes and Cognitive Domains
3.3. Underlying Structure
3.4. Effects of Aging
3.5. Path Model
3.6. Structural Equation Model
4. Discussion
4.1. Age-Related Impairments
4.2. Premorbid Functioning
4.3. Composites vs. Individual Test Scores
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafii, M.S.; Skotko, B.G.; McDonough, M.E.; Pulsifer, M.; Evans, C.; Doran, E.; Muranevici, G.; Kesslak, P.; Abushakra, S.; Lott, I.T. A Randomized, Double-Blind, Placebo-Controlled, Phase II Study of Oral ELND005 (scyllo-Inositol) in Young Adults with Down Syndrome without Dementia. J. Alzheimer’s Dis. 2017, 58, 401–411. [Google Scholar] [CrossRef]
- Koehl, L.; Harp, J.; Van Pelt, K.L.; Head, E.; Schmitt, F.A. Longitudinal assessment of dementia measures in Down syndrome. Alzheimer’s Dement. 2020, 12, e12075. [Google Scholar] [CrossRef]
- Grieco, J.; Pulsifer, M.; Seligsohn, K.; Skotko, B.; Schwartz, A. Down syndrome: Cognitive and behavioral functioning across the lifespan. Am. J. Med. Genet. C Semin. Med. Genet. 2015, 169, 135–149. [Google Scholar] [CrossRef]
- Contestabile, A.; Benfenati, F.; Gasparini, L. Communication breaks-Down: From neurodevelopment defects to cognitive disabilities in Down syndrome. Prog. Neurobiol. 2010, 91, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Vicari, S.; Bellucci, S.; Carlesimo, G.A. Visual and spatial long-term memory: Differential pattern of impairments in Williams and Down syndromes. Dev. Med. Child Neurol. 2005, 47, 305–311. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; American Psychiatric Association: Washington, DC, USA, 1997. [Google Scholar]
- Bondi, M.W.; Edmonds, E.C.; Jak, A.J.; Clark, L.R.; Delano-Wood, L.; McDonald, C.R.; Nation, D.A.; Libon, D.J.; Au, R.; Galasko, D.; et al. Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. J. Alzheimer’s Dis. 2014, 42, 275–289. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. New clinical criteria for the Alzheimer’s disease spectrum. Minn. Med. 2012, 95, 42–45. [Google Scholar] [PubMed]
- Esbensen, A.J.; Hooper, S.R.; Fidler, D.; Hartley, S.L.; Edgin, J.; D’Ardhuy, X.L.; Capone, G.; Conners, F.A.; Mervis, C.B.; Abbeduto, L.; et al. Outcome Measures for Clinical Trials in Down Syndrome. Am. J. Intellect. Dev. Disabil. 2017, 122, 247–281. [Google Scholar] [CrossRef]
- Carr, J.; Collins, S. 50 years with Down syndrome: A longitudinal study. J. Appl. Res. Intellect. Disabil. 2018, 31, 743–750. [Google Scholar] [CrossRef]
- Moran, J.A.; Rafii, M.S.; Keller, S.M.; Singh, B.K.; Janicki, M. The National Task Group on Intellectual Disabilities and Dementia Practices consensus recommendations for the evaluation and management of dementia in adults with intellectual disabilities. Mayo Clin. Proc. 2013, 88, 831–840. [Google Scholar] [CrossRef]
- Basten, I.A.; Boada, R.; Taylor, H.G.; Koenig, K.; Barrionuevo, V.L.; Brandão, A.C.; Costa, A.C.S. On the Design of Broad-Based Neuropsychological Test Batteries to Assess the Cognitive Abilities of Individuals with Down Syndrome in the Context of Clinical Trials. Brain Sci. 2018, 8, 205. [Google Scholar] [CrossRef]
- Hithersay, R.; Baksh, R.A.; Startin, C.M.; Wijeratne, P.; Hamburg, S.; Carter, B.; Strydom, A. Optimal age and outcome measures for Alzheimer’s disease prevention trials in people with Down syndrome. Alzheimer’s Dement. 2020, 17, 595–604. [Google Scholar] [CrossRef]
- Cipriani, G.; Danti, S.; Carlesi, C.; Di Fiorino, M. Aging With Down Syndrome: The Dual Diagnosis: Alzheimer’s Disease and Down Syndrome. Am. J. Alzheimer’s Dis. Other Dement. 2018, 33, 253–262. [Google Scholar] [CrossRef]
- Krinsky-McHale, S.J.; Devenny, D.A.; Silverman, W.P. Changes in explicit memory associated with early dementia in adults with Down’s syndrome. J. Intellect. Disabil. Res. 2002, 46, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, M.; Edgin, J. Clinical Assessment of Cognitive Decline in Adults with Down Syndrome. Curr. Alzheimer’s Res. 2016, 13, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Fortea, J.; Vilaplana, E.; Carmona-Iragui, M.; Benejam, B.; Videla, L.; Barroeta, I.; Fernández, S.; Altuna, M.; Pegueroles, J.; Montal, V.; et al. Clinical and biomarker changes of Alzheimer’s disease in adults with Down syndrome: A cross-sectional study. Lancet 2020, 395, 1988–1997. [Google Scholar] [CrossRef]
- Coppus, A.M.; Schuur, M.; Vergeer, J.; Janssens, A.C.J.; Oostra, B.A.; Verbeek, M.M.; van Duijn, C.M. Plasma β amyloid and the risk of Alzheimer’s disease in Down syndrome. Neurobiol. Aging 2012, 33, 1988–1994. [Google Scholar] [CrossRef]
- Krinsky-McHale, S.J.; Zigman, W.B.; Lee, J.H.; Schupf, N.; Pang, D.; Listwan, T.; Kovacs, C.; Silverman, W. Promising outcome measures of early Alzheimer’s dementia in adults with Down syndrome. Alzheimer’s Dement. Diagn. Assess. Dis. Monit. 2020, 12, e12044. [Google Scholar] [CrossRef]
- Ball, S.L.; Holland, A.J.; Treppner, P.; Watson, P.C.; Huppert, F.A. Executive dysfunction and its association with personality and behaviour changes in the development of Alzheimer’s disease in adults with Down syndrome and mild to moderate learning disabilities. Br. J. Clin. Psychol. 2008, 47, 1–29. [Google Scholar] [CrossRef]
- Deb, S.; Hare, M.; Prior, L. Symptoms of dementia among adults with Down’s syndrome: A qualitative study. J. Intellect. Disabil. Res. 2007, 51, 726–739. [Google Scholar] [CrossRef]
- Dalton, A.J.; Mehta, P.D.; Fedor, B.L.; Patti, P.J. Cognitive changes in memory precede those in praxis in aging persons with Down Syndrome. J. Intellect. Dev. Disabil. 1999, 24, 169–187. [Google Scholar] [CrossRef]
- Cooper, S.A.; Collacott, R.A. The effect of age on language in people with Down’s syndrome. J. Intellect. Disabil. Res. 1995, 39, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Margallo-Lana, M.L.; Moore, P.B.; Kay, D.W.K.; Perry, R.H.; Reid, B.E.; Berney, T.P.; Tyrer, S.P. Fifteen-Year Follow-Up of 92 Hospitalized Adults with Down’s Syndrome: Incidence of Cognitive Decline, Its Relationship to Age and Neuropathology. J. Intellect. Disabil. Res. 2007, 51, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Ball, S.L.; Holland, A.J.; Hon, J.; Huppert, F.A.; Treppner, P.; Watson, P.C. Personality and behaviour changes mark the early stages of Alzheimer’s disease in adults with Down’s syndrome: Findings from a prospective population-based study. Int. J. Geriatr. Psychiatry 2006, 21, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Collacott, R.A.; Cooper, S.-A. Adaptive behavior after depressive illness in Down’s syndrome. J. Nerv. Ment. Dis. 1992, 180, 468–470. [Google Scholar] [CrossRef] [PubMed]
- Lautarescu, B.A.; Holland, A.J.; Zaman, S.H. The Early Presentation of Dementia in People with Down Syndrome: A Systematic Review of Longitudinal Studies. Neuropsychol. Rev. 2017, 27, 31–45. [Google Scholar] [CrossRef]
- Sinai, A.; Hassiotis, A.; Rantell, K.; Strydom, A. Assessing Specific Cognitive Deficits Associated with Dementia in Older Adults with Down Syndrome: Use and Validity of the Arizona Cognitive Test Battery (ACTB). PLoS ONE 2016, 11, e0153917. [Google Scholar] [CrossRef]
- Silverman, W.; Schupf, N.; Zigman, W.; Devenny, D.; Miezejeski, C.; Schubert, R.; Ryan, R. Dementia in adults with mental retardation: Assessment at a single point in time. Am. J. Ment. Retard. 2004, 109, 111–125. [Google Scholar] [CrossRef]
- Beery, K.E.; Buktenica, N.A. Developmental Test of Visual Motor Integration, 6th ed.; Pearson: Bloomington, IN, USA, 2010. [Google Scholar]
- Wechsler, D. The Wechsler Intelligence Scale for Children. In Technical and Interpretive Manual, 4th ed.; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Haxby, J.V. Neuropsychological evaluation of adults with Down’s syndrome: Patterns of selective impairment in non-demented old adults. J. Ment. Defic. Res. 1989, 33, 193–210. [Google Scholar] [CrossRef]
- Kaplan, E.; Goodglass, H.; Weintraub, S. The Boston Naming Test; Lea & Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- McCarthy, D. Manual for the McCarthy Scales of Children’s Abilities; The Psychological Corp: New York, NY, USA, 1972. [Google Scholar]
- Stroop, J.R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 1935, 18, 643–662. [Google Scholar] [CrossRef]
- Devenny, D.A.; Zimmerli, E.J.; Kittler, P.; Krinsky-McHale, S.J. Cued recall in early-stage dementia in adults with Down’s syndrome. J. Intellect. Disabil. Res. 2002, 46, 472–483. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Folstein Stand Mini-Mental State Exam. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Wisniewski, K.E.; Wisniewski, H.M.; Wen, G.Y. Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann. Neurol. 1985, 17, 278–282. [Google Scholar] [CrossRef]
- Hom, C.L.; Walsh, D.; Fernandez, G.; Tournay, A.; Touchette, P.; Lott, I.T. Cognitive assessment using the Rapid Assessment for Developmental Disabilities, Second Edition (RADD-2). J. Intellect. Disabil. Res. in press. 2021. [Google Scholar] [CrossRef]
- Parks, S. Inside Hawaii Early Learning Profile, Birth to Three Years; VORT Corporation: Palo Alto, CA, USA, 2006. [Google Scholar]
- Roid, F.H.; Sampers, J.L. Merrill-Palmer Scales of Development—Revised; Stoelting Company: Wood Dale, IL, USA, 2004. [Google Scholar]
- Vega, A. Use of Purdue pegboard and finger tapping performance as a rapid screening test for brain damage. J. Clin. Psychol. 1969, 25, 255–258. [Google Scholar] [CrossRef]
- Wilson, B.; Ivani-Chalian, C.F.; Aldrich, F. Rivermead Behavioural Memory Test for Children; Thames Valley Test Co.: Bury St. Edmunds, UK, 1991. [Google Scholar]
- Buschke, H. Selective reminding for analysis of memory and learning. J. Verbal Learn. Verbal Behav. 1973, 12, 543–550. [Google Scholar] [CrossRef]
- Tinetti, M.E. Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatr. Soc. 1986, 34, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Little, T.D. Longitudinal Structural Equation Modeling; The Guilford Press: New York, NY, USA, 2013. [Google Scholar]
- Pituch, K.A.; Stevens, J.P. Applied Multivariate Statistics for the Social Sciences, 6th ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling, 4th ed.; Routledge: New York, NY, USA, 2016. [Google Scholar]
- Fonseca, L.M.; Yokomizo, J.E.; Bottino, C.M.; Fuentes, D. Frontal Lobe Degeneration in Adults with Down Syndrome and Alzheimer’s Disease: A Review. Dement. Geriatr. Cogn. Disord. 2016, 41, 123–136. [Google Scholar] [CrossRef]
- Devenny, D.A.; Krinsky-McHale, S.J.; Sersen, G.; Silverman, W.P. Sequence of cognitive decline in dementia in adults with Down’s syndrome. J. Intellect. Disabil. Res. 2000, 44, 654–665. [Google Scholar] [CrossRef]
- Cosgrave, M.P.; Tyrrell, J.; McCarron, M.; Gill, M.; Lawlor, B.A. A five year follow-up study of dementia in persons with Down’s syndrome: Early symptoms and patterns of deterioration. Ir. J. Psychol. Med. 2000, 17, 5–11. [Google Scholar] [CrossRef]
- Adams, D.; Oliver, C. The relationship between acquired impairments of executive function and behaviour change in adults with Down syndrome. J. Intellect. Disabil. Res. 2010, 54, 393–405. [Google Scholar] [CrossRef] [PubMed]
- Pulsifer, M.B.; Evans, C.L.; Hom, C.; Krinsky-McHale, S.J.; Silverman, W.; Lai, F.; Lott, I.; Schupf, N.; Wen, J.; Rosas, H.D. Language skills as a predictor of cognitive decline in adults with Down syndrome. Alzheimer’s Dement. 2020, 12, e12080. [Google Scholar] [CrossRef] [PubMed]
- McNeish, D.; Wolf, M.G. Thinking twice about sum scores. Behav. Res. Methods 2020, 52, 2287–2305. [Google Scholar] [CrossRef] [PubMed]
Condition | CS (n = 103) | MCI-DS (n = 41) | Mann–Whitney/χ2 Statistic | p-Value |
---|---|---|---|---|
Age | M = 48.65, SD = 6.27 | M = 52.88, SD = 6.72 | −3.39 | 0.0001 |
Sex | Male (56.31%) | Male (65.85%) | 1.10 | 0.293 |
Premorbid ID | Mild (58.25%) Moderate (41.75%) | Mild (41.46%) Moderate (58.54%) | 3.32 | 0.068 |
Depression | 28.16% | 29.27% | 0.02 | 0.894 |
Diabetes | 6.80% | 9.76% | 0.75 | 0.688 |
Hearing | Corrected (15.53%) Impaired (16.50%) | Corrected (19.51%) Impaired (19.51%) | 0.65 | 0.723 |
Hypertension | 7.46% | 11.76% | 0.51 | 0.473 |
Obstructive sleep apnea | 30.10% | 41.46% | 4.14 | 0.126 |
Seizures | 11.65% | 9.76% | 0.94 | 0.625 |
Vision | Corrected (56.41%) Impaired (17.48%) | Corrected (56.10%) Impaired (29.27%) | 3.67 | 0.159 |
Variable (Range of Scores) | Domain | CS (n = 103) | MCI-DS (n = 41) | Mann–Whitney U (p-Value) |
---|---|---|---|---|
Block Design (0–54) | Visuomotor | 23.79 (10.49) | 17.37 (12.78) | 3.11 (0.002) |
Boston Naming (0–27) | Language | 15.88 (5.51) | 13.23 (6.91) | 2.04 (0.041) |
Category Fluency (0–17) | EF | 8.23 (3.18) | 6.82 (3.68) | 2.21 (0.027) |
Cats and Dogs Switch (−17.00–61.80) † | EF | 9.80 (11.22) | 5.05 (11.21) | 1.82 (0.069) |
Cued Recall (3–35) | Memory | 28.61 (6.83) | 21.38 (9.22) | 4.43 (0.0001) |
DSMSE Language (3–52) | Language | 37.10 (9.07) | 30.80 (9.63) | 3.28 (0.001) |
DSMSE Memory (0–23) | Memory | 14.08 (4.68) | 9.80 (4.57) | 4.62 (0.0001) |
DSMSE Visual Spatial (2–8) | Visuomotor | 6.18 (1.09) | 5.59 (1.01) | 2.98 (0.003) |
mMMSE-DS Anomia (4–20) | Language | 18.18 (2.20) | 16.49 (4.19) | 1.55 (0.122) |
mMMSE-DS Concentration (0–6) | EF | 3.69 (2.10) | 2.39 (2.14) | 3.15 (0.002) |
mMMSE-DS Fine Motor (1–10) | Visuomotor | 8.04 (1.29) | 7.05 (2.28) | 2.58 (0.010) |
mMMSE-DS Orientation (5–30) | EF | 25.46 (5.33) | 20.87 (6.41) | 4.75 (0.0001) |
Purdue Pegboard Both Hands (0–8) | Visuomotor | 2.62 (1.82) | 1.51 (1.71) | 3.14 (0.002) |
RADD-2 Digit Span Forward (0–8) | EF | 4.02 (1.66) | 2.97 (1.80) | 2.84 (0.005) |
RADD-2 Expressive Lang. (0–16) | Language | 11.24 (3.92) | 8.80 (4.01) | 3.34 (0.001) |
RADD-2 Receptive Lang. (0–12) | Language | 7.56 (2.51) | 6.80 (2.99) | 1.08 (0.279) |
RADD-2 Sensorimotor (0–7) | Visuomotor | 6.70 (0.50) | 5.85 (1.50) | 3.87 (0.0001) |
RADD-2 Similarities (0–4) | Language | 2.51 (1.49) | 1.56 (1.47) | 3.40 (0.001) |
Rivermead Recognition (0–10) | Memory | 5.42 (3.77) | 2.21 (3.40) | 3.90 (0.0001) |
Selective Reminding Test (1–24) | Memory | 15.50 (5.62) | 9.18 (4.32) | 5.70 (0.0001) |
Tinetti Gait (4–12) | Visuomotor | 10.75 (1.62) | 10.37 (1.88) | 1.47 (0.143) |
VMI (1–25) | Visuomotor | 15.45 (3.22) | 13.98 (3.40) | 1.75 (0.081) |
1 | 2 | 3 | |
---|---|---|---|
Language/Executive Function | Visuomotor | Memory | |
EXECUTIVE FUNCTION | |||
mMMSE Concentration | 0.67 | ||
RADD-2 Digit Span Forward | 0.82 | ||
LANGUAGE | |||
Boston Naming | 0.91 | ||
DSMSE Language | 0.98 | ||
mMMSE Anomia | 0.70 | ||
RADD-2 Expressive Language | 0.79 | ||
RADD-2 Receptive Language | 0.61 | ||
RADD-2 Similarities | 0.80 | ||
MEMORY | |||
Cued Recall | 0.80 | ||
DSMSE Memory | 0.80 | ||
Rivermead Recognition | 0.62 | ||
Selective Reminding Test | 0.66 | ||
VISUOMOTOR | |||
Block Design | 0.80 | ||
DSMSE Visual Spatial | 0.83 | ||
Purdue Pegboard | 0.49 | ||
RADD-2 Sensorimotor | 0.57 | ||
VMI | 0.54 | ||
Percentage of variance | 74.13 | 16.51 | 6.91 |
95% CI | ||||||
---|---|---|---|---|---|---|
Domain Score | β | SE | Z | P | Lower | Upper |
Language/Executive Function | −0.97 | 0.29 | −3.34 | 0.001 | 1.54 | −0.40 |
Memory | −0.89 | 0.15 | −6.04 | 0.0001 | −1.17 | −0.60 |
Visuomotor | −0.53 | 0.12 | −4.23 | 0.0001 | −0.77 | −0.28 |
Cognitive Domain | Predictor Variable | Estimate | SE | CR | Standardized Regression Weight | p-Value |
---|---|---|---|---|---|---|
Structural | ||||||
Language/EF | Sex | −0.010 | 0.075 | −0.13 | −0.01 | 0.893 |
Language/EF | PID | −0.413 | 0.067 | −6.15 | −0.41 | <0.001 |
Language/EF | MCI-DS | −0.238 | 0.074 | −3.23 | −0.24 | 0.001 |
Memory | Sex | 0.008 | 0.076 | 0.11 | 0.01 | 0.916 |
Memory | PID | −0.241 | 0.075 | −3.21 | −0.24 | 0.001 |
Memory | MCI-DS | −0.471 | 0.67 | −7.07 | −0.47 | <0.001 |
Visuomotor | Sex | −0.093 | 0.081 | −1.14 | −0.09 | 0.255 |
Visuomotor | PID | −0.302 | 0.077 | −3.91 | −0.30 | <0.001 |
Visuomotor | MCI-DS | −0.303 | 0.78 | −3.90 | −0.30 | <0.001 |
Measurement | ||||||
Language/EF | Boston Naming | 0.879 | 0.023 | 38.18 | 0.88 | <0.001 |
Language/EF | DSMSE Language | 0.878 | 0.023 | 37.81 | 0.88 | <0.001 |
Language/EF | mMMSE Anomia | 0.742 | 0.041 | 18.14 | 0.74 | <0.001 |
Language/EF | mMMSE Concentration | 0.724 | 0.043 | 16.53 | 0.72 | <0.001 |
Language/EF | RADD-2 Digit Span Forward | 0.782 | 0.036 | 21.93 | 0.78 | <0.001 |
Language/EF | RADD-2 Expressive Language | 0.874 | 0.023 | 37.52 | 0.87 | <0.001 |
Language/EF | RADD-2 Receptive Language | 0.683 | 0.047 | 16.53 | 0.68 | <0.001 |
Language/EF | RADD-2 Similarities | 0.760 | 0.038 | 20.05 | 0.76 | <0.001 |
Memory | Cued Recall | 0.673 | 0.053 | 12.65 | 0.67 | <0.001 |
Memory | DSMSE Memory | 0.858 | 0.032 | 27.09 | 0.86 | <0.001 |
Memory | Rivermead Recognition | 0.702 | 0.051 | 13.87 | 0.70 | <0.001 |
Memory | Selective Reminding Test | 0.845 | 0.033 | 25.65 | 0.85 | <0.001 |
Visuomotor | Block Design | 0.849 | 0.033 | 26.09 | 0.85 | <0.001 |
Visuomotor | DSMSE Visual Spatial | 0.797 | 0.038 | 17.05 | 0.80 | <0.001 |
Visuomotor | Purdue Pegboard | 0.615 | 0.59 | 10.39 | 0.62 | <0.001 |
Visuomotor | RADD Sensorimotor | 0.624 | 0.058 | 10.70 | 0.62 | <0.001 |
Visuomotor | VMI | 0.708 | 0.048 | 14.77 | 0.71 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hom, C.L.; Kirby, K.A.; Ricks-Oddie, J.; Keator, D.B.; Krinsky-McHale, S.J.; Pulsifer, M.B.; Rosas, H.D.; Lai, F.; Schupf, N.; Lott, I.T.; et al. Cognitive Function during the Prodromal Stage of Alzheimer’s Disease in Down Syndrome: Comparing Models. Brain Sci. 2021, 11, 1220. https://doi.org/10.3390/brainsci11091220
Hom CL, Kirby KA, Ricks-Oddie J, Keator DB, Krinsky-McHale SJ, Pulsifer MB, Rosas HD, Lai F, Schupf N, Lott IT, et al. Cognitive Function during the Prodromal Stage of Alzheimer’s Disease in Down Syndrome: Comparing Models. Brain Sciences. 2021; 11(9):1220. https://doi.org/10.3390/brainsci11091220
Chicago/Turabian StyleHom, Christy L., Katharine A. Kirby, Joni Ricks-Oddie, David B. Keator, Sharon J. Krinsky-McHale, Margaret B. Pulsifer, Herminia Diana Rosas, Florence Lai, Nicole Schupf, Ira T. Lott, and et al. 2021. "Cognitive Function during the Prodromal Stage of Alzheimer’s Disease in Down Syndrome: Comparing Models" Brain Sciences 11, no. 9: 1220. https://doi.org/10.3390/brainsci11091220
APA StyleHom, C. L., Kirby, K. A., Ricks-Oddie, J., Keator, D. B., Krinsky-McHale, S. J., Pulsifer, M. B., Rosas, H. D., Lai, F., Schupf, N., Lott, I. T., & Silverman, W. (2021). Cognitive Function during the Prodromal Stage of Alzheimer’s Disease in Down Syndrome: Comparing Models. Brain Sciences, 11(9), 1220. https://doi.org/10.3390/brainsci11091220