Interaction between Feet and Gaze in Postural Control
Abstract
:1. Introduction
2. Methods
3. Postural Control and Postural System
4. Role of the Foot System in Posture
5. Role of Vision and Eye Movements in Posture
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Von Vierordt, K. Grundriss der Physiologie des Menschen; Laupp, H., Ed.; Ulan Press: Tuebingen, Germany, 1860. [Google Scholar]
- Romberg, M.H. Lehrbuch der Nervenkrankheiten des Menschen; Dunker, A., Ed.; Nabu Press: Charleston, WV, USA, 1846; p. 795. [Google Scholar]
- Heyd, W.H.S.C. Der Tastsinn der Fusssohle: Als Aequilibrirungsmittel des Korpers Beim Stehen. 1862. Available online: https://books.google.lu/books?id=ok5PAAAAcAAJ&printsec=frontcover&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 1 September 2022).
- Baron, J.B. Musculature extrinsèque et équilibre des poissons. CR Acad. Sei. 1950, 230, 2231–2233. [Google Scholar]
- Baron, J.B.; Fowler, E. Prismatic lenses for vertigo and some experimental background of the role of extrinsic ocular muscles in desequilibrium. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1952, 56, 916–926. [Google Scholar]
- Held, R.; Hein, A. Movement-produced stimulation in the development of visually guided behavior. Comp. Physiol. Psychol. 1963, 56, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Hebb, D.O. Studies of the organization of behavior. I. Behavior of the rat in a field orientation. J. Comp. Psychol. 1938, 25, 333–353. [Google Scholar] [CrossRef]
- Paillard, J. Le corps situé et le corps identifié. Une approche psychophysiologique de la notion de schéma corporel. Rev. Méd. Suisse Romande. 1980, 100, 129–141. [Google Scholar]
- Ashwell, K.W.S.; Waite, P.M.E. Development of the Peripheral Nervous System. In The Human Nervous System, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Lee, D.N.; Aronso, E. Visual proprioceptive control of standing in human infants. Percept. Psychophys. 1974, 15, 529–532. [Google Scholar] [CrossRef]
- Bronstein, A.M.; Hood, J.D.; Gresty, M.A.; Panagi, C. Visual control of balance in cerebellar and parkinsonian syndromes. Brain 1990, 113, 767–779. [Google Scholar] [CrossRef]
- Bucci, M.P.; Seassau, M. Saccadic eye movements in children: A developmental study. Exp. Brain Res. 2012, 222, 21–30. [Google Scholar] [CrossRef]
- Luna, B.; Velanova, K.; Geier, C.F. Development of eye-movement control. Brain Cogn. 2008, 68, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Assaiante, C.; Mallau, S.; Viel, S.; Jover, M.; Schmitz, C. Development of postural control in healthy children: A functional approach. Neural. Plast. 2005, 12, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Flourens, M.J.P. Expériences sur les canaux semi-circulaires de l’oreille des oiseaux. Séance du 11 aout 1828 de l’Académie Royale de Paris. Arch. Gén. Méd. 1828, 1, 132–134. [Google Scholar]
- Cyon, E. L’oreille, Organe D’orientation Dans le Temps Et Dans L’espace; Alcan: Paris, France, 1911; p. 298. [Google Scholar]
- Nashner, L.M. Adapting reflexes controlling the human posture. Exp. Brain Res. 1976, 26, 59–72. [Google Scholar] [CrossRef]
- Nashner, L.; McCollum, G. The organization of human postural movements: A formal basis and experimental synthesis. Behav. Brain Sci. 1985, 8, 135–172. [Google Scholar] [CrossRef]
- Nashner, L.M.; Black, F.O.; Wall, C. Adaptation to altered support and visual conditions during stance: Patients with vestibular deficits. J. Neurosci. 1982, 2, 536–544. [Google Scholar] [CrossRef]
- Woollacott, M.; Inglin, B.; Manchester, D. Response preparation and posture control. Neuromuscular changes in the older adult. Ann. N. Y. Acad. Sci. 1988, 515, 42–53. [Google Scholar] [CrossRef]
- Lafont, C.; Costes-Salon, M.C.; Dupui, P.; Rollans, Y.; Busquerre, F.; Albarède, J.L. Instabilité, vieillissement de la fonction d’équilibration et chutes. In La Chute de la Personne Âgée; Jacquot, J.M., Strudel, D., Pélissier, J., Eds.; Masson: Paris, France, 1999; pp. 33–45. [Google Scholar]
- Hof, A.L. The equations of motion for a standing human reveal three mechanisms for balance. J. Biomech. 2007, 40, 451–457. [Google Scholar] [CrossRef]
- Fitzpatrick, R.; McCloskey, D.I. Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J. Physiol. 1994, 478, 173–186. [Google Scholar] [CrossRef]
- Guyon, M.; Chea, C.; Laroche, D.; Fournel, I.; Baudet, A.; Toupet, M.; Bozorg Grayeli, A. Measuring threshold and latency of motion perception on a swinging bed. PLoS ONE 2021, 16, e0252914. [Google Scholar] [CrossRef]
- Horak, F.B.; Hlavacka, F. Somatosensory loss increases vestibulospinal sensitivity. J. Neurophysiol. 2001, 86, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Shupert, C.L.; Horak, F.B.; Black, F.O. Hip sway associated with vestibulopathy. J. Vestib. Res. 1994, 4, 231–244. [Google Scholar] [PubMed]
- Honegger, F.; Hubertus, J.W.; Allum, J.H. Coordination of the head with respect to the trunk, pelvis, and lower leg during quiet stance after vestibular loss. Neuroscience 2013, 232, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Honegger, F.; van Spijker, G.J.; Allum, J.H. Coordination of the head with respect to the trunk and pelvis in the roll and pitch planes during quiet stance. Neuroscience 2012, 213, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Okada, M. An electromyographic estimation of the relative muscular load in different human postures. J. Hum. Ergol. 1973, 1, 75–93. [Google Scholar]
- Schieppati, M.; Hugon, M.; Grasso, M.; Nardone, A.; Galante, M. The limits of equilibrium in young and elderly normal subjects and in parkinsonians. Electroencephalogr. Clin. Neurophysiol. 1994, 93, 286–298. [Google Scholar] [CrossRef]
- Schieppati, M.; Nardone, A.; Siliotto, R.; Grasso, M. Early and late stretch responses of human foot muscles induced by perturbation of stance. Exp. Brain Res. 1995, 105, 411–422. [Google Scholar] [CrossRef]
- Horak, F.B.; Shupert, C.L.; Dietz, V.; Horstmann, G. Vestibular and somatosensory contributions to responses to head and body displacements in stance. Exp. Brain Res. 1994, 100, 93–106. [Google Scholar] [CrossRef]
- Ridge, S.T.; Rowley, K.M.; Kurihara, T.; McClung, M.; Tang, J.; Reischl, S.; Kulig, K. Contributions of Intrinsic and Extrinsic Foot Muscles during Functional Standing Postures. Biomed. Res. Int. 2022, 2022, 7708077. [Google Scholar] [CrossRef]
- Woollacott, M.H.; Shumway-Cook, A.; Nashner, L.M. Aging and posture control: Changes in sensory organization and muscular coordination. Int. J. Aging Hum. Dev. 1986, 23, 97–114. [Google Scholar] [CrossRef]
- Horak, F.B.; Nashner, L.M. Central programming of postural movements: Adaptation to altered support-surface configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef]
- Horak, F.B.; Nashner, L.M.; Diener, H.C. Postural strategies associated with somatosensory and vestibular loss. Exp. Brain Res. 1990, 82, 167–177. [Google Scholar] [CrossRef]
- Babinski, J. De l’asynergie cérébelleuse. Rev. Neurol. 1899, 7, 806–816. [Google Scholar]
- Farinelli, V.; Bolzoni, F.; Marchese, S.M.; Esposti, R.; Cavallari, P.A. Novel Viewpoint on the Anticipatory Postural Adjustments During Gait Initiation. Front. Hum. Neurosci. 2021, 15, 709780. [Google Scholar] [CrossRef] [PubMed]
- Massion, J. Movement, posture and equilibrium: Interaction and coordination. Prog. Neurobiol. 1992, 38, 35–56. [Google Scholar] [CrossRef]
- Bouisset, S.; Do, M.C. Posture, dynamic stability, and voluntary movement. Neurophysiol. Clin. 2008, 38, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Belenkiĭ, V.E.; Gurfinkel, V.S.; Palsev, E.I. Control elements of volontary movements. Biofizika 1967, 12, 135–141. [Google Scholar]
- Caronni, A.; Cavallari, P. Anticipatory postural adjustments stabilise the whole upper-limb prior to a gentle index finger tap. Exp. Brain Res. 2009, 194, 59–66. [Google Scholar] [CrossRef]
- Nashner, L.M. Fixed patterns of rapid postural responses among leg muscles during stance. Exp. Brain Res. 1977, 30, 13–24. [Google Scholar] [CrossRef]
- Lee, W.A. Anticipatory control of postural and task muscles during rapid arm flexion. J. Mot. Behav. 1980, 3, 185–196. [Google Scholar] [CrossRef]
- Bouisset, S.; Zattara, M. A sequence of postural movements precepes voluntary movement. Neurosci. Lett. 1981, 22, 263–270. [Google Scholar] [CrossRef]
- Delafontaine, A.; Vialleron, T.; Diakhaté, D.G.; Fourcade, P.; Yiou, E. Effects of experimentally induced cervical spine mobility alteration on the postural organisation of gait initiation. Sci. Rep. 2022, 12, 6055. [Google Scholar] [CrossRef]
- Esposti, R.; Bruttini, C.; Bolzoni, F.; Cavallari, P. Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information. Exp. Brain Res. 2017, 235, 1349–1360. [Google Scholar] [CrossRef]
- Cavallari, P.; Bolzoni, F.; Esposti, R.; Bruttini, C. Cough-Anal Reflex May Be the Expression of a Pre-Programmed Postural Action. Front. Hum. Neurosci. 2017, 11, 475. [Google Scholar] [CrossRef] [Green Version]
- Gahery, Y. Associated movements, postural adjustments and synergies: Some comments about the history and significance of three motor concepts. Arch. Ital. Biol. 1987, 125, 345–360. [Google Scholar]
- Gurfinkel, V.S.; Elner, A.M. Participation of the secondary motor area of the frontal lobe of the brain in organizing postural components of human voluntary movement. Neirofiziologiia 1988, 20, 7–15. [Google Scholar]
- Brownstone, R.M.; Chopek, J.W. Reticulospinal Systems for Tuning Motor Commands. Front. Neural. Circuits. 2018, 12, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stapley, P.J.; Drew, T. The pontomedullary reticular formation contributes to the compensatory postural responses observed following removal of the support surface in the standing cat. J. Neurophysiol. 2009, 101, 1334–1350. [Google Scholar] [CrossRef]
- Lawrence, D.G.; Kuypers, H.G. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 1968, 91, 15–36. [Google Scholar] [CrossRef]
- Schepens, B.; Drew, T. Descending signals from the pontomedullary reticular formation are bilateral, asymmetric, and gated during reaching movements in the cat. J. Neurophysiol. 2006, 96, 2229–2252. [Google Scholar] [CrossRef]
- Schepens, B.; Drew, T. Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat. J. Neurophysiol. 2004, 92, 2217–2238. [Google Scholar] [CrossRef]
- Wright, W.G.; Ivanenko, Y.P.; Gurfinkel, V.S. Foot anatomy specialization for postural sensation and control. J. Neurophysiol. 2012, 107, 1513–1521. [Google Scholar] [CrossRef] [Green Version]
- Roll, J.P.; Roll, R. La proprioception extra-oculaire comme élément de référence posturale et de lecture spatiale des données rétiniennes [Extraocular proprioception as an element of postural reference and spatial coding of retinal information]. Agressologie 1987, 28, 905–912. [Google Scholar]
- Roll, R.; Velay, J.L.; Roll, J.P. Eye and neck proprioceptive messages contribute to the spatial coding of retinal input in visually oriented activities. Exp. Brain Res. 1991, 85, 423–431. [Google Scholar] [CrossRef] [PubMed]
- Hollands, M.A.; Ziavra, N.V.; Bronstein, A.M. A new paradigm to investigate the roles of head and eye movements in the coordination of whole-body movements. Exp. Brain Res. 2004, 154, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Mergner, T.; Bolha, B.; Hlavacka, F. Vestibular, visual, and somatosensory contributions to human control of upright stance. Neurosci. Lett. 2000, 281, 99–102. [Google Scholar] [CrossRef]
- Viseux, F.; Lemaire, A.; Barbier, F.; Charpentier, P.; Leteneur, S.; Villeneuve, P. How can the stimulation of plantar cutaneous receptors improve postural control? Review and clinical commentary. Neurophysiol. Clin. 2019, 49, 263–268. [Google Scholar] [CrossRef]
- Okubo, J.; Watanabe, I.; Kotaka, S.; Murase, H.; Numano, F. The mechanism for equilibration and sway of the center of gravity in neurological diseases. Effect of the plantar pressure receptor on body sway in spino-cerebellar degeneration. Agressologie 1980, 21, 71–81. [Google Scholar]
- Villeneuve, P. Régulation du tonus postural par information podales. Rev. Podologie 1989, 49, 54–58. [Google Scholar]
- Bourdiol, R.J.; Capelus, F.; Ngyen Tan, H.; Hatoum, P. Pied et Statique; Maisonneuve: Paris, France, 1980. [Google Scholar]
- Villeneuve, P. Le pied humain, organe de la posture orthostatique. Kinésithérapie Scientifique 1990, 294, 47–51. [Google Scholar]
- Kavounoudias, A.; Roll, R.; Roll, J.P. The plantar sole is a ‘dynamometric map’ for human balance control. Neuroreport 1998, 9, 3247–3252. [Google Scholar] [CrossRef] [Green Version]
- Roll, R.; Kavounoudias, A.; Roll, J.P. Cutaneous afferents from human plantar sole contribute to body posture awareness. Neuroreport 2002, 13, 1957–1961. [Google Scholar] [CrossRef]
- Kenny, R.P.W.; Eaves, D.L.; Martin, D.; Hatton, A.L.; Dixon, J. The effects of textured insoles on quiet standing balance in four stance types with and without vision. BMC Sports Sci. Med. Rehabil. 2019, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Foisy, A.; Gaertner, C.; Matheron, E.; Kapoula, Z. Controlling Posture and Vergence Eye Movements in Quiet Stance: Effects of Thin Plantar Inserts. PLoS ONE 2015, 10, e0143693. [Google Scholar] [CrossRef] [Green Version]
- Viseux, F.; Barbier, F.; Villeneuve, P.; Lemaire, A.; Charpentier, P.; Leteneur, S. Low additional thickness under the toes could change upright balance of healthy subjects. Neurophysiol. Clin. 2018, 48, 397–400. [Google Scholar] [CrossRef]
- Viseux, F.J.F.; Martins, D.F.; Villeneuve, P.; Charpentier, P.; de Sant’Anna, E.; Silva, L.; Salgado, A.S.I.; Lemaire, A. Effect of sensory stimulation applied under the great toe on postural ability in patients with fibromyalgia. Somatosens Mot. Res. 2020, 37, 172–179. [Google Scholar] [CrossRef]
- Desenne, P.; Schoenstein, C. Etude préliminaire sur la modification du bilan orthoptique par stimulation plantaire. In Pied Équilibre et Posture; Frison-Roche, V., Ed.; HAL Open Science: Lyon, France, 1996; pp. 175–188. [Google Scholar]
- Mei, N.; Hartmann, F.; Roubien, R. Functional characteristics of dental ligament mechanoreceptors in the cat. J. Biol. Buccale. 1975, 3, 29–39. [Google Scholar]
- Viseux, F.J.F. The sensory role of the sole of the foot: Review and update on clinical perspectives. Neurophysiol. Clin. 2020, 50, 55–68. [Google Scholar] [CrossRef]
- Lee, D.N.; Lishmann, J.R. Vision-The most efficient source of propriocetive information for balance control. Agressologie 1976, 18A, 83–94. [Google Scholar]
- Benjuya, N.; Melzer, I.; Kaplanski, J. Aging-induced shifts from a reliance on sensory input to muscle cocontraction during balanced standing. J. Gerontol. Med. Sci. 2004, 59, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, E.; Seiger, A.; Hirschfeld, H. Postural steadiness and weight distribution during tandem stance in healthy young and elderly adults. Clin. Biomech. 2005, 20, 202–208. [Google Scholar] [CrossRef]
- Koceja, D.M.; Allways, D.; Earles, D.R. Age differences in postural sway during volitional head movement. Arch. Phys. Med. Rehabil. 1999, 80, 1537–1541. [Google Scholar] [CrossRef]
- Lord, S.R.; Ward, J.A. Age associated differences in sensori-motor function and balance in community dwelling women. Age Ageing 1994, 23, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Turano, K.; Rubin, G.S.; Herdman, S.J.; Chee, E.; Fried, L.P. Visual stabilization of posture in elderly: Fallers vs. nonfallers. Optom. Vis. Sci. 1994, 71, 761–769. [Google Scholar] [CrossRef]
- Bles, W.; Kapteyn, T.S.; Brandt, T.; Arnold, F. The mechanism of physiological height vertigo. II. Posturography. Acta. Otolaryngol. 1980, 89, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Brandt, T.; Paulus, W.; Straube, A. Vision and posture. In Disorders of Posture; Bles, W., Brandt, T., Eds.; Elsevier Science Publishers BV: Amsterdam, The Netherlands; New York, NY, USA; Oxford, UK, 1986; pp. 157–175. [Google Scholar]
- Paulus, W.M.; Straube, A.; Brandt, T. Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 1984, 107, 1143–1163. [Google Scholar] [CrossRef] [PubMed]
- Paulus, W.; Staube, A.; Krafczyk, S.; Brandt, T. Differential effects of retinal targets displacement changing size and changing disparity in the control of anterior/posterior and lateral body sway. Exp. Brain Res. 1989, 78, 243–252. [Google Scholar] [CrossRef]
- Kapoula, Z.; Bucci, M.P. Postural control in dyslexic and non-dyslexic children. J. Neurol. 2007, 254, 1174–1183. [Google Scholar] [CrossRef]
- Kapoula, Z.; Lê, T.T. Effects of distance and gaze position on postural stability in young and old subjects. Exp. Brain Res. 2006, 173, 438–445. [Google Scholar] [CrossRef]
- Friedrich, M.; Grein, H.-J.; Wicher, C.; Schuetze, J.; Mueller, A.; Lauenroth, A.; Hottenrott, K.; Schwesig, R. Influence of pathologic and simulated visual dysfunctions on the postural system. Exp. Brain Res. 2007, 186, 305–314. [Google Scholar] [CrossRef]
- Assländer, L.; Peterka, R.J. Sensory reweighting dynamics in human postural control. J. Neuro-Physiol. 2014, 111, 1852–1864. [Google Scholar] [CrossRef] [Green Version]
- Harwood, R.H. Visual problems and falls. Age Ageing 2001, 3, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Piirtola MEra, P. Force platform measurements as predictors of falls among older people a review. Gerontology 2006, 52, 1–16. [Google Scholar] [CrossRef]
- Mahoney, J.R.; Oh-Park, M.; Ayers, E.; Verghese, J. Quantitative trunk sway and prediction of incident falls in older adults. Gait Posture 2017, 58, 183–187. [Google Scholar] [CrossRef]
- Lamoreux, E.L.; Chong, E.; Wang, J.J.; Saw, S.M.; Aung, T.; Mitchell, P.; Wong, T.Y. Visual impairment, causes of vision loss, and falls: The Singapore Malay Eye Study. Investig. Ophthalmol. Vis. Sci. 2008, 49, 528–533. [Google Scholar] [CrossRef] [Green Version]
- Chatard, H.; Tepenier, L.; Jankowski, O.; Aussems, A.; Allieta, A.; Beydoun, T.; Salah, S.; Bucci, M.P. Effects of age-related macular degeneration on postural sway. Front. Hum. Neurosci. 2017, 11, 158. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, T.; Yabuki, A.; Hasebe, K.; Shira, Y.H.; Imai, S.; Ohtsuki, H. Postural stability changes during the prism adaptation test in patients with intermittent and constant exotropia. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6341–6347. [Google Scholar] [CrossRef]
- Odenrick, P.; Sandstedt, P.; Lennerstrand, G. Postural sway and gait of children with convergent strabismus. Dev. Med. Child. Neurol. 1984, 26, 495–499. [Google Scholar] [CrossRef]
- Sandstedt, P.; Odenrick, P.; Lennerstrand, G. Gait and posture control in children with divergent strabismus. Binocul. Vis. Q. 1985, 1, 141–146. [Google Scholar]
- Matsuo, T.; Narita, A.; Senda, M.; Hasebe, S.; Ohtsuki, H. Body sway increases immediately after strabismus surgery. Acta Med. Okayama 2006, 60, 13–24. [Google Scholar]
- Lions, C.; Bui-Quoc, E.; Bucci, M.P. Postural control in strabismic children versus non strabismic age-matched children. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 2219–2225. [Google Scholar] [CrossRef]
- Ezane, M.D.; Lions, C.; Bui-Quoc, E.; Milleret, C.; Bucci, M.P. Spatial and temporal postural analysis in children with strabismus. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 1629–1639. [Google Scholar] [CrossRef]
- Lions, C.; Colleville, L.; Bui-Quoc, E.; Bucci, M.P. Importance of the visual inputs from the non-squint eye for postural stability in strabismic children. Neurosci. Lett. 2016, 617, 127–133. [Google Scholar] [CrossRef]
- Brandt, T. Vision and posture. In Vertigo: Its Multisensory Syndromes; Brandt, T., Ed.; Springer: London, UK; University of Munich: Munich, Germany, 1999. [Google Scholar]
- White, K.D.; Post, R.B.; Leibowitz, H.W. Saccadic Eye Movements and Body Sway. Science 1980, 208, 621–623. [Google Scholar] [CrossRef]
- Oblak, B.; Gregoric, M.; Gyergyek, L. Effects of voluntary eye saccades on body sway. In Vestibular and Visual Control on Posture and Locomotion Equilibrium; Igarashi, M., Black, F.O., Eds.; Karger Publishers: Houston, TX, USA, 1985; pp. 122–126. [Google Scholar]
- Kikukawa, M.; Taguchi, K. Characteristics of body sway during saccadic eye movement in patients with peripheral vestibular disorders. In Vestibular and Visual Control on Posture and Locomotion Equilibrium; Igarashi, M., Black, F.O., Eds.; Karger Publishers: Houston, TX, USA, 1985; pp. 355–359. [Google Scholar]
- Uchida, T.; Hashimoto, M.; Suzuki, N.; Takegami, T.; Iwase, Y. Effects of periodic saccades on the body sway in human subjects. Neurosci. Lett. 1979, 13, 253–258. [Google Scholar] [CrossRef]
- Stoffregen, T.A.; Bardy, B.G.; Bonnet, C.T.; Pagulayan, R.J. Postural stabilization of visually guided eye movements. Ecol. Psychol. 2006, 18, 191–222. [Google Scholar] [CrossRef]
- Rougier, P.; Garin, M. Performing saccadic eye movements or blinking improves postural control. Mot. Control. 2007, 11, 213–223. [Google Scholar] [CrossRef]
- Legrand, A.; Bui Quoc, E.; Doré-Mazars, K.; Lemoine, C.; Gérard, C.-L.; Bucci, M.P. Effect of a Dual Task on Postural Control in Dyslexic Children. PLoS ONE 2012, 7, e35301. [Google Scholar] [CrossRef]
- Baron, J.B.; Bessineton, J.C.; Bizzo, G.; Noto, R.; Tévanian, G.; Pacifici, M. Corrélation entre le foncitonnement des systèms sensori-moteurs labyrinthiques et ouclomoteurs ajustant les deplacements du centre de gravité du corps de l’homme en orthostatisme. Agressologie 1973, 14B, 79–86. [Google Scholar]
- Strupp, M.; Glasauer, S.; Jahn, K.; Schneider, E.; Krafczyk, S.; Brandt, T. Eye movements and balance. Ann. N. Y. Acad. Sci. 2003, 1004, 352–358. [Google Scholar] [CrossRef]
- Glasauer, S.; Schneider, E.; Jahn, K.; Strupp, M.; Brandt, T. How the eyes move the body. Neurology 2005, 65, 1291–1293. [Google Scholar] [CrossRef] [PubMed]
- Ajrezo, L.; Wiener-Vacher, S.; Bucci, M.P. Saccades Improve Postural Control: A Developmental Study in Normal Children. PLoS ONE 2013, 8, e81066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leigh, R.J.; Zee, D.S. The Neurology of Eye Movements, 4th ed.; Oxford University Press: New York, NY, USA, 2006. [Google Scholar]
- Bucci, M.P.; Mélithe, D.; Ajrezo, L.; Bui-Quoc, E.; Gérard, C.-L. The influence of oculomotor tasks on postural control in dyslexic children. Front. Hum. Neurosci. 2014, 8, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bucci, M.P.; Ajrezo, L.; Wiener-Vacher, S. Oculomotor tasks affect differently postural control in healthy children. Int. J. Dev. Neurosci. 2015, 46, 1–6. [Google Scholar] [CrossRef]
- Ajrezo, L.; Wiener-Vacher, S.; Bucci, M.P. Postural Dual Task Performance during Anti-Saccades in Healthy Children. Int. J. Sports Exerc. Med. 2015, 1, 030. [Google Scholar] [CrossRef]
- Lacour, M.; Bernard-Demanze, L.; Dumitrescu, M. Posture control, aging, and attention resources: Models and posture-analysis methods. Neurophysiol. Clin. 2008, 38, 411–421. [Google Scholar] [CrossRef]
- Huxhold, O.; Li, S.C.; Schmiedek, F.; Lindenberger, U. Dual tasking postural control: Aging and the effects of cognitive demand in conjunction with focus of attention. Brain Res. Bull. 2006, 69, 294–305. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucci, M.P.; Villeneuve, P. Interaction between Feet and Gaze in Postural Control. Brain Sci. 2022, 12, 1459. https://doi.org/10.3390/brainsci12111459
Bucci MP, Villeneuve P. Interaction between Feet and Gaze in Postural Control. Brain Sciences. 2022; 12(11):1459. https://doi.org/10.3390/brainsci12111459
Chicago/Turabian StyleBucci, Maria Pia, and Philippe Villeneuve. 2022. "Interaction between Feet and Gaze in Postural Control" Brain Sciences 12, no. 11: 1459. https://doi.org/10.3390/brainsci12111459
APA StyleBucci, M. P., & Villeneuve, P. (2022). Interaction between Feet and Gaze in Postural Control. Brain Sciences, 12(11), 1459. https://doi.org/10.3390/brainsci12111459