Writing Blindly in Incomplete Locked-In Syndrome with A Custom-Made Switch-Operated Voice-Scanning Communicator—A Case Report
Abstract
:1. Introduction
2. Material and Methods
2.1. Participant
2.2. Conventional Communication
2.3. Procedure
2.4. Assessment
2.5. Custom-Device Development
2.5.1. Hardware
2.5.2. Software
3. Results
Effectiveness of the Custom Device
- Global Rating of Change scale (GRC). This single-item scale assesses the perceived improvement in quality of life with use of the new device. The subject grades the perceived improvement (or lack of improvement) on a 15-point scale from −7 (lack of improvement) to +7 (excellent improvement) [38].
- Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0) questionnaire. This 12-item scale assesses user satisfaction with an assistive technology device. The scale investigates two dimensions: satisfaction with the device and satisfaction with the service. Item scores range from 1 (not satisfied at all) to 5 (very satisfied) [39]. Only the eight items related to satisfaction with the device (QUEST 2.0-Dev) were reported for this study.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A. Vocal-Scan Software and Hardware Details
Appendix A.1. Software
Appendix A.2. Hardware
References
- Käthner, I.; Kübler, A.; Halder, S. Comparison of eye tracking, electrooculography and an auditory braincomputer interface for binary communication: A case study with a participant in the locked-in state. JNER 2015, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posner, J.B.; Saper, C.B.; Schiff, N. Plum and Posner’s Diagnosis of Stupor and Coma, 4th ed.; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Bauer, G.; Gerstenbrand, F.; Rumpl, E. Varieties of the locked-in syndrome. J. Neurol. 1979, 221, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.H. Physiological observations in a chronic case of “locked-in” syndrome. Neurology 1971, 21, 459. [Google Scholar] [CrossRef] [PubMed]
- Nordgren, R.E.; Markesbery, W.R.; Fukuda, K.; Reeves, A.G. Seven cases of cerebromedullospinal disconnection: The “locked-in” syndrome. Neurology 1971, 21, 1140. [Google Scholar] [CrossRef]
- Markand, O.N.; Dyken, M.L. Sleep abnormalities in patients with brain stem lesions. Neurology 1976, 26, 769. [Google Scholar] [CrossRef]
- Vansteensel, M.J.; Jarosiewicz, B. Brain-computer interfaces for communication. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2020; Volume 168, pp. 67–85. [Google Scholar]
- Vidal, F. Phenomenology of the locked-in syndrome: An overview and some suggestions. Neuroethics 2020, 13, 119–143. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, C.H.; Im, C.H. Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients. Sci. Rep. 2018, 8, 9505. [Google Scholar] [CrossRef] [Green Version]
- Kuzma-Kozakiewicz, M.; Andersen, P.M.; Ciecwierska, K.; Vázquez, C.; Helczyk, O.; Loose, M.; Uttner, I.; Ludolph, A.C.; Lulé, D. An observational study on quality of life and preferences to sustain life in locked-in state. Neurology 2019, 93, e938–e945. [Google Scholar] [CrossRef] [Green Version]
- Beukelman, D.R.; Light, J.C. Augmentative & Alternative Communication: Supporting Children and Adults with Complex Communication Needs, 5th ed.; Paul H. Brookes Pub.: Baltimore, MD, USA, 2020. [Google Scholar]
- Davis, T.J. Auditory Motion Perception: Investigation of Benefit in Multi-Talker Environments. Ph.D. Thesis, Vanderbilt University, Nashville, TN, USA, 2020. [Google Scholar]
- Caligari, M.; Godi, M.; Guglielmetti, S.; Franchignoni, F.; Nardone. A. Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life. Amyotroph. Lateral Scler. Front. Lobar Degener. 2013, 14, 546–552. [Google Scholar] [CrossRef]
- McFarland, D.J.; Sarnacki, W.A.; Vaughan, T.M.; Wolpaw, J.R. Brain-computer interface (BCI) operation: Signal and noise during early training sessions. Clin. Neurophysiol. Pract. 2005, 116, 56–62. [Google Scholar] [CrossRef]
- Maggi, L.; Parini, S.; Piccini, L.; Panfili, G.; Andreoni, G. A four command BCI system based on the SSVEP protocol. In Proceedings of the2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 1264–1267. [Google Scholar]
- Wierzgała, P.; Zapała, D.; Wojcik, G.M.; Masiak, J. Most popular signal processing methods in motor-imagery BCI: A review and meta-analysis. Front. Neuroinform. 2018, 12, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parini, S.; Maggi, L.; Turconi, A.C.; Andreoni, G. A robust and self-paced BCI system based on a four class SSVEP paradigm: Algorithms and protocols for a high-transfer-rate direct brain communication. Comput. Intell. Neurosci. 2009, 2009, 864564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalilpour, S.; Sardouie, S.H.; Mijani, A. A novel hybrid BCI speller based on RSVP and SSVEP paradigm. Comput. Methods Programs Biomed. 2020, 187, 105326. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, U.; Vlachos, I.; Zimmermann, J.B.; Espinosa, A.; Tonin, A.; Jaramillo-Gonzalez, A.; Khalili-Ardali, M.; Topka, H.; Lehmberg, J.; Friehs, G.M.; et al. Spelling interface using intracortical signals in a completely locked-in patient enabled via auditory neurofeedback training. Nat. Commun. 2022, 13, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Beukelman, D.R.; Mirenda, P. Augmentative & Alternative Communication: Supporting Children and Adults with Complex Communication Needs; Paul H Brookes Publishing Co. Inc.: Baltimore, MD, USA, 2013. [Google Scholar]
- Ratcliff, A. Comparison of relative demands implicated in direct selection and scanning: Considerations from normal children. AAC 1994, 10, 67–74. [Google Scholar] [CrossRef]
- Mizuko, M.; Reichle, J.; Ratcliff, A.; Esser, J. Effects of selection techniques and array sizes on short-term visual memory. AAC 1994, 10, 237–244. [Google Scholar] [CrossRef]
- Rowland, C.; Schweigert, P.D.; Light, J.C. Cognitive skills and AAC. In Communicative Competence for Individuals who Use AAC: From Research to Effective Practice; Light, J.C., Beukelman, D.R., Reichle, J., Eds.; Paul H Brookes Publishing Co. Inc.: Baltimore, MD, USA, 2003; pp. 241–275. [Google Scholar]
- Wagner, B.; Jackson, H.M. Developmental memory capacity resources of typical children retrieving picture communication symbols using direct selection and visual linear scanning with fixed communication displays. J. Speech Lang. Hear. Res. 2006, 49, 113–126. [Google Scholar] [CrossRef]
- Higginbotham, D.J.; Shane, H.; Russell, S.; Caves, K. Access to AAC: Present, past, and future. AAC 2007, 23, 243–257. [Google Scholar] [CrossRef]
- Light, J.C.; McNaughton, D. Putting people first: Re-thinking the role of technology in augmentative and alternative communication intervention. AAC 2013, 29, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Thistle, J.J.; Wilkinson, K.M. Working memory demands of aided augmentative and alternative communication for individuals with developmental disabilities. AAC 2013, 29, 235–245. [Google Scholar] [CrossRef]
- Flaubert, J.L.; Spicer, C.M.; Jette, A.M.; National Academies of Sciences, Engineering, and Medicine. Augmentative and Alternative Communication and Voice Products and Technologies. In The Promise of Assistive Technology to Enhance Activity and Work Participation; National Academies Press: Washington, DC, USA, 2017. [Google Scholar]
- McLaughlin, D.; Peters, B.; McInturf, K.; Eddy, B.; Kinsella, M.; Mooney, A.; Deibert, T.; Montgomery, K.; Fried-Oken, M. Decision-Making for Access to AAC Technologies in Late Stage ALS. Augment. Altern. Commun. 2021, 169, 169–199. [Google Scholar]
- Villalobos, A.E.L.; Giusiano, S.; Musso, L.; de’Sperati, C.; Riberi, A.; Spalek, P.; Calvo, A.; Moglia, C.; Roatta, S. When assistive eye tracking fails: Communicating with a brainstem-stroke patient through the pupillary accommodative response—A case study. Biomed. Signal Processing Control. 2021, 67, 102515. [Google Scholar] [CrossRef]
- Elsahar, Y.; Hu, S.; Bouazza-Marouf, K.; Kerr, D.; Mansor, A. Augmentative and alternative communication (AAC) advances: A review of configurations for individuals with a speech disability. Sensors 2019, 19, 1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kendall, F.P.; Provance, P.G.; McCreary, E.K.; Crosby, R.W. I Muscoli: Funzioni e Test Con Postura e Dolore; Verduci Editore: Rome, Italy, 2000. [Google Scholar]
- Ganz, J.B.; Morin, K.L.; Foster, M.J.; Vannest, K.J.; Genç Tosun, D.; Gregori, E.V.; Gerow, S.L. High-technology augmentative and alternative communication for individuals with intellectual and developmental disabilities and complex communication needs: A meta-analysis. AAC 2017, 33, 224–238. [Google Scholar] [CrossRef] [PubMed]
- Mandak, K.; Light, J.; Brittlebank-Douglas, S. Exploration of multimodal alternative access for individuals with severe motor impairments: Proof of concept. Assist. Technol. 2021, 3, 1–10. [Google Scholar] [CrossRef]
- Ball, L.J.; Nordness, A.S.; Fager, S.K.; Kersch, K.; Mohr, B.; Pattee, G.L.; Beukelman, D.R. Eye gaze access of AAC technology for people with amyotrophic lateral sclerosis. J. Med. Speech-Lang. Pathol. 2010, 18, 11. [Google Scholar]
- Brumberg, J.S.; Pitt, K.M.; Mantie-Kozlowski, A.; Burnison, J.D. Brain-Computer Interfaces for Augmentative and Alternative Communication: A Tutorial. Am. J. Speech-Lang. Pathol. 2018, 27, 1–12. [Google Scholar] [CrossRef]
- Caligari, M.; Godi, M.; Giardini, M.; Colombo, R. Development of a new high sensitivity mechanical switch for augmentative and alternative communication access in people with amyotrophic lateral sclerosis. JNER 2019, 16, 1–13. [Google Scholar] [CrossRef]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global rating of change scales: A review of strengths and weaknesses and considerations for design. J. Man. Manip. Ther. 2009, 17, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Demers, L.; Weiss-Lambrou, R.; Ska, B. The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): An overview and recent progress. Technol. Disabil. 2002, 14, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Koch Fager, S.; Fried-Oken, M.; Jakobs, T.; Beukelman, D.R. New and emerging access technologies for adults with complex communication needs and severe motor impairments: State of the science. AAC 2019, 35, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Fager, S.; Beukelman, D.R.; Fried-Oken, M.; Jakobs, T.; Baker, J. Access interface strategies. Assist. Technol. 2012, 24, 25–33. [Google Scholar] [CrossRef]
- Farwell, L.A.; Donchin, E. Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 1988, 70, 510–523. [Google Scholar] [CrossRef]
- Kapgate, D.; Kalbande, D.; Shrawankar, U. An optimized facial stimuli paradigm for hybrid SSVEP+ P300 brain computer interface. Cogn. Syst. Res. 2020, 59, 114–122. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Han, C.; Park, K. An instant donning multi-channel EEG headset (with comb-shaped dry electrodes) and BCI applications. Sensors 2019, 19, 1537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, L.W.; Chang, Y.; Wu, P.L.; Tzou, H.A.; Chen, S.F.; Tang, S.C.; Yeh, C.-L.; Chen, Y.-J. Development of a smart helmet for strategical BCI applications. Sensors 2019, 19, 1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Usakli, A.B. Improvement of EEG signal acquisition: An electrical aspect for state of the art of front end. Comput. Intell. Neurosci. 2010, 2010, 630649. [Google Scholar] [CrossRef] [Green Version]
- Cler, M.J.; Nieto-Castañón, A.; Guenther, F.H.; Fager, S.K.; Stepp, C.E. Surface electromyographic control of a novel phonemic interface for speech synthesis. AAC 2016, 32, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.; Lee, S.; Lee, K.J.; Lee, G. Biological surface electromyographic switch and necklace-type button switch control as an augmentative and alternative communication input device: A feasibility study. Phys. Eng. Sci. Med. 2019, 42, 839–851. [Google Scholar] [CrossRef]
- Laureys, S.; Pellas, F.; Van Eeckhout, P.; Ghorbel, S.; Schnakers, C.; Perrin, F.; Berré, J.; Faymonville, M.-E.; Pantke, K.-H.; Dama, F.; et al. The locked-in syndrome: What is it like to be conscious but paralyzed and voiceless? Prog. Brain Res. 2005, 150, 495–511. [Google Scholar]
- Bauby, J.D. The Diving Bell and the Butterfly [Le Scaphandre et le Papillon], 4th ed.; Leggatt, T.J., Ed.; Random House Value Publis: London, UK, 1997. [Google Scholar]
- Park, S.W.; Yim, Y.L.; Yi, S.H.; Kim, H.Y.; Jung, S.M. Augmentative and alternative communication training using eye blink switch for locked-in syndrome patient. Ann. Rehabil. Med. 2012, 36, 268. [Google Scholar] [CrossRef] [PubMed]
- Tonin, A.; Jaramillo-Gonzalez, A.; Rana, A.; Khalili-Ardali, M.; Birbaumer, N.; Chaudhary, U. Auditory electrooculogram-based communication system for ALS patients in transition from locked-in to complete locked-in state. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Light, J.; McNaughton, D.; Beukelman, D.; Fager, S.K.; Fried-Oken, M.; Jakobs, T.; Jakobs, E. Challenges and opportunities in augmentative and alternative communication: Research and technology development to enhance communication and participation for individuals with complex communication needs. AAC 2019, 35, 1–12. [Google Scholar] [CrossRef]
- Khalili-Ardali, M.; Wu, S.; Tonin, A.; Birbaumer, N.; Chaudhary, U. Neurophysiological aspects of the completely locked-in syndrome in patients with advanced amyotrophic lateral sclerosis. Clin. Neurophysiol. 2021, 132, 1064–1076. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.G.S.; Robinson, I.; AlShawi, S. Developing medical device technologies from users’ perspectives: A theoretical framework for involving users in the development process. Int. J. Technol. Assess. Health Care 2009, 25, 514–521. [Google Scholar] [CrossRef]
Assistive Device | Lisa | Father | |
---|---|---|---|
1. | How satisfied are you with the dimensions (size, height, length, width) of your assistive device? | 5 | 4 |
2. | How satisfied are you with the weight of your assistive device? | NA | 5 |
3. | How satisfied are you with the ease in adjusting (fixing, fastening) the parts of your assistive device? | 3 | 3 |
4. | How safe and secure your assistive device is? | 4 | 4 |
5. | How satisfied are you with the durability (endurance, resistance to wear) of your assistive device? | 5 | 5 |
6. | How easy it is to use your assistive device? | 4 | NA |
7. | How comfortable your assistive device is? | 3 | NA |
8. | How effective your assistive device is (the degree to which your device meets your needs)? | 5 | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caligari, M.; Giardini, M.; Guenzi, M. Writing Blindly in Incomplete Locked-In Syndrome with A Custom-Made Switch-Operated Voice-Scanning Communicator—A Case Report. Brain Sci. 2022, 12, 1523. https://doi.org/10.3390/brainsci12111523
Caligari M, Giardini M, Guenzi M. Writing Blindly in Incomplete Locked-In Syndrome with A Custom-Made Switch-Operated Voice-Scanning Communicator—A Case Report. Brain Sciences. 2022; 12(11):1523. https://doi.org/10.3390/brainsci12111523
Chicago/Turabian StyleCaligari, Marco, Marica Giardini, and Marco Guenzi. 2022. "Writing Blindly in Incomplete Locked-In Syndrome with A Custom-Made Switch-Operated Voice-Scanning Communicator—A Case Report" Brain Sciences 12, no. 11: 1523. https://doi.org/10.3390/brainsci12111523
APA StyleCaligari, M., Giardini, M., & Guenzi, M. (2022). Writing Blindly in Incomplete Locked-In Syndrome with A Custom-Made Switch-Operated Voice-Scanning Communicator—A Case Report. Brain Sciences, 12(11), 1523. https://doi.org/10.3390/brainsci12111523