Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study
Abstract
:1. Introduction
Hypotheses
2. Methods
2.1. Participants
2.2. NIRS Data Acquisition
2.3. NIRS Data Preprocessing
2.4. Network Construction
2.5. Network Analysis
2.5.1. Global Network Metrics
2.5.2. Regional Nodal Metrics
2.6. Support Vector Regression
3. Results
3.1. Resting-State Functional Connectivity
3.2. Global Network Properties
3.3. Regional Nodal Properties
3.4. Prediction of the Depression Level
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atique-Ur-Rehman, H.; Neill, J.C. Cognitive Dysfunction in Major Depression: From Assessment to Novel Therapies. Pharmacol. Ther. 2019, 202, 53–71. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- WHO. Make Mental Health & Well-Being for All a Global Priority. Available online: https://www.who.int/news-room/events/detail/2022/10/10/default-calendar/world-mental-health-day-2022---make-mental-health-and-well-being-for-all-a-global-priority (accessed on 10 October 2022).
- Pan, Z.; Park, C.; Brietzke, E.; Zuckerman, H.; Rong, C.; Mansur, R.B.; Fus, D.; Subramaniapillai, M.; Lee, Y.; McIntyre, R.S. Cognitive Impairment in Major Depressive Disorder. CNS Spectr. 2019, 24, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.S.H.; Lim, L.J.H.; Lim, A.Q.; Chan, N.H.C.; Tan, R.S.; Lee, S.H.; Ho, R.C.M. Diagnostic and Predictive Applications of Functional Near-Infrared Spectroscopy for Major Depressive Disorder: A Systematic Review. Front. Psychiatry 2020, 11, 378. [Google Scholar] [CrossRef] [PubMed]
- Strawbridge, R.; Young, A.H.; Cleare, A.J. Biomarkers for Depression: Recent Insights, Current Challenges and Future Prospects. Neuropsychiatr. Dis. Treat. 2017, 13, 1245–1262. [Google Scholar] [CrossRef] [Green Version]
- Bahrani, A.A.; Kong, W.; Shang, Y.; Huang, C.; Smith, C.D.; Powell, D.K.; Jiang, Y.; Rayapati, A.O.; Jicha, G.A.; Yu, G. Diffuse Optical Assessment of Cerebral-autoregulation in Older Adults Stratified by Cerebrovascular Risk. J. Biophotonics 2020, 13, e202000073. [Google Scholar] [CrossRef]
- Pan, Y.; Borragán, G.; Peigneux, P. Applications of Functional Near-Infrared Spectroscopy in Fatigue, Sleep Deprivation, and Social Cognition; Springer: Berlin/Heidelberg, Germany, 2019; Volume 32, pp. 998–1012. [Google Scholar]
- Pan, B.; Huang, C.; Fang, X.; Huang, X.; Li, T. Noninvasive and Sensitive Optical Assessment of Brain Death. J. Biophotonics 2019, 12, e201800240. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A Brief Review on the History of Human Functional Near-Infrared Spectroscopy (FNIRS) Devel-opment and Fields of Application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Nishizawa, Y.; Kanazawa, T.; Kawabata, Y.; Matsubara, T.; Maruyama, S.; Kawano, M.; Kinoshita, S.; Koh, J.; Matsuo, K.; Yoneda, H. FNIRS Assessment during an Emotional Stroop Task among Patients with Depression: Replication and Extension. Psychiatry Investig. 2019, 16, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Koike, S.; Satomura, Y.; Kawasaki, S.; Nishimura, Y.; Kinoshita, A.; Sakurada, H.; Yamagishi, M.; Ichikawa, E.; Matsuoka, J.; Okada, N.; et al. Application of Functional near Infrared Spectroscopy as Supplementary Examination for Diagnosis of Clinical Stages of Psychosis Spectrum. Psychiatry Clin. Neurosci. 2017, 71, 794–806. [Google Scholar] [CrossRef]
- Devezas, M.Â.M. Shedding Light on Neuroscience: Two Decades of Functional Near-infrared Spectroscopy Applications and Advances from a Bibliometric Perspective. J. Neuroimaging 2021, 31, 641–655. [Google Scholar] [CrossRef]
- Ho, C.S.; Chan, Y.L.; Tan, T.W.; Tay, G.W.; Tang, T.B. Improving the Diagnostic Accuracy for Major Depressive Disorder Using Machine Learning Algorithms Integrating Clinical and Near-Infrared Spectroscopy Data. J. Psychiatr. Res. 2022, 147, 194–202. [Google Scholar] [CrossRef]
- Sayar-Akaslan, D.; Baskak, B.; Kir, Y.; Kusman, A.; Yalcinkaya, B.; Çakmak, I.B.; Munir, K. Cortical Activity Measured by Functional near Infrared Spectroscopy during a Theory of Mind Task in Subjects with Schizophrenia, Bipolar Disorder and Healthy Controls. J. Affect. Disord. 2021, 282, 329–339. [Google Scholar] [CrossRef]
- Wei, Y.; Chen, Q.; Curtin, A.; Tu, L.; Tang, X.; Tang, Y.; Xu, L.; Qian, Z.; Zhou, J.; Zhu, C.; et al. Functional Near-Infrared Spectroscopy (FNIRS) as a Tool to Assist the Diagnosis of Major Psychiatric Disorders in a Chinese Population. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 745–757. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, J.; Li, J.; Peng, H.; Cai, T.; Li, X.; Wu, S.; Cao, W.; He, S. Decreased Functional Connectivity and Disrupted Neural Network in the Prefrontal Cortex of Affective Disorders: A Resting-State FNIRS Study. J. Affect. Disord. 2017, 221, 132–144. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, H.; Liu, J.; Xiu, J.; Huang, Q.; Liang, Y.; Li, T.; Hu, S. Characteristics of Frontal Activity Relevant to Cognitive Function in Bipolar Depression: An FNIRS Study. Biomed. Opt. Express 2022, 13, 1551. [Google Scholar] [CrossRef]
- Husain, S.F.; Tang, T.-B.; Tam, W.W.; Tran, B.X.; Ho, C.S.; Ho, R.C. Cortical Haemodynamic Response during the Verbal Fluency Task in Patients with Bipolar Disorder and Borderline Personality Disorder: A Preliminary Functional near-Infrared Spectroscopy Study. BMC Psychiatry 2021, 21, 201. [Google Scholar] [CrossRef]
- Ong, S.K.; Husain, S.F.; Wee, H.N.; Ching, J.; Kovalik, J.-P.; Cheng, M.S.; Schwarz, H.; Tang, T.B.; Ho, C.S. Integration of the Cortical Haemodynamic Response Measured by Functional Near-Infrared Spectroscopy and Amino Acid Analysis to Aid in the Diagnosis of Major Depressive Disorder. Diagnostics 2021, 11, 1978. [Google Scholar] [CrossRef]
- Chao, J.; Zheng, S.; Wu, H.; Wang, D.; Zhang, X.; Peng, H.; Hu, B. FNIRS Evidence for Distinguishing Patients with Major Depression and Healthy Controls. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 2211–2221. [Google Scholar] [CrossRef]
- Baik, S.Y.; Kim, J.-Y.; Choi, J.; Baek, J.Y.; Park, Y.; Jung, M.; Lee, S.-H. Prefrontal Asymmetry during Cognitive Tasks and Its Relationship with Suicide Ideation in Major Depressive Disorder: An FNIRS Study. Diagnostics 2019, 9, 193. [Google Scholar] [CrossRef]
- Kondo, A.; Shoji, Y.; Morita, K.; Sato, M.; Ishii, Y.; Yanagimoto, H.; Nakano, S.; Uchimura, N. Characteristics of Oxygenated Hemoglobin Concentration Change during Pleasant and Unpleasant Image-recall Tasks in Patients with Depression: Compaison with Healthy Subjects. Psychiatry Clin. Neurosci. 2018, 72, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, M.; Kanazawa, T.; Kikuyama, H.; Tsutsumi, A.; Kinoshita, S.; Kawabata, Y.; Yamauchi, S.; Uenishi, H.; Kawashige, S.; Imazu, S.; et al. Correlation between Frontal Lobe Oxy-Hemoglobin and Severity of Depression Assessed Using near-Infrared Spectroscopy. J. Affect. Disord. 2016, 205, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Sun, G.; Zhang, X.; Xu, B.; Shen, C.; Shi, L.; Ma, X.; Ren, X.; Feng, K.; Liu, P. Relationship between the Prefrontal Function and the Severity of the Emotional Symptoms during a Verbal Fluency Task in Patients with Major Depressive Disorder: A Multi-Channel NIRS Study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 54, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Akashi, H.; Tsujii, N.; Mikawa, W.; Adachi, T.; Kirime, E.; Shirakawa, O. Prefrontal Cortex Activation Is Associated with a Discrepancy between Self- and Observer-Rated Depression Severities of Major Depressive Disorder: A Multichannel near-Infrared Spectroscopy Study. J. Affect. Disord. 2015, 174, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Husain, S.F.; McIntyre, R.S.; Tang, T.-B.; Abd Latif, M.H.; Tran, B.X.; Linh, V.G.; Thao, T.P.N.; Ho, C.S.; Ho, R.C. Functional Near-Infrared Spectroscopy during the Verbal Fluency Task of English-Speaking Adults with Mood Disorders: A Preliminary Study. J. Clin. Neurosci. 2021, 94, 94–101. [Google Scholar] [CrossRef]
- Feng, K.; Law, S.; Ravindran, N.; Chen, G.; Ma, X.; Bo, X.; Zhang, X.-Q.; Shen, C.; Li, J.; Wang, Y.; et al. Differentiating between Bipolar and Unipolar Depression Using Prefrontal Activation Patterns: Promising Results from Functional near Infrared Spectroscopy (FNIRS) Findings. J. Affect. Disord. 2021, 281, 476–484. [Google Scholar] [CrossRef]
- Hu, S.; Li, X.; Law, S.; Shen, C.; Yao, G.; Zhang, X.; Li, J.; Chen, G.; Xu, B.; Liu, X.; et al. Prefrontal Cortex Alterations in Major Depressive Disorder, Generalized Anxiety Disorder and Their Comorbidity during a Verbal Fluency Task Assessed by Multi-Channel near-Infrared Spectroscopy. Psychiatry Res. 2021, 306, 114229. [Google Scholar] [CrossRef]
- Husain, S.F.; Tang, T.-B.; Yu, R.; Tam, W.W.; Tran, B.; Quek, T.T.; Hwang, S.-H.; Chang, C.W.; Ho, C.S.; Ho, R.C. Cortical Haemodynamic Response Measured by Functional near Infrared Spectroscopy during a Verbal Fluency Task in Patients with Major Depression and Borderline Personality Disorder. EBioMedicine 2020, 51, 102586. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.; Griffiths, K.R.; Breukelaar, I.A.; Barreiros, A.R.; Chen, W.; Boyce, P.; Hazell, P.; Foster, S.L.; Malhi, G.S.; Harris, A.W.F.; et al. Default-Mode and Fronto-Parietal Network Connectivity during Rest Distinguishes Asymptomatic Patients with Bipolar Disorder and Major Depressive Disorder. Transl. Psychiatry 2021, 11, 547. [Google Scholar] [CrossRef]
- Smitha, K.; Akhil Raja, K.; Arun, K.; Rajesh, P.; Thomas, B.; Kapilamoorthy, T.; Kesavadas, C. Resting State FMRI: A Review on Methods in Resting State Connectivity Analysis and Resting State Networks. Neuroradiol. J. 2017, 30, 305–317. [Google Scholar] [CrossRef]
- Feige, B.; Spiegelhalder, K.; Kiemen, A.; Bosch, O.G.; van Elst, L.T.; Hennig, J.; Seifritz, E.; Riemann, D. Distinctive Time-Lagged Resting-State Networks Revealed by Simultaneous EEG-FMRI. Neuroimage 2017, 145, 1–10. [Google Scholar] [CrossRef]
- Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in Resting-State EEG: Current Status and Future Directions. Neurosci. Biobehav. Rev. 2015, 49, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Wen, D.; Lang, X.; Zhang, H.; Li, Q.; Yin, Q.; Chen, Y.; Xu, Y. Task and Non-Task Brain Activation Differences for Assessment of Depression and Anxiety by FNIRS. Front. Psychiatry 2021, 12, 758092. [Google Scholar] [CrossRef]
- Rosenbaum, D.; Haipt, A.; Fuhr, K.; Haeussinger, F.B.; Metzger, F.G.; Nuerk, H.-C.; Fallgatter, A.J.; Batra, A.; Ehlis, A.-C. Ab-errant Functional Connectivity in Depression as an Index of State and Trait Rumination. Sci. Rep. 2017, 7, 2174. [Google Scholar] [CrossRef] [Green Version]
- Fatt, C.R.C.; Jha, M.K.; Cooper, C.M.; Fonzo, G.; South, C.; Grannemann, B.; Carmody, T.; Greer, T.L.; Kurian, B.; Fava, M.; et al. Effect of Intrinsic Patterns of Functional Brain Connectivity in Moderating Antidepressant Treatment Response in Major Depression. Am. J. Psychiatry 2020, 177, 143–154. [Google Scholar] [CrossRef]
- Gudayol-Ferré, E.; Peró-Cebollero, M.; González-Garrido, A.A.; Guàrdia-Olmos, J. Changes in Brain Connectivity Related to the Treatment of Depression Measured through FMRI: A Systematic Review. Front. Hum. Neurosci. 2015, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Chen, X.; Chen, Z.-B.; Li, L.; Li, X.-Y.; Castellanos, F.X.; Bai, T.-J.; Bo, Q.-J.; Cao, J.; Chang, Z.-K.; et al. Disrupted Intrinsic Functional Brain Topology in Patients with Major Depressive Disorder. Mol. Psychiatry 2021, 26, 7363–7371. [Google Scholar] [CrossRef]
- Williams, J.B.W. A Structured Interview Guide for the Hamilton Depression Rating Scale. Arch. Gen. Psychiatry 1988, 45, 742–747. [Google Scholar] [CrossRef]
- Cope, M.; Delpy, D.T. System for Long-Term Measurement of Cerebral Blood and Tissue Oxygenation on Newborn Infants by near Infra-Red Transillumination. Med. Biol. Eng. Comput. 1988, 26, 289–294. [Google Scholar] [CrossRef]
- Strangman, G.; Culver, J.P.; Thompson, J.H.; Boas, D.A. A Quantitative Comparison of Simultaneous BOLD FMRI and NIRS Recordings during Functional Brain Activation. Neuroimage 2002, 17, 719–731. [Google Scholar] [CrossRef]
- Mahmoudzadeh, M.; Dehaene-Lambertz, G.; Fournier, M.; Kongolo, G.; Goudjil, S.; Dubois, J.; Grebe, R.; Wallois, F. Syllabic Discrimination in Premature Human Infants Prior to Complete Formation of Cortical Layers. Proc. Natl. Acad. Sci. USA 2013, 110, 4846–4851. [Google Scholar] [CrossRef] [Green Version]
- Huppert, T.J.; Diamond, S.G.; Franceschini, M.A.; Boas, D.A. HomER: A Review of Time-Series Analysis Methods for near-Infrared Spectroscopy of the Brain. Appl. Opt. 2009, 48, D280–D298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molavi, B.; Dumont, G.A. Wavelet-Based Motion Artifact Removal for Functional near-Infrared Spectroscopy. Physiol. Meas. 2012, 33, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Duan, L.; Zhao, Z.; Lin, Y.; Wu, X.; Luo, Y.; Xu, P. Wavelet-Based Method for Removing Global Physiological Noise in Functional near-Infrared Spectroscopy. Biomed. Opt. Express 2018, 9, 3805. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Li, Z.; Liao, X.; Wang, J.; Zhao, T.; Shu, N.; Zhao, X.; He, Y. Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State FNIRS Study. PLoS ONE 2013, 8, e72425. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.D.; Zhang, D.; Snyder, A.Z.; Raichle, M.E. The Global Signal and Observed Anticorrelated Resting State Brain Networks. J. Neurophysiol. 2009, 101, 3270–3283. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.; Birn, R.M.; Handwerker, D.A.; Jones, T.B.; Bandettini, P.A. The Impact of Global Signal Regression on Resting State Correlations: Are Anti-Correlated Networks Introduced? Neuroimage 2009, 44, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Achard, S.; Bullmore, E. Efficiency and Cost of Economical Brain Functional Networks. PLoS Comput. Biol. 2007, 3, e17. [Google Scholar] [CrossRef]
- Stam, C.J.; van Straaten, E.C.W. The Organization of Physiological Brain Networks. Clin. Neurophysiol. 2012, 123, 1067–1087. [Google Scholar] [CrossRef]
- Cai, L.; Dong, Q.; Niu, H. The Development of Functional Network Organization in Early Childhood and Early Adolescence: A Resting-State FNIRS Study. Dev. Cogn. Neurosci. 2018, 30, 223–235. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xia, M.; Liao, X.; Evans, A.; He, Y. GRETNA: A Graph Theoretical Network Analysis Toolbox for Imaging Connectomics. Front. Hum. Neurosci. 2015, 9, 386. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective Dynamics of ‘Small-World’ Networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Latora, V.; Marchiori, M. Economic Small-World Behavior in Weighted Networks. Eur. Phys. J. B-Condens. Matter Complex Syst. 2003, 32, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Maslov, S.; Sneppen, K. Specificity and Stability in Topology of Protein Networks. Science 2002, 296, 910–913. [Google Scholar] [CrossRef] [Green Version]
- Humphries, M.; Gurney, K.; Prescott, T. The Brainstem Reticular Formation Is a Small-World, Not Scale-Free, Network. Proc. R. Soc. B Biol. Sci. 2006, 273, 503–511. [Google Scholar] [CrossRef] [Green Version]
- Uehara, T.; Yamasaki, T.; Okamoto, T.; Koike, T.; Kan, S.; Miyauchi, S.; Kira, J.-I.; Tobimatsu, S. Efficiency of a “Small-World” Brain Network Depends on Consciousness Level: A Resting-State FMRI Study. Cereb. Cortex 2014, 24, 1529–1539. [Google Scholar] [CrossRef]
- Lewis, J.D.; Evans, A.C.; Pruett, J.R.; Botteron, K.; Zwaigenbaum, L.; Estes, A.; Gerig, G.; Collins, L.; Kostopoulos, P.; McKinstry, R.; et al. Network Inefficiencies in Autism Spectrum Disorder at 24 Months. Transl. Psychiatry 2014, 4, e388. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, M.; Pan, Y.; Lan, W.; Zheng, R.; Wu, F.-X.; Wang, J. Complex Brain Network Analysis and Its Applications to Brain Disorders: A Survey. Complexity 2017, 2017, 8362741. [Google Scholar] [CrossRef] [Green Version]
- van den Heuvel, M.P.; Sporns, O. Network Hubs in the Human Brain. Trends Cogn. Sci. 2013, 17, 683–696. [Google Scholar] [CrossRef]
- Xia, M.; Wang, J.; He, Y. BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLoS ONE 2013, 8, e68910. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hou, Y.; Song, B.; Hu, Y.; Pan, Y.; Hu, Y. The Averaged Inter-Brain Coherence between the Audience and a Violinist Predicts the Popularity of Violin Performance. Neuroimage 2020, 211, 116655. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Dikker, S.; Zhu, Y.; Yang, C.; Hu, Y.; Goldstein, P. Instructor-Learner Body Coupling Reflects Instruction and Learning. NPJ Sci. Learn. 2022, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Kosinski, M.; Stillwell, D.; Graepel, T. Private Traits and Attributes Are Predictable from Digital Records of Human Behavior. Proc. Natl. Acad. Sci. USA 2013, 110, 5802–5805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, C.-C.; Lin, C.-J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef]
- Ding, Y.-D.; Chen, X.; Chen, Z.-B.; Li, L.; Li, X.-Y.; Castellanos, F.X.; Bai, T.-J.; Bo, Q.-J.; Cao, J.; Chang, Z.-K.; et al. Reduced Nucleus Accumbens Functional Connectivity in Reward Network and Default Mode Network in Patients with Recurrent Major Depressive Disorder. Transl. Psychiatry 2022, 12, 236. [Google Scholar] [CrossRef]
- Yan, C.-G.; Chen, X.; Li, L.; Castellanos, F.X.; Bai, T.-J.; Bo, Q.-J.; Cao, J.; Chen, G.-M.; Chen, N.-X.; Chen, W.; et al. Reduced Default Mode Network Functional Connectivity in Patients with Recurrent Major Depressive Disorder. Proc. Natl. Acad. Sci. USA 2019, 116, 9078–9083. [Google Scholar] [CrossRef] [Green Version]
- Suo, X.; Lei, D.; Li, L.; Li, W.; Dai, J.; Wang, S.; He, M.; Zhu, H.; Kemp, G.J.; Gong, Q. Psychoradiological Patterns of Small-World Properties and a Systematic Review of Connectome Studies of Patients with 6 Major Psychiatric Disorders. J. Psychiatry Neurosci. 2018, 43, 416–427. [Google Scholar] [CrossRef] [Green Version]
- Sinha, P.; Reddy, R.V.; Srivastava, P.; Mehta, U.M.; Bharath, R.D. Network Neurobiology of Electroconvulsive Therapy in Patients with Depression. Psychiatry Res. Neuroimaging 2019, 287, 31–40. [Google Scholar] [CrossRef]
- Repple, J.; Gruber, M.; Mauritz, M.; de Lange, S.C.; Winter, N.R.; Opel, N.; Goltermann, J.; Meinert, S.; Grotegerd, D.; Leehr, E.J.; et al. Shared and Specific Patterns of Structural Brain Connectivity Across Affective and Psychotic Disorders. Biol. Psychiatry 2022. [Google Scholar] [CrossRef]
- Zhang, R.; Kranz, G.S.; Zou, W.; Deng, Y.; Huang, X.; Lin, K.; Lee, T.M.C. Rumination Network Dysfunction in Major De-pression: A Brain Connectome Study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 98, 109819. [Google Scholar] [CrossRef]
- Park, C.; Wang, S.-M.; Lee, H.-K.; Kweon, Y.-S.; Lee, C.T.; Kim, K.-T.; Kim, Y.-J.; Lee, K.-U. Affective State-Dependent Changes in the Brain Functional Network in Major Depressive Disorder. Soc. Cogn. Affect. Neurosci. 2014, 9, 1404–1412. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Qin, J.; Xiong, X.; Xu, F.; Wang, J.; Hou, F.; Yang, A. Abnormal Topology of Brain Functional Networks in Unipolar Depression and Bipolar Disorder Using Optimal Graph Thresholding. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 96, 109758. [Google Scholar] [CrossRef]
- Wang, S.; Gong, G.; Zhong, S.; Duan, J.; Yin, Z.; Chang, M.; Wei, S.; Jiang, X.; Zhou, Y.; Tang, Y.; et al. Neurobiological Com-monalities and Distinctions among 3 Major Psychiatric Disorders: A Graph Theoretical Analysis of the Structural Connectome. J. Psychiatry Neurosci. 2020, 45, 15–22. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, F.; Mohebbi, M.; Rostami, R. Graph Theory Analysis of Directed Functional Brain Networks in Major Depressive Disorder Based on EEG Signal. J. Neural Eng. 2020, 17, 026010. [Google Scholar] [CrossRef]
- Long, Z.; Duan, X.; Wang, Y.; Liu, F.; Zeng, L.; Zhao, J.; Chen, H. Disrupted Structural Connectivity Network in Treat-ment-Naive Depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 56, 18–26. [Google Scholar] [CrossRef]
- Ye, M.; Qing, P.; Zhang, K.; Liu, G. Altered Network Efficiency in Major Depressive Disorder. BMC Psychiatry 2016, 16, 450. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Tang, R.; Zhang, L.; Cao, Z. Altered Topology of the Structural Brain Network in Patients with Post-Stroke Depression. Front. Neurosci. 2019, 13, 776. [Google Scholar] [CrossRef] [Green Version]
- Meng, C.; Brandl, F.; Tahmasian, M.; Shao, J.; Manoliu, A.; Scherr, M.; Schwerthöffer, D.; Bäuml, J.; Förstl, H.; Zimmer, C.; et al. Aberrant Topology of Striatum’s Connectivity Is Associated with the Number of Episodes in Depression. Brain 2014, 137, 598–609. [Google Scholar] [CrossRef]
- Yan, M.; He, Y.; Cui, X.; Liu, F.; Li, H.; Huang, R.; Tang, Y.; Chen, J.; Zhao, J.; Xie, G.; et al. Disrupted Regional Homogeneity in Melancholic and Non-Melancholic Major Depressive Disorder at Rest. Front. Psychiatry 2021, 12, 618805. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qiu, M.; Ding, L.; Mellor, D.; Li, G.; Shen, T.; Peng, D. Intrinsic Gray-Matter Connectivity of the Brain in Major Depressive Disorder. J. Affect. Disord. 2019, 251, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kang, W.; Kang, Y.; Kim, A.; Han, K.-M.; Tae, W.-S.; Ham, B.-J. Alterations in the Occipital Cortex of Drug-Naïve Adults with Major Depressive Disorder: A Surface-Based Analysis of Surface Area and Cortical Thickness. Psychiatry Investig. 2021, 18, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-N.; Li, H.; Shen, Z.-W.; Xu, C.; Huang, Y.-J.; Wu, R.-H. Healthy Individuals vs Patients with Bipolar or Unipolar Depression in Gray Matter Volume. World J. Clin. Cases 2021, 9, 1304–1317. [Google Scholar] [CrossRef] [PubMed]
- Dong, Q.; Liu, J.; Zeng, L.; Fan, Y.; Lu, X.; Sun, J.; Zhang, L.; Wang, M.; Guo, H.; Zhao, F.; et al. State-Independent Micro-structural White Matter Abnormalities in Major Depressive Disorder. Front. Psychiatry 2020, 11, 431. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, Z. Aberrant Pattern of Cerebral Blood Flow in Patients with Major Depressive Disorder: A Meta-Analysis of Arterial Spin Labelling Studies. Psychiatry Res. Neuroimaging 2022, 321, 111458. [Google Scholar] [CrossRef]
- Cheng, C.; Dong, D.; Jiang, Y.; Ming, Q.; Zhong, X.; Sun, X.; Xiong, G.; Gao, Y.; Yao, S. State-Related Alterations of Spontaneous Neural Activity in Current and Remitted Depression Revealed by Resting-State FMRI. Front. Psychol. 2019, 10, 245. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Liu, J.; Liu, T.; Ma, L.; Wang, W.; Shi, S.; Wang, Y.; Gong, Q.; Wang, M. Altered Resting-State Functional Activity in Medication-Naive Patients with First-Episode Major Depression Disorder vs. Healthy Control: A Quantitative Meta-Analysis. Front. Behav. Neurosci. 2019, 13, 89. [Google Scholar] [CrossRef] [Green Version]
- Foland-Ross, L.C.; Gotlib, I.H. Cognitive and Neural Aspects of Information Processing in Major Depressive Disorder: An In-tegrative Perspective. Front. Psychol. 2012, 3, 489. [Google Scholar] [CrossRef] [Green Version]
- Teng, C.; Zhou, J.; Ma, H.; Tan, Y.; Wu, X.; Guan, C.; Qiao, H.; Li, J.; Zhong, Y.; Wang, C.; et al. Abnormal Resting State Activity of Left Middle Occipital Gyrus and Its Functional Connectivity in Female Patients with Major Depressive Disorder. BMC Psy-chiatry 2018, 18, 370. [Google Scholar] [CrossRef]
- Whitfield-Gabrieli, S.; Ford, J.M. Default Mode Network Activity and Connectivity in Psychopathology. Annu. Rev. Clin. Psychol. 2012, 8, 49–76. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Y.; Wang, Y.; Hu, N.; Yang, L.; Yu, Z.; Han, L.; Xu, Q.; Zhou, J.; Chen, J.; Mao, H.; et al. Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study. Brain Sci. 2022, 12, 1562. https://doi.org/10.3390/brainsci12111562
Xu Y, Wang Y, Hu N, Yang L, Yu Z, Han L, Xu Q, Zhou J, Chen J, Mao H, et al. Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study. Brain Sciences. 2022; 12(11):1562. https://doi.org/10.3390/brainsci12111562
Chicago/Turabian StyleXu, You, Yajie Wang, Nannan Hu, Lili Yang, Zhenghe Yu, Li Han, Qianqian Xu, Jingjing Zhou, Ji Chen, Hongjing Mao, and et al. 2022. "Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study" Brain Sciences 12, no. 11: 1562. https://doi.org/10.3390/brainsci12111562
APA StyleXu, Y., Wang, Y., Hu, N., Yang, L., Yu, Z., Han, L., Xu, Q., Zhou, J., Chen, J., Mao, H., & Pan, Y. (2022). Intrinsic Organization of Occipital Hubs Predicts Depression: A Resting-State fNIRS Study. Brain Sciences, 12(11), 1562. https://doi.org/10.3390/brainsci12111562