The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study
Abstract
:1. Introduction
Cognitive Decline in Older Individuals and Effects of Peripheral ‘Bottom-Up’ Plantar Stimulation
2. Materials and Methods
2.1. Timed Up-and-Go Test
2.2. Postural Stability Tests
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the Study Sample
3.2. Changes in Gait, Posture, and Geriatric Evaluation Parameters
3.3. The Effect of Mechanical Plantar Stimulation Orthotic Therapy on the Postural Stability Test Results
3.4. The Effect of Mechanical Plantar Stimulation Orthotic Therapy on the Timed Up-and-Go Test Results
4. Discussion
Limitations and Future Direction
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grande, G.; Triolo, F.; Nuara, A.; Welmer, A.-K.; Fratiglioni, L.; Vetrano, D.L. Measuring gait speed to better identify prodromal dementia. Exp. Gerontol. 2019, 124, 110625. [Google Scholar] [CrossRef] [PubMed]
- Allali, G.; Annweiler, C.; Blumen, H.M.; Callisaya, M.L.; De Cock, A.M.; Kressig, R.W.; Srikanth, V.; Steinmetz, J.P.; Verghese, J.; Beauchet, O. Annweiler. Gait phenotype from mild cognitive impairment to moderate dementia: Results from the GOOD initiative. Eur. J. Neurol. 2016, 23, 527–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verghese, J.; Wang, C.; Bennett, D.A.; Lipton, R.B.; Katz, M.J.; Ayers, E. Motoric cognitive risk syndrome and predictors of transition to dementia: A multicenter study. Alzheimer’s Dement. 2019, 15, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.E.; Yang, J.; Najafi, B. Does the Presence of Cognitive Impairment Exacerbate the Risk of Falls in People with Peripheral Neuropathy? An Application of Body-Worn Inertial Sensors to Measure Gait Variability. Sensors 2020, 20, 1328. [Google Scholar] [CrossRef] [Green Version]
- Brognara, L.; Navarro-Flores, E.; Iachemet, L.; Serra-Catalá, N.; Cauli, O. Beneficial Effect of Foot Plantar Stimulation in Gait Parameters in Individuals with Parkinson’s Disease. Brain Sci. 2020, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Pagnussat, A.S.; Salazar, A.P.; Pinto, C.; Marchese, R.R.; Rieder, C.R.; Filho, J.O.A.; Franco, A.R.; Kleiner, A.F.R. Plantar stimulation alters brain connectivity in idiopathic Parkinson’s disease. Acta Neurol. Scand. 2020, 142, 229–238. [Google Scholar] [CrossRef]
- Bahureksa, L.; Najafi, B.; Saleh, A.; Sabbagh, M.; Coon, D.; Mohler, M.J.; Schwenk, M. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology 2017, 63, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Low, L.-F.; Schwenk, M.; Mills, N.; Gwynn, J.D.; Clemson, L. Review of Gait, Cognition, and Fall Risks with Implications for Fall Prevention in Older Adults with Dementia. Dement. Geriatr. Cogn. Disord. 2019, 48, 17–29. [Google Scholar] [CrossRef]
- Shimada, H.; Makizako, H.; Tsutsumimoto, K.; Uemura, K.; Anan, Y.; Suzuki, T. Cognitive function and gait speed under normal and dual-task walking among older adults with mild cognitive impairment. BMC Neurol. 2014, 14, 67. [Google Scholar] [CrossRef]
- Le Floch, M.; Ali, P.; Asfar, M.; Sánchez-Rodríguez, D.; Dinomais, M.; Annweiler, C. Volumetric Brain Changes in Older Fallers: A Voxel-Based Morphometric Study. Front. Bioeng. Biotechnol. 2021, 9, 610426. [Google Scholar] [CrossRef]
- Ali, P.; Labriffe, M.; Paisant, P.; Custaud, M.A.; Annweiler, C.; Dinomais, M. Associations between gait speed and brain structure in amnestic mild cognitive impairment: A quantitative neuroimaging study. Brain Imaging Behav. 2022, 16, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Schlenstedt, C.; Paschen, S.; Kruse, A.; Raethjen, J.; Weisser, B.; Deuschl, G. Resistance versus Balance Training to Improve Postural Control in Parkinson’s Disease: A Randomized Rater Blinded Controlled Study. PLoS ONE 2015, 10, e0140584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canning, C.G.; Paul, S.S.; Nieuwboer, A. Prevention of falls in Parkinson’s disease: A review of fall risk factors and the role of physical interventions. Neurodegener. Dis. Manag. 2014, 4, 203–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, I.; van Wegen, E.; De Goede, C.; Deutekom, M.; Nieuwboer, A.; Willems, A.; Jones, D.; Rochester, L.; Kwakkel, G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil. 2005, 19, 695–713. [Google Scholar] [CrossRef]
- Kleiner, A.; Galli, M.; Gaglione, M.; Hildebrand, D.; Sale, P.; Albertini, G.; Stocchi, F.; De Pandis, M.F. The parkinsonian gait spatiotemporal parameters quantified by a single inertial sensor before and after automated mechanical peripheral stimulation treatment. Parkinson’s Dis. 2015, 2015, 390512. [Google Scholar] [CrossRef] [Green Version]
- Kleiner, A.F.R.; Pagnussat, A.S.; Pinto, C.; Marchese, R.R.; Salazar, A.P.; Galli, M. Automated mechanical peripheral stimulation effects on gait variability in individuals with Parkinson disease and freezing of gait: A double-blind. randomized controlled trial. Arch. Phys. Med. Rehabil. 2018, 99, 2420–2429. [Google Scholar] [CrossRef]
- Prusch, J.S.; Pinto, C. Automated mechanical peripheral stimulation and postural control in subjects with Parkinson’s disease and freezing of gait: A randomized controlled trial. Funct. Neurol. 2018, 33, 206–212. [Google Scholar]
- Pagnussat, A.S.; Kleiner, A.F.; Rieder, C.R.; Frantz, A.; Ehlers, J.; Pinto, C.; Dorneles, G.; Netto, C.A.; Peres, A.; Galli, M. Plantar stimulation in parkinsonians: From biomarkers to mobility–randomized-controlled trial. Restor. Neurol. Neurosci. 2018, 36, 195–205. [Google Scholar] [CrossRef]
- Stocchi, F.; Sale, P.; Kleiner, A.; Casali, M.; Cimolin, V.; de Pandis, F.; Albertini, G.; Galli, M. Long-term effects of automated mechanical peripheral stimulation on gait patterns of patients with Parkinson’s disease. Int. J. Rehabil. Res. 2015, 38, 238–245. [Google Scholar] [CrossRef]
- Alexopoulos, G.S.; Abrams, R.C.; Young, R.C.; Shamoian, C.A. Cornell scale for depression in dementia. Biol. Psychiatry 1988, 23, 271–284. [Google Scholar] [CrossRef]
- Bergstrom, N.; Braden, B.J.; Laguzza, A.; Holman, V. The Braden Scale for Predicting Pressure Sore Risk. Nurs. Res. 1987, 36, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, E.; Lundin-Olsson, L.; Kallin, K.; Jensen, J.; Gustafson, Y.; Nyberg, L. Prediction of falls among older people in residential care facilities by the Downton index. Aging Clin. Exp. Res. 2003, 15, 142–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Tinetti, M.; Williams, T.; Mayewski, R. Fall risk index for elderly based on the number of chronic disabilities. Am. J. Med. 1986, 80, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Yesavage, J.A.; Brink, T.L.; Rose, T.L.; Lum, O.; Huang, V.; Adey, M.; Leirer, V.O. Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 1982, 17, 37–39. [Google Scholar] [CrossRef]
- Molloy, D.W.; Alemayehu, E.; Roberts, R. Reliability of a standardized mini-mental state examination compared with the traditional mini-mental state examination. Am. J. Psychiatry 1991, 148, 102–105. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Brognara, L.; Fantini, M.; Morellato, K.; Graziani, G.; Baldini, N.; Cauli, O. Foot Orthosis and Sensorized House Slipper by 3D Printing. Materials 2022, 15, 4064. [Google Scholar] [CrossRef]
- Strzalkowski, N.D.; Peters, R.M.; Inglis, J.T.; Bent, L.R. Cutaneous afferent innervation of the human foot sole: What can we learn from single-unit recordings? J. Neurophysiol. 2018, 120, 1233–1246. [Google Scholar] [CrossRef]
- Viseux, F.J. The sensory role of the sole of the foot: Review and update on clinical perspectives. Neurophysiol. Clin. 2020, 50, 55–68. [Google Scholar] [CrossRef]
- Mathias, S.; Nayak, U.S.; Isaacs, B. Balance in elderly patients: The “get-up and go” test. Arch. Phys. Med. Rehabil. 1986, 67, 387–389. [Google Scholar] [PubMed]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Clark, R.D.; Webster, I.W. Postural Stability and Associated Physiological Factors in a Population of Aged Persons. J. Gerontol. 1991, 46, M69–M76. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.; Lusardi, M. White Paper: “Walking Speed: The Sixth Vital Sign”. J. Geriatr. Phys. Ther. 2009, 32, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Peel, N.M.; Alapatt, L.J.; Jones, L.V.; Hubbard, R.E. The Association Between Gait Speed and Cognitive Status in Community-Dwelling Older People: A Systematic Review and Meta-analysis. J. Gerontol. Ser. A 2019, 74, 943–948. [Google Scholar] [CrossRef]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Leach, S.; Pasco, J.A. Muscle strength and gait speed rather than lean mass are better indicators for poor cognitive function in older men. Sci. Rep. 2020, 10, 10367. [Google Scholar] [CrossRef]
- Kim, M.; Won, C.W. Sarcopenia Is Associated with Cognitive Impairment Mainly Due to Slow Gait Speed: Results from the Korean Frailty and Aging Cohort Study (KFACS). Int. J. Environ. Res. Public Health 2019, 16, 1491. [Google Scholar] [CrossRef] [Green Version]
- Kyrdalen, I.L.; Thingstad, P.; Sandvik, L.; Ormstad, H. Associations between gait speed and well-known fall risk factors among community-dwelling older adults. Physiother. Res. Int. 2019, 24, e1743. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, L.J.H.; Caspi, A.; Ambler, A.; Broadbent, J.; Cohen, H.J.; D’Arbeloff, T.; Elliott, M.; Hancox, R.J.; Harrington, H.; Hogan, S.; et al. Association of Neurocognitive and Physical Function with Gait Speed in Midlife. JAMA Netw. Open 2019, 2, e1913123. [Google Scholar] [CrossRef] [Green Version]
- Sipilä, S.; Tirkkonen, A.; Savikangas, T.; Hänninen, T.; Laukkanen, P.; Alen, M.; Fielding, R.A.; Kivipelto, M.; Kulmala, J.; Rantanen, T.; et al. Effects of physical and cognitive training on gait speed and cognition in older adults: A randomized controlled trial. Scand. J. Med. Sci. Sports 2021, 31, 1518–1533. [Google Scholar] [CrossRef]
- Borda, M.G.; Ferreira, D.; Selnes, P.; Tovar-Rios, D.A.; Jaramillo-Jiménez, A.; Kirsebom, B.-E.; Garcia-Cifuentes, E.; Dalaker, T.O.; Oppedal, K.; Sønnesyn, H.; et al. Timed Up and Go in People with Subjective Cognitive Decline Is Associated with Faster Cognitive Deterioration and Cortical Thickness. Dement. Geriatr. Cogn. Disord. 2022, 51, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Bytyçi, I.; Henein, M. Stride Length Predicts Adverse Clinical Events in Older Adults: A Systematic Review and Meta-Analysis. J. Clin. Med. 2021, 10, 2670. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.L.; Roach, K.L.; Wajda, D.A.; Sosnoff, J.J. Smartphone technology can measure postural stability and discriminate fall risk in older adults. Gait Posture 2019, 67, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Pizzigalli, L.; Cremasco, M.M.; Mulasso, A.; Rainoldi, A. The contribution of postural balance analysis in older adult fallers: A narrative review. J. Bodyw. Mov. Ther. 2016, 20, 409–417. [Google Scholar] [CrossRef] [PubMed]
Variable | Mean SEM | Min.–Max. |
---|---|---|
Age | 75.8 ± 1.5 | (50–95) |
Functional status (Barthel score) | 79.7 ± 2.9 | (30–100) |
Cognitive functions (MMSE test) | 23.0 ± 1.2 | (0–35) |
Depressive symptoms (Yesavage score) | 2.8 ± 0.5 | (0–12) |
Depressive symptoms in dementia (Cornell scale) | 3.2 ± 1.4 | (0–20) |
Pressure ulcer risk assessment (Norton scale) | 17.5 ± 0.3 | (13–20) |
Gait and balance (Tinetti scale) | 21.7 ± 0.947 | (0–28) |
Fall risk assessment (Downton scale) | 4.22 ± 0.304 | (0–10) |
Name [Unit of Measurement] | Description |
---|---|
Total duration [s] | Total duration of the test. This value is the standard output of the timed up-and-go test. Using mTUG application, this value was automatically measured by the signal recorded by the wearable sensor using a validated algorithm. In the traditional timed up-and-go test this value is measured by healthcare professionals using a stopwatch. |
180° turn duration [s] | Duration of the 180-degree turn performed by participants after having travelled the indicated distance. |
Sitting turn duration [s] | Duration of the turn performed by the participant in order to sit. |
Total number of steps | Total number of steps performed during the timed up-and-go test. |
Mean step length [m] | Mean step length (ratio of the travelled distance to the number of steps). |
Gait speed [m/s] | Gait speed (ratio of the distance travelled to the time elapsed during the walking phase). |
Number of steps in the 180° turn | Number of steps during the 180-degree turn. |
Standard deviation of the step duration [s] | Standard deviation of the step duration. |
Total duration, starting with the initial chair rise [s] | Total duration of the test starting from the moment the participant rises from the seat. |
Sit-to-walk duration [s] | Duration of the initial phase: from the moment the participant rises from the seat to the moment they are upright and begin to walk. |
Name [Unit of Measurement] | Description |
---|---|
Sway path of the displacement along the anterior–posterior (AP) axis [mm] | Length of the sway path travelled from the centre of mass (CoM) during the oscillation in the AP axis. |
Sway path of the displacement along the medio-lateral (ML) axis [mm] | Length of the sway path travelled from the CoM during the oscillation in the ML axis. |
Sway path of the displacement on the horizontal plane [mm] | Length of the sway path travelled from the CoM during the oscillation in the horizontal plane. The horizontal plane was defined as the combination of the AP and ML axes. |
Sway area [mm2/s] | Area travelled by the CoM per second. |
95% confidence interval of the ellipse area [mm2] | Confidence ellipse area containing 95% of the trajectory points on the horizontal plane (AP and ML exes). |
Mean sway velocity along the AP axis [mm/s] | CoM mean sway velocity along the AP axis. |
Mean sway velocity along the ML axis [mm/s] | CoM mean sway velocity along the ML axis. |
Root mean square of the displacement along the AP axis [mm] | Root mean square value of the displacement (with respect to the centre) along the AP axis. |
Root mean square of the displacement along the ML axis [mm] | Root mean square value of the displacement (with respect to the centre) along the ML axis. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brognara, L.; Mafla-España, M.A.; Gil-Molina, I.; Castillo-Verdejo, Y.; Cauli, O. The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study. Brain Sci. 2022, 12, 1669. https://doi.org/10.3390/brainsci12121669
Brognara L, Mafla-España MA, Gil-Molina I, Castillo-Verdejo Y, Cauli O. The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study. Brain Sciences. 2022; 12(12):1669. https://doi.org/10.3390/brainsci12121669
Chicago/Turabian StyleBrognara, Lorenzo, Mayra Alejandra Mafla-España, Isabel Gil-Molina, Yolanda Castillo-Verdejo, and Omar Cauli. 2022. "The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study" Brain Sciences 12, no. 12: 1669. https://doi.org/10.3390/brainsci12121669
APA StyleBrognara, L., Mafla-España, M. A., Gil-Molina, I., Castillo-Verdejo, Y., & Cauli, O. (2022). The Effects of 3D Custom Foot Orthotics with Mechanical Plantar Stimulation in Older Individuals with Cognitive Impairment: A Pilot Study. Brain Sciences, 12(12), 1669. https://doi.org/10.3390/brainsci12121669