Multimedia Interventions for Neurodiversity: Leveraging Insights from Developmental Cognitive Neuroscience to Build an Innovative Practice
Abstract
:1. Introduction: Building an Innovative Practice
2. Keep the Senses in Mind
3. Promote Action and Motion
4. Together Is Better
5. A Stairway to Cognition
6. Practical Example: The Bodily Self
7. Conclusions and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marquand, A.F.; Kia, S.M.; Zabihi, M.; Wolfers, T.; Buitelaar, J.K.; Beckmann, C.F. Conceptualizing Mental Disorders as Deviations from Normative Functioning. Mol. Psychiatry 2019, 24, 1415–1424. [Google Scholar] [CrossRef] [PubMed]
- Wolfers, T.; Floris, D.L.; Dinga, R.; van Rooij, D.; Isakoglou, C.; Kia, S.M.; Zabihi, M.; Llera, A.; Chowdanayaka, R.; Kumar, V.J.; et al. From Pattern Classification to Stratification: Towards Conceptualizing the Heterogeneity of Autism Spectrum Disorder. Neurosci. Biobehav. Rev. 2019, 104, 240–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmiloff-Smith, A. Nativism Versus Neuroconstructivism: Rethinking the Study of Developmental Disorders. Dev. Psychol. 2009, 45, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H. Interactive Specialization: A Domain-General Framework for Human Functional Brain Development? Dev. Cogn. Neurosci. 2011, 1, 7–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bremner, A.J.; Lewkowicz, D.J.; Spence, C. The Multisensory Approach to Development. In Multisensory Development, 1st ed.; OUP: Oxford, UK, 2012; Volume 1, pp. 1–26. [Google Scholar]
- Tsakiris, M. The Multisensory Basis of the Self: From Body to Identity to Others. Q. J. Exp. Psychol. 2017, 70, 597–609. [Google Scholar] [CrossRef] [Green Version]
- Grynszpan, O.; Weiss, P.L.; Perez-Diaz, F.; Gal, E. Innovative Technology-Based Interventions for Autism Spectrum Disorders: A Meta-Analysis. Autism 2014, 18, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Heng, E.; Lanovaz, M.J.; Beauregard, A. Research on Technological Interventions for Young Children with Autism Spectrum Disorders: A Scoping Review. Rev. J. Autism Dev. Disord. 2021, 8, 253–263. [Google Scholar] [CrossRef]
- Valentine, A.Z.; Brown, B.J.; Groom, M.J.; Young, E.; Hollis, C.; Hall, C.L. A Systematic Review Evaluating the Implementation of Technologies to Assess, Monitor and Treat Neurodevelopmental Disorders: A Map of the Current Evidence. Clin. Psychol. Rev. 2020, 80, 101870. [Google Scholar] [CrossRef]
- Baranek, G.T. Efficacy of Sensory and Motor Interventions for Children with Autism. J. Autism Dev. Disord. 2002, 32, 397–422. [Google Scholar] [CrossRef] [PubMed]
- Dunn, W.; Brown, C. Factor Analysis on the Sensory Profile from a National Sample of Children without Disabilities. Am. J. Occup. Ther. 1997, 51, 490–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cascio, C.J.; Foss-Feig, J.H.; Burnette, C.P.; Heacock, J.L.; Cosby, A.A. The Rubber Hand Illusion in Children with Autism Spectrum Disorders: Delayed Influence of Combined Tactile and Visual Input on Proprioception. Autism 2012, 16, 406–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenfield, K.; Ropar, D.; Smith, A.D.; Carey, M.; Newport, R. Visuo-Tactile Integration in Autism: Atypical Temporal Binding May Underlie Greater Reliance on Proprioceptive Information. Mol. Autism 2015, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirai, M.; Sakurada, T.; Izawa, J.; Ikeda, T.; Monden, Y.; Shimoizumi, H.; Yamagata, T. Greater Reliance on Proprioceptive Information during a Reaching Task with Perspective Manipulation among Children with Autism Spectrum Disorders. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Valori, I.; McKenna-Plumley, P.E.; Bayramova, R.; Zandonella Callegher, C.; Altoè, G.; Farroni, T. Proprioceptive Accuracy in Immersive Virtual Reality: A Developmental Perspective. PLoS ONE 2020, 15, e0222253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, M.D.; Yang, D.Y.-J.; Voos, A.C.; Bennett, R.H.; Gordon, I.; Pretzsch, C.; Beam, D.; Keifer, C.; Eilbott, J.; McGlone, F.; et al. Brain Mechanisms for Processing Affective (and Nonaffective) Touch Are Atypical in Autism. Cereb. Cortex 2016, 26, 2705–2714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montirosso, R.; McGlone, F. The Body Comes First. Embodied Reparation and the Co-Creation of Infant Bodily-Self. Neurosci. Biobehav. Rev. 2020, 113, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Thye, M.D.; Bednarz, H.M.; Herringshaw, A.J.; Sartin, E.B.; Kana, R.K. The Impact of Atypical Sensory Processing on Social Impairments in Autism Spectrum Disorder. Dev. Cogn. Neurosci. 2018, 29, 151–167. [Google Scholar] [CrossRef]
- Mul, C.; Cardini, F.; Stagg, S.D.; Sadeghi Esfahlani, S.; Kiourtsoglou, D.; Cardellicchio, P.; Aspell, J.E. Altered Bodily Self-Consciousness and Peripersonal Space in Autism. Autism 2019, 23, 2055–2067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmes, N.P.; Spence, C. The Body Schema and Multisensory Representation (s) of Peripersonal Space. Cogn. Process. 2004, 5, 94–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauder, K.B.; Mash, L.E.; Bryant, L.K.; Cascio, C.J. Interoceptive Ability and Body Awareness in Autism Spectrum Disorder. J. Exp. Child Psychol. 2015, 131, 193–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, C.E.; Tsakiris, M. Going at the Heart of Social Cognition: Is There a Role for Interoception in Self-Other Distinction? Curr. Opin. Psychol. 2018, 24, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Crowell, C.; Sayis, B.; Benitez, J.P.; Pares, N. Mixed Reality, Full-Body Interactive Experience to Encourage Social Initiation for Autism: Comparison with a Control Nondigital Intervention. Cyberpsychol. Behav. Soc. Netw. 2020, 23, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Garzotto, F.; Gelsomini, M.; Gianotti, M.; Riccardi, F. Engaging Children with Neurodevelopmental Disorder Through Multisensory Interactive Experiences in a Smart Space. In Social Internet of Things; Soro, A., Brereton, M., Roe, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 167–184. ISBN 978-3-319-94659-7. [Google Scholar]
- Pares, N.; Masri, P.; van Wolferen, G.; Creed, C. Achieving Dialogue with Children with Severe Autism in an Adaptive Multisensory Interaction: The “MEDIATE” Project. IEEE Trans. Vis. Comput. Graph. 2005, 11, 734–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valori, I.; McKenna-Plumley, P.E.; Bayramova, R.; Farroni, T. Perception and Motion in Real and Virtual Environments: A Narrative Review of Autism Spectrum Disorders. Front. Psychol. 2021, 12, 708229. [Google Scholar] [CrossRef] [PubMed]
- Rossi, H.; Prates, R.; Santos, S.; Ferreira, R. Development of a Virtual Reality-Based Game Approach for Supporting Sensory Processing Disorders Treatment. Information 2019, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Lubetzky, A.V.; Kelly, J.; Wang, Z.; Gospodarek, M.; Fu, G.; Sutera, J.; Hujsak, B.D. Contextual Sensory Integration Training via Head Mounted Display for Individuals with Vestibular Disorders: A Feasibility Study. Disabil. Rehabil. Assist. Technol. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.; Egermann, H.; Kearney, G. SoundFields: A Virtual Reality Game Designed to Address Auditory Hypersensitivity in Individuals with Autism Spectrum Disorder. Appl. Sci. 2020, 10, 2996. [Google Scholar] [CrossRef]
- Kiefer, M.; Trumpp, N.M. Embodiment Theory and Education: The Foundations of Cognition in Perception and Action. Trends Neurosci. Educ. 2012, 1, 15–20. [Google Scholar] [CrossRef]
- Zampella, C.J.; Wang, L.A.L.; Haley, M.; Hutchinson, A.G.; de Marchena, A. Motor Skill Differences in Autism Spectrum Disorder: A Clinically Focused Review. Curr. Psychiatry Rep. 2021, 23, 64. [Google Scholar] [CrossRef]
- Kaur, M.; Srinivasan, S.M.; Bhat, A.N. Comparing Motor Performance, Praxis, Coordination, and Interpersonal Synchrony between Children with and without Autism Spectrum Disorder (ASD). Res. Dev. Disabil. 2018, 72, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Venuti, P.; Apicella, F.; Muratori, F. Analysis of Unsupported Gait in Toddlers with Autism. Brain Dev. 2011, 33, 367–373. [Google Scholar] [CrossRef]
- Travers, B.G.; Powell, P.S.; Klinger, L.G.; Klinger, M.R. Motor Difficulties in Autism Spectrum Disorder: Linking Symptom Severity and Postural Stability. J. Autism Dev. Disord. 2013, 43, 1568–1583. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Partridge, K.; Girdler, S.; Morris, S.L. Standing Postural Control in Individuals with Autism Spectrum Disorder: Systematic Review and Meta-Analysis. J. Autism Dev. Disord. 2017, 47, 2238–2253. [Google Scholar] [CrossRef] [PubMed]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef] [Green Version]
- Thelen, E. The (Re) Discovery of Motor Development: Learning New Things from an Old Field. Dev. Psychol. 1989, 25, 946. [Google Scholar] [CrossRef]
- Leonard, H.C.; Hill, E.L. The Impact of Motor Development on Typical and Atypical Social Cognition and Language: A Systematic Review. Child Adolesc. Ment. Health 2014, 19, 163–170. [Google Scholar] [CrossRef] [PubMed]
- West, K.L. Infant Motor Development in Autism Spectrum Disorder: A Synthesis and Meta-Analysis. Child Dev. 2019, 90, 2053–2070. [Google Scholar] [CrossRef]
- Bortone, I.; Leonardis, D.; Mastronicola, N.; Crecchi, A.; Bonfiglio, L.; Procopio, C.; Solazzi, M.; Frisoli, A. Wearable Haptics and Immersive Virtual Reality Rehabilitation Training in Children with Neuromotor Impairments. IEEE Trans. Neural Syst. Rehabil. Eng. 2018, 26, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, C.; Turconi, A.C.; Biffi, E.; Maghini, C.; Marelli, A.; Cesareo, A.; Diella, E.; Panzeri, D. Immersive Virtual Reality to Improve Walking Abilities in Cerebral Palsy: A Pilot Study. Ann. Biomed. Eng. 2018, 46, 1376–1384. [Google Scholar] [CrossRef]
- Lee, H.S.; Park, Y.J.; Park, S.W. The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2019, 2019, 7595639. [Google Scholar] [CrossRef] [Green Version]
- Rutkowski, S.; Szczegielniak, J.; Szczepańska-Gieracha, J. Evaluation of the Efficacy of Immersive Virtual Reality Therapy as a Method Supporting Pulmonary Rehabilitation: A Randomized Controlled Trial. J. Clin. Med. 2021, 10, 352. [Google Scholar] [CrossRef]
- Valori, I.; Bayramova, R.; McKenna-Plumley, P.E.; Farroni, T. Sensorimotor Research Utilising Immersive Virtual Reality: A Pilot Study with Children and Adults with Autism Spectrum Disorders. Brain Sci. 2020, 10, 259. [Google Scholar] [CrossRef]
- Zanchi, S.; Cuturi, L.F.; Sandini, G.; Gori, M. Evaluation of a Motion Platform Combined with an Acoustic Virtual Reality Tool: A Spatial Orientation Test in Sighted and Visually Impaired People. In Proceedings of the 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Guadalajara, Mexico, 9 December 2021; IEEE: New York, NY, USA; pp. 6078–6081. [Google Scholar]
- Vivanti, G.; Duncan, E.; Dawson, G.; Rogers, S.J. Facilitating Learning through Peer Interactions and Social Participation. In Implementing the Group-Based Early Start Denver Model for Preschoolers with Autism; Springer: Berlin, Germany, 2017; pp. 87–99. [Google Scholar]
- Kwan, C.; Gitimoghaddam, M.; Collet, J.-P. Effects of Social Isolation and Loneliness in Children with Neurodevelopmental Disabilities: A Scoping Review. Brain Sci. 2020, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Lee, I.-J.; Lin, L.-Y. Augmented Reality-Based Self-Facial Modeling to Promote the Emotional Expression and Social Skills of Adolescents with Autism Spectrum Disorders. Res. Dev. Disabil. 2015, 36, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.; Cobb, S. State-of-the-Art of Virtual Reality Technologies for Children on the Autism Spectrum. Eur. J. Spec. Needs Educ. 2011, 26, 355–366. [Google Scholar] [CrossRef]
- Della Longa, L.; Valori, I.; Farroni, T. Interpersonal Affective Touch in a Virtual World: Feeling the Social Presence of Others to Overcome Loneliness. Front. Psychol. 2022, 12, 1198–1204. [Google Scholar] [CrossRef]
- Demetriou, E.A.; Lampit, A.; Quintana, D.S.; Naismith, S.L.; Song, Y.J.C.; Pye, J.E.; Hickie, I.; Guastella, A.J. Autism Spectrum Disorders: A Meta-Analysis of Executive Function. Mol. Psychiatry 2018, 23, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Prieto, M.; Moreira, C.; Cruz, S.; Campos, V.; Martínez-Regueiro, R.; Taboada, M.; Carracedo, A.; Sampaio, A. Executive Functioning: A Mediator between Sensory Processing and Behaviour in Autism Spectrum Disorder. J. Autism Dev. Disord. 2021, 51, 2091–2103. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Want to Optimize Executive Functions and Academic Outcomes? Simple, Just Nourish the Human Spirit. In Proceedings of the Minnesota Symposium in Child Psychology, Minneapolis, MN, USA, 37 October 2011; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Dellapiazza, F.; Vernhet, C.; Blanc, N.; Miot, S.; Schmidt, R.; Baghdadli, A. Links between Sensory Processing, Adaptive Behaviours, and Attention in Children with Autism Spectrum Disorder: A Systematic Review. Psychiatry Res. 2018, 270, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Farroni, T.; Della Longa, L.; Valori, I. The Self-Regulatory Affective Touch: A Speculative Framework for the Development of Executive Functioning. Curr. Opin. Behav. Sci. 2022, 43, 167–173. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.H. Functional Brain Development in Humans. Nat. Rev. Neurosci. 2001, 2, 475–483. [Google Scholar] [CrossRef]
- Yoncheva, Y.N.; Zevin, J.D.; Maurer, U.; McCandliss, B.D. Auditory Selective Attention to Speech Modulates Activity in the Visual Word Form Area. Cereb. Cortex 2010, 20, 622–632. [Google Scholar] [CrossRef]
- Parsons, T.D.; Carlew, A.R.; Magtoto, J.; Stonecipher, K. The Potential of Function-Led Virtual Environments for Ecologically Valid Measures of Executive Function in Experimental and Clinical Neuropsychology. Neuropsychol. Rehabil. 2017, 27, 777–807. [Google Scholar] [CrossRef] [PubMed]
- Nori, R.; Piccardi, L.; Migliori, M.; Guidazzoli, A.; Frasca, F.; De Luca, D.; Giusberti, F. The Virtual Reality Walking Corsi Test. Comput. Hum. Behav. 2015, 48, 72–77. [Google Scholar] [CrossRef]
- Pugnetti, L.; Mendozzi, L.; Attree, E.A.; Barbieri, E.; Brooks, B.M.; Cazzullo, C.L.; Motta, A.; Rose, F.D. Probing Memory and Executive Functions with Virtual Reality: Past and Present Studies. Cyberpsychol. Behav. 1998, 1, 151–161. [Google Scholar] [CrossRef]
- Bradley, R.; Newbutt, N. Autism and Virtual Reality Head-Mounted Displays: A State of the Art Systematic Review. J. Enabling Technol. 2018, 12, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Adjorlu, A.; Høeg, E.R.; Mangano, L.; Serafin, S. Daily Living Skills Training in Virtual Reality to Help Children with Autism Spectrum Disorder in a Real Shopping Scenario. In Proceedings of the 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), Nantes, France, 9–13 October 2017; IEEE: New York, NY, USA, 2017; pp. 294–302. [Google Scholar]
- Bozgeyikli, L.; Bozgeyikli, E.; Raij, A.; Alqasemi, R.; Katkoori, S.; Dubey, R. Vocational Rehabilitation of Individuals with Autism Spectrum Disorder with Virtual Reality. ACM Trans. Access. Comput. 2017, 10, 1–25. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Toward a Psychology of Optimal Experience. In Flow and the Foundations of Positive Psychology; Springer: Berlin, Germany, 2014; pp. 209–226. [Google Scholar]
- Boulter, C.; Freeston, M.; South, M.; Rodgers, J. Intolerance of Uncertainty as a Framework for Understanding Anxiety in Children and Adolescents with Autism Spectrum Disorders. J. Autism Dev. Disord. 2014, 44, 1391–1402. [Google Scholar] [CrossRef]
- Kidd, C.; Hayden, B.Y. The Psychology and Neuroscience of Curiosity. Neuron 2015, 88, 449–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Klerk, C.C.; Filippetti, M.L.; Rigato, S. The Development of Body Representations: An Associative Learning Account. Proc. R. Soc. B 2021, 288, 20210070. [Google Scholar] [CrossRef] [PubMed]
- Filippetti, M.L.; Johnson, M.H.; Lloyd-Fox, S.; Dragovic, D.; Farroni, T. Body Perception in Newborns. Curr. Biol. 2013, 23, 2413–2416. [Google Scholar] [CrossRef] [Green Version]
- Trevarthen, C.; Aitken, K.J. Infant Intersubjectivity: Research, Theory, and Clinical Applications. J. Child Psychol. Psychiatry 2001, 42, 3–48. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farroni, T.; Valori, I.; Carnevali, L. Multimedia Interventions for Neurodiversity: Leveraging Insights from Developmental Cognitive Neuroscience to Build an Innovative Practice. Brain Sci. 2022, 12, 147. https://doi.org/10.3390/brainsci12020147
Farroni T, Valori I, Carnevali L. Multimedia Interventions for Neurodiversity: Leveraging Insights from Developmental Cognitive Neuroscience to Build an Innovative Practice. Brain Sciences. 2022; 12(2):147. https://doi.org/10.3390/brainsci12020147
Chicago/Turabian StyleFarroni, Teresa, Irene Valori, and Laura Carnevali. 2022. "Multimedia Interventions for Neurodiversity: Leveraging Insights from Developmental Cognitive Neuroscience to Build an Innovative Practice" Brain Sciences 12, no. 2: 147. https://doi.org/10.3390/brainsci12020147
APA StyleFarroni, T., Valori, I., & Carnevali, L. (2022). Multimedia Interventions for Neurodiversity: Leveraging Insights from Developmental Cognitive Neuroscience to Build an Innovative Practice. Brain Sciences, 12(2), 147. https://doi.org/10.3390/brainsci12020147