A Performance-Based Teleintervention for Adults in the Chronic Stage after Acquired Brain Injury: An Exploratory Pilot Randomized Controlled Crossover Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Procedure
2.3. Measures
2.3.1. Primary Outcomes
2.3.2. Secondary Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knepley, K.D.; Mao, J.Z.; Wieczorek, P.; Okoye, F.O.; Jain, A.P.; Harel, N.J. Impact of telerehabilitation for stroke-related deficits. Telemed. E-Health 2021, 27, 239–246. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Ulasavets, U.; Opare-Sem, O.K.; Ovbiagele, B. Tele-rehabilitation after stroke: An updated systematic review of the literature. J. Stroke Cerebrovasc. Dis. 2018, 27, 2306–2318. [Google Scholar] [CrossRef] [PubMed]
- Appleby, E.; Gill, S.T.; Hayes, L.K.; Walker, T.L.; Walsh, M.; Kumar, S. Effectiveness of telerehabilitation in the management of adults with stroke: A systematic review. PLoS ONE 2019, 14, e0225150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ownsworth, T.; Arnautovska, U.; Beadle, E.; Shum, D.H.; Moyle, W. Efficacy of telerehabilitation for adults with traumatic brain injury: A systematic review. J. Head Trauma Rehabil. 2018, 33, E33–E46. [Google Scholar] [CrossRef] [PubMed]
- Cason, J.; Hartmann, K.; Jacobs, K.; Richmond, T. Telehealth in Occupational Therapy. Am. J. Occup. Ther. 2018, 72, 1–18. [Google Scholar] [CrossRef]
- Subbarao, B.S.; Stokke, J.; Martin, S.J. Telerehabilitation in acquired brain injury. Phys. Med. Rehabil. Clin. 2021, 32, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Andelic, N.; Howe, E.I.; Hellstrøm, T.; Sanchez, M.F.; Lu, J.; Løvstad, M.; Røe, C. Disability and quality of life 20 years after traumatic brain injury. Brain Behav. 2018, 8, e01018. [Google Scholar] [CrossRef] [PubMed]
- De Graaf, J.; Schepers, V.; Nijsse, B.; Nijsse, C.; Post, M.W.; Visser-Meily, J. The influence of psychological factors and mood on the course of participation up to four years after stroke. Disabil. Rehabil. 2020, 1–8. [Google Scholar] [CrossRef]
- Wheeler, S. Community recovery and participation. In Traumatic Brain Injury (TBI): Interventions to Support Occupational Performance; Golisz, K.M., Radomski, M.V., Eds.; AOTA Press: Bethesda, MD, USA, 2015; pp. 231–300. [Google Scholar]
- Wolf, T.J.; Baum, C.M.; Lee, D.; Hammel, J. The development of the Improving Participation after Stroke Self-Management Program (IPASS): An exploratory randomized clinical study. Top. Stroke Rehabil. 2016, 23, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Stiekema, A.P.; Winkens, I.; Ponds, R.; De Vugt, M.E.; Van Heugten, C.M. Finding a new balance in life: A qualitative study on perceived long-term needs of people with acquired brain injury and partners. Brain Inj. 2020, 34, 421–429. [Google Scholar] [CrossRef]
- World Health Organization (WHO). International Classification of Functioning, Disability and Health (ICF); World Health Organization: Geneva, Switzerland, 2001; Licence: CC BY-NC-SA 3.0 IGO. [Google Scholar]
- Engel-Yeger, B.; Tse, T.; Josman, N.; Baum, C.; Carey, L.M. Scoping review: The trajectory of recovery of participation outcomes following stroke. Behav. Neurol. 2018, 2018, 5472018. [Google Scholar] [CrossRef] [Green Version]
- Klepo, I.; Sangster Jokić, C.; Tršinski, D. The role of occupational participation for people with traumatic brain injury: A systematic review of the literature. Disabil. Rehabil. 2020, 1–14. [Google Scholar] [CrossRef]
- Rodríguez-Bailón, M.; López-González, L.; Merchán-Baeza, J.A. Client-centred practice in occupational therapy after stroke: A systematic review. Scand. J. Occup. Ther. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wolf, T.J.; Chuh, A.; Floyd, T.; McInnis, K.; Williams, E. Effectiveness of occupation-based interventions to improve areas of occupation and social participation after stroke: An evidence-based review. Am. J. Occup. Ther. 2015, 69, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hebert, D.; Lindsay, M.P.; McIntyre, A.; Kirton, A.; Rumney, P.G.; Bagg, S.; Bayley, M.; Dowlatshahi, D.; Dukelow, S.; Garnhum, M. Canadian stroke best practice recommendations: Stroke rehabilitation practice guidelines, Update 2015. Int. J. Stroke 2016, 11, 459–484. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.E.; Skidmore, E.R.; Wolf, T.J. Using the CO-OP Approach: Stroke. In Cognitive Orientation to Daily Occupational Performance in Occupational Therapy: Using the CO-OP ApproachTM to Enable Participation Across the Life Span; Dawson, D.R., McEwen, S.E., Polatajko, H.J., Eds.; AOTA Press: Bethesda, MD, USA, 2017; pp. 93–118. [Google Scholar]
- Dawson, D.R.; Hunt, A.W.; Polatajko, H.J. Using the CO-OP Approach: Traumatic Brain Injury. In Cognitive Orientation to Daily Occupational Performance in Occupational Therapy: Using the CO-OP ApproachTM to Enable Participation Across the Life Span; Dawson, D.R., McEwen, S.E., Polatajko, H.J., Eds.; AOTA Press: Bethesda, MD, USA, 2017; pp. 135–160. [Google Scholar]
- Chen, J.; Jin, W.; Dong, W.S.; Jin, Y.; Qiao, F.L.; Zhou, Y.F.; Ren, C.C. Effects of home-based telesupervising rehabilitation on physical function for stroke survivors with hemiplegia: A randomized controlled trial. Am. J. Phys. Med. Rehabil. 2017, 96, 152–160. [Google Scholar] [CrossRef]
- Kizony, R.; Weiss, P.L.; Harel, S.; Feldman, Y.; Obuhov, A.; Zeilig, G.; Shani, M. Tele-rehabilitation service delivery journey from prototype to robust in-home use. Disabil. Rehabil. 2017, 39, 1532–1540. [Google Scholar] [CrossRef]
- Keidel, M.; Vauth, F.; Richter, J.; Hoffmann, B.; Soda, H.; Griewing, B.; Scibor, M. Home-based telerehabilitation after stroke. Der Nervenarzt 2017, 88, 113–119. [Google Scholar] [CrossRef]
- Lloréns, R.; Noé, E.; Colomer, C.; Alcañiz, M. Effectiveness, usability, and cost-benefit of a virtual reality–based telerehabilitation program for balance recovery after stroke: A randomized controlled trial. Arch. Phys. Med. Rehabil. 2015, 96, 418–425. [Google Scholar] [CrossRef] [Green Version]
- Woolf, C.; Caute, A.; Haigh, Z.; Galliers, J.; Wilson, S.; Kessie, A.; Hirani, S.; Hegarty, B.; Marshall, J. A comparison of remote therapy, face to face therapy and an attention control intervention for people with aphasia: A quasi-randomised controlled feasibility study. Clin. Rehabil. 2016, 30, 359–373. [Google Scholar]
- Burgos, P.I.; Lara, O.; Lavado, A.; Rojas-Sepúlveda, I.; Delgado, C.; Bravo, E.; Kamisato, C.; Torres, J.; Castañeda, V.; Cerda, M. Exergames and telerehabilitation on smartphones to improve balance in stroke patients. Brain Sci. 2020, 10, 773. [Google Scholar] [CrossRef] [PubMed]
- Almojaibel, A. Understanding Intention to Use Telerehabilitation: Applicability of the Technology Acceptance Model (TAM). Ph.D. Thesis, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA, 2017. [Google Scholar]
- McEwen, S.; Polatajko, H.; Huijbregts, M.; Ryan, J. Inter-task transfer of meaningful, functional skills following a cognitive-based treatment: Results of three multiple baseline design experiments in adults with chronic stroke. Neuropsychol. Rehabil. 2010, 20, 541–561. [Google Scholar] [CrossRef] [PubMed]
- McEwen, S.; Polatajko, H.; Baum, C.; Rios, J.; Cirone, D.; Doherty, M.; Wolf, T. Combined cognitive-strategy and task-specific training improve transfer to untrained activities in subacute stroke: An exploratory randomized controlled trial. Neurorehabilit. Neural Repair 2015, 29, 526–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poulin, V.; Korner-Bitensky, N.; Bherer, L.; Lussier, M.; Dawson, D.R. Comparison of two cognitive interventions for adults experiencing executive dysfunction post-stroke: A pilot study. Disabil. Rehabil. 2017, 39, 1–13. [Google Scholar] [CrossRef]
- Saeidi Borujeni, M.; Hosseini, S.A.; Akbarfahimi, N.; Ebrahimi, E. Cognitive orientation to daily occupational performance approach in adults with neurological conditions: A scoping review. Med. J. Islamic Repub. Iran (MJIRI) 2019, 33, 99. [Google Scholar] [CrossRef]
- Ahn, S.-N.; Yoo, E.-Y.; Jung, M.-Y.; Park, H.-Y.; Lee, J.-Y.; Choi, Y.-I. Comparison of Cognitive Orientation to daily Occupational Performance and conventional occupational therapy on occupational performance in individuals with stroke: A randomized controlled trial. NeuroRehabilitation 2017, 40, 285–292. [Google Scholar] [CrossRef]
- Ng, E.; Polatajko, H.; Marziali, E.; Hunt, A.; Dawson, D. Telerehabilitation for addressing executive dysfunction after traumatic brain injury. Brain Inj. 2013, 27, 548–564. [Google Scholar] [CrossRef]
- Dawson, D.R.; Binns, M.A.; Hunt, A.; Lemsky, C.; Polatajko, H.J. Occupation-based strategy training for adults with traumatic brain injury: A pilot study. Arch. Phys. Med. Rehabil. 2013, 94, 1959–1963. [Google Scholar] [CrossRef]
- Dawson, D.R.; Gaya, A.; Hunt, A.; Levine, B.; Lemsky, C.; Polatajko, H.J. Using the cognitive orientation to occupational performance (CO-OP) with adults with executive dysfunction following traumatic brain injury. Can. J. Occup. Ther. 2009, 76, 115–127. [Google Scholar] [CrossRef]
- Nadler, E.; Linkewich, B.; Ng, E.M.; Skidmore, E.R.; Hunt, A.W.; Dawson, D.R. Using the CO-OP Approach: Alternative Delivery Methods, in Cognitive Orientation to Daily Occupational Performance in Occupational Therapy: Using the CO-OP ApproachTM to Enable Participation Across the Life Span; Dawson, D.R., McEwen, S.E., Polatajko, H.J., Eds.; AOTA Press: Bethesda, MD, USA, 2017; pp. 207–226. [Google Scholar]
- Maeir, T.; Nahum, M.; Makranz, C.; Hoba, A.; Peretz, T.; Nagary, S.N.; Silberman, N.; Gilboa, Y. The feasibility of a combined model of online interventions for adults with cancer-related cognitive impairment. Br. J. Occup. Ther. 2021, 84, 430–440. [Google Scholar] [CrossRef]
- Steinhart, S.; Raz-Silbiger, S.; Beeri, M.; Gilboa, Y. Occupation based telerehabilitation intervention for adolescents with myelomeningocele: A pilot study. Phys. Occup. Ther. Pediatrics 2021, 41, 176–191. [Google Scholar] [CrossRef]
- Skivington, K.; Matthews, L.; Simpson, S.A.; Craig, P.; Baird, J.; Blazeby, J.M.; Boyd, K.A.; Craig, N.; French, D.P.; McIntosh, E.; et al. A new framework for developing and evaluating complex interventions: Update of Medical Research Council guidance. BMJ 2021, 374, n2061. [Google Scholar] [CrossRef]
- Beit Yosef, A.; Jacobs, J.M.; Shenkar, S.; Shames, J.; Schwartz, I.; Doryon, Y.; Khalailh, F.; Berrous, S.; Gilboa, Y. Activity performance, participation, and quality of life among adults in the chronic stage after acquired brain injury-The feasibility of an occupation-based telerehabilitation Intervention. Front. Neurol. 2019, 10, 1247. [Google Scholar] [CrossRef]
- Patel, N.; Rao, V.A.; Heilman-Espinoza, E.R.; Lai, R.; Quesada, R.A.; Flint, A.C. Simple and reliable determination of the modified rankin scale score in neurosurgical and neurological patients: The mRS-9Q. Neurosurgery 2012, 71, 971–975. [Google Scholar] [CrossRef]
- Charlesworth, G.; Burnell, K.; Hoe, J.; Orrell, M.; Russell, I. Acceptance checklist for clinical effectiveness pilot trials: A systematic approach. BMC Med. Res. Methodol. 2013, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Abramson, J.H. WINPEPI updated: Computer programs for epidemiologists, and their teaching potential. Epidemiol. Perspect. Innov. 2011, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Loeb, K.L.; Weissman, R.S.; Marcus, S.; Pattanayak, G.; Hail, L.; Kung, K.C.; Schron, D.; Zucker, N.; Le Grange, D.; Lock, J. Family-Based Treatment for Anorexia Nervosa Symptoms in High-Risk Youth: A Partially-Randomized Preference-Design Study. Front. Psychiatry 2020, 10, 985. [Google Scholar] [CrossRef]
- Wang, R.H.; Kenyon, L.K.; McGilton, K.S.; Miller, W.C.; Hovanec, N.; Boger, J.; Viswanathan, P.; Robillard, J.M.; Czarnuch, S.M. The time is now: A FASTER approach to generate research evidence for technology-based interventions in the field of disability and rehabilitation. Arch. Phys. Med. Rehabil. 2021, 102, 1848–1859. [Google Scholar] [CrossRef]
- Law, M.C.; Baptiste, S.; Carswell, A.; McColl, M.A.; Polatajko, H.; Pollock, N. Canadian Occupational Performance Measure: COPM, 5th ed.; CAOT Publ. ACE: Toronto, ON, Canada, 2014. [Google Scholar]
- Miller, L.; Polatajko, H.; Missiuna, C.; Mandich, A.; Macnab, J. A pilot trial of a cognitive treatment for children with developmental coordination disorder. Hum. Mov. Sci. 2001, 20, 183–210. [Google Scholar] [CrossRef]
- Phipps, S.; Richardson, P. Occupational therapy outcomes for clients with traumatic brain injury and stroke using the Canadian Occupational Performance Measure. Am. J. Occup. Ther. 2007, 61, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-Y.; Lin, C.-Y.; Lee, Y.-C.; Chang, J.-H. The Canadian occupational performance measure for patients with stroke: A systematic review. J. Phys. Ther. Sci. 2017, 29, 548–555. [Google Scholar] [CrossRef] [Green Version]
- Cup, E.H.; Scholte op Reimer, W.; Thijssen, M.C.; Kuyk-Minis, M. Reliability and validity of the Canadian Occupational Performance Measure in stroke patients. Clin. Rehabil. 2003, 17, 402–409. [Google Scholar] [CrossRef]
- Martini, R.; Rios, J.; Polatajko, H.; Wolf, T.; McEwen, S. The performance quality rating scale (PQRS): Reliability, convergent validity, and internal responsiveness for two scoring systems. Disabil. Rehabil. 2015, 37, 231–238. [Google Scholar] [CrossRef]
- Kean, J.; Malec, J.F.; Altman, I.M.; Swick, S. Rasch measurement analysis of the Mayo-Portland Adaptability Inventory (MPAI-4) in a community-based rehabilitation sample. J. Neurotrauma 2011, 28, 745–753. [Google Scholar] [CrossRef] [Green Version]
- Malec, J.F.; Lezak, M.D. Manual for the Mayo-Portland Adaptability Inventory (MPAI-4) for adults, children and adolescents. 2008. Available online: http://www.tbims.org/combi/mpai/manual (accessed on 22 December 2021).
- Guerrette, M.-C.; McKerral, M. Validation of the Mayo-Portland Adaptability Inventory-4 (MPAI-4) and reference norms in a French-Canadian population with traumatic brain injury receiving rehabilitation. Disabil. Rehabil. 2021, 1–7. [Google Scholar] [CrossRef]
- Fortune, D.G.; Walsh, R.S.; Waldron, B.; McGrath, C.; Harte, M.; Casey, S.; McClean, B. Changes in aspects of social functioning depend upon prior changes in neurodisability in people with acquired brain injury undergoing post-acute neurorehabilitation. Front. Psychol. 2015, 6, 1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malec, J.F.; Kean, J.; Altman, I.M.; Swick, S. Mayo-Portland Adaptability Inventory: Comparing psychometrics in cerebrovascular accident to traumatic brain injury. Arch. Phys. Med. Rehabil. 2012, 93, 2271–2275. [Google Scholar] [CrossRef]
- Eicher, V.; Murphy, M.P.; Murphy, T.F.; Malec, J.F. Progress assessed with the Mayo-Portland Adaptability Inventory in 604 participants in 4 types of post–inpatient rehabilitation brain injury programs. Arch. Phys. Med. Rehabil. 2012, 93, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Altman, I.M.; Swick, S.; Parrot, D.; Malec, J.F. Effectiveness of community-based rehabilitation after traumatic brain injury for 489 program completers compared with those precipitously discharged. Arch. Phys. Med. Rehabil. 2010, 91, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.A.; Evans, J.J.; Emslie, H.; Alderman, N.; Burgess, P. The development of an ecologically valid test for assessing patients with a dysexecutive syndrome. Neuropsychol. Rehabil. 1998, 8, 213–228. [Google Scholar] [CrossRef]
- Boelen, D.H.; Spikman, J.M.; Rietveld, A.C.; Fasotti, L. Executive dysfunction in chronic brain-injured patients: Assessment in outpatient rehabilitation. Neuropsychol. Rehabil. 2009, 19, 625–644. [Google Scholar] [CrossRef]
- Azouvi, P.; Vallat-Azouvi, C.; Millox, V.; Darnoux, E.; Ghout, I.; Azerad, S.; Ruet, A.; Bayen, E.; Pradat-Diehl, P.; Aegerter, P. Ecological validity of the dysexecutive questionnaire: Results from the PariS-TBI study. Neuropsychol. Rehabil. 2015, 25, 864–878. [Google Scholar] [CrossRef]
- Burgess, P.W.; Alderman, N.; Evans, J.; Emslie, H.; Wilson, B.A. The ecological validity of tests of executive function. J. Int. Neuropsychol. Soc. 1998, 4, 547–558. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Gully, S.M.; Eden, D. Validation of a new general self-efficacy scale. Organ. Res. Methods 2001, 4, 62–83. [Google Scholar] [CrossRef] [Green Version]
- Scherbaum, C.A.; Cohen-Charash, Y.; Kern, M.J. Measuring General Self-Efficacy: A comparison of three measures using item response theory. Educ. Psychol. Meas. 2006, 66, 1047–1063. [Google Scholar] [CrossRef]
- Jacobs, J.M.; Hammerman-Rozenberg, A.; Stessman, J. Frequency of leaving the house and mortality from Age 70 to 95. J. Am. Geriatr. Soc. 2018, 66, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Ornstein, K.A.; Leff, B.; Covinsky, K.E.; Ritchie, C.S.; Federman, A.D.; Roberts, L.; Kelley, A.S.; Siu, A.L.; Szanton, S.L. Epidemiology of the homebound population in the United States. JAMA Intern. Med. 2015, 175, 1180–1186. [Google Scholar] [CrossRef]
- Bedard, M.; Molloy, D.W.; Squire, L.; Dubois, S.; Lever, J.A.; O’Donnell, M. The Zarit Burden Interview: A new short version and screening version. Gerontologist 2001, 41, 652–657. [Google Scholar] [CrossRef] [Green Version]
- Van Durme, T.; Macq, J.; Jeanmart, C.; Gobert, M. Tools for measuring the impact of informal caregiving of the elderly: A literature review. Int. J. Nurs. Stud. 2012, 49, 490–504. [Google Scholar] [CrossRef]
- Iecovich, E. Psychometric properties of the Hebrew version of the Zarit Caregiver Burden Scale short version. Aging Ment. Health 2012, 16, 254–263. [Google Scholar] [CrossRef]
- Higginson, I.J.; Gao, W.; Jackson, D.; Murray, J.; Harding, R. Short-form Zarit Caregiver Burden Interviews were valid in advanced conditions. J. Clin. Epidemiol. 2010, 63, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Wu, W.; Gu, F.; Fukui, S. Combining proration and full information maximum likelihood in handling missing data in Likert scale items: A hybrid approach. Behav. Res. Methods 2021, 1–19. [Google Scholar] [CrossRef]
- Salkind, N. Last observation carried forward. In Encyclopedia of Research Design; SAGE: Thousand Oaks, CA, USA, 2010. [Google Scholar]
- McEwen, S.E.; Polatajko, H.J.; Huijbregts, M.P.; Ryan, J.D. Exploring a cognitive-based treatment approach to improve motor-based skill performance in chronic stroke: Results of three single case experiments. Brain Inj. 2009, 23, 1041–1053. [Google Scholar] [CrossRef]
- Henshaw, E.; Polatajko, H.; McEwen, S.; Ryan, J.D.; Baum, C.M. Cognitive approach to improving participation after stroke: Two case studies. Am. J. Occup. Ther. 2011, 65, 55–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.-S.; Lee, O.-N.; Woo, H.-S. Cognitive strategy on upper extremity function for stroke: A randomized controlled trials. Restor. Neurol. Neurosci. 2019, 37, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Levack, W.M.; Dean, S.G.; Siegert, R.J.; Mcpherson, K.M. Purposes and mechanisms of goal planning in rehabilitation: The need for a critical distinction. Disabil. Rehabil. 2006, 28, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Sugavanam, T.; Mead, G.; Bulley, C.; Donaghy, M.; Van Wijck, F. The effects and experiences of goal setting in stroke rehabilitation—A systematic review. Disabil. Rehabil. 2013, 35, 177–190. [Google Scholar] [CrossRef]
- Houldin, A.; McEwen, S.E.; Howell, M.W.; Polatajko, H.J. The Cognitive Orientation to Daily Occupational Performance approach and transfer: A scoping review. OTJR: Occup. Particip. Health 2018, 38, 157–172. [Google Scholar] [CrossRef]
- McEwen, S.E.; Houldin, A. Generalization and Transfer in the CO-OP Approach. In Cognitive Orientation to Daily Occupational Performance in Occupational Therapy: Using the CO-OP ApproachTM to Enable Participation Across the Life Span; Dawson, D.R., McEwen, S.E., Polatajko, H.J., Eds.; AOTA Press: Bethesda, MD, USA, 2017; pp. 31–42. [Google Scholar]
- McEwen, S.E.; Polatajko, H.J.; Davis, J.A.; Huijbregts, M.; Ryan, J.D. ‘There’s a real plan here, and I am responsible for that plan’: Participant experiences with a novel cognitive-based treatment approach for adults living with chronic stroke. Disabil. Rehabil. 2010, 32, 541–550. [Google Scholar] [CrossRef]
- Rotenberg-Shpigelman, S.; Erez, A.B.-H.; Nahaloni, I.; Maeir, A. Neurofunctional treatment targeting participation among chronic stroke survivors: A pilot randomised controlled study. Neuropsychol. Rehabil. 2012, 22, 532–549. [Google Scholar] [CrossRef]
- Chumbler, N.R.; Quigley, P.; Li, X.; Morey, M.; Rose, D.; Sanford, J.; Griffiths, P.; Hoenig, H. Effects of telerehabilitation on physical function and disability for stroke patients: A randomized, controlled trial. Stroke 2012, 43, 2168–2174. [Google Scholar] [CrossRef] [Green Version]
- Polatajko, H.J.; McEwen, S.E.; Ryan, J.D.; Baum, C.M. Pilot randomized controlled trial investigating cognitive strategy use to improve goal performance after stroke. Am. J. Occup. Ther. 2012, 66, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Falvey, J.R.; Cohen, A.B.; O’Leary, J.R.; Leo-Summers, L.; Murphy, T.E.; Ferrante, L.E. Association of social isolation with disability burden and 1-year mortality among older adults with Ccritical illness. JAMA Intern. Med. 2021, 181, 1433–1439. [Google Scholar] [CrossRef]
- Ankuda, C.K.; Leff, B.; Ritchie, C.S.; Siu, A.L.; Ornstein, K.A. Association of the COVID-19 pandemic with the prevalence of homebound older adults in the United States, 2011–2020. JAMA Intern. Med. 2021, 181, 1658–1660. [Google Scholar] [CrossRef]
- Moo, L.R.; Schwartz, A.W. The urgent need for rigorous studies of telehealth for older adults who are homebound. JAMA Netw. Open 2021, 4, e2113451. [Google Scholar] [CrossRef]
- Skidmore, E.R.; McEwen, S.E.; Green, D.; van den Houten, J.; Dawson, D.R.; Polatajko, H.J. Essential Elements and Key Features of the CO-OP Approach. In Cognitive Orientation to Daily Occupational Performance in Occupational Therapy: Using the CO-OP ApproachTM to Enable Participation Across the Life Span; Dawson, D.R., McEwen, S.E., Polatajko, H.J., Eds.; AOTA Press: Bethesda, MD, USA, 2017; pp. 11–20. [Google Scholar]
- Martini, R.; Savard, J. Cognitive Orientation to Daily Occupational Performance (CO-OP): 1-week group intervention with children referred for motor coordination difficulties. Open J. Occup. Ther. 2021, 9, 1–14. [Google Scholar] [CrossRef]
Tele-CO-OP (n = 8) Median (IQR) or n (%) | Waitlist Control (n = 8) Median (IQR) or n (%) | p | |
---|---|---|---|
Sociodemographic Characteristics | |||
Age | 64.0 (51.8–67.0) | 65.5 (63.5–70.0) | 0.494 |
Sex Female Male | 1 (12.5%) 7 (87.5%) | 2 (25.0%) 6 (75.0%) | 1.000 |
Education (years) | 12.5 (10.3–14.5) | 12.5 (11.3–15.5) | 0.525 |
Marital status Married Widowed | 8 (100.0%) | 7 (87.5%) 1 (12.5%) | 1.000 |
Significant other Spouse Child | 8 (100.0%) | 7 (87.5%) 1 (12.5%) | 1.000 |
Living status With spouse and/or children Alone | 8 (100.0%) | 7 (87.5%) 1 (12.5%) | 1.000 |
Living area Urban Rural | 7 (87.5%) 1 (12.5%) | 8 (100.0%) | 1.000 |
Work status Working Not working | (25.0%) 6 (75.0%) | 2 (25.0%) 6 (75.0%) | 1.000 |
Clinical Characteristics | |||
Type of ABI Ischemic stroke Hemorrhagic stroke Traumatic brain injury | 6 (75.0%) 2 (25.0%) | 6 (75.0%) 2 (25.0%) | 0.467 |
Side of ABI Right Left Bilateral | 2 (25.0%) 5 (62.5%) 1 (12.5%) | 7 (87.5%) 1 (12.5%) | 0.041 |
First ABI Yes No | 6 (75.0%) 2 (25.0%) | 7 (87.5%) 1 (12.5%) | 1.000 |
Time since ABI (months) | 8.0 (7.0–9.8) | 9.5 (6.3–11.8) | 0.560 |
Outpatient rehabilitation period (months) | 4.5 (2.3–6.0) | 4.0 (2.0–5.8) | 0.707 |
MMSE | 28.0 (25.5–29.0) | 28.5 (28.0–30.0) | 0.161 |
Modified Rankin Scale (mRS) | 3.0 (2.0–3.0) | 3.0 (2.3–3.8) | 0.492 |
Walking aid Yes No | 4 (50.0%) 4 (50.0%) | 4 (50.0%) 4 (50.0%) | 1.000 |
Community mobility by driving car post-ABI Yes No | 4 (50.0%) 4 (50.0%) | 2 (25.0%) 6 (75.0%) | 0.608 |
Community mobility by foot post-ABI Yes No | 8 (100.0%) - | 6 (75.0%) 2 (25.0%) | 0.467 |
Previous computer use experience Yes No | 7 (87.5%) 1 (12.5%) | 6 (75.0%) 2 (25.0%) | 1.000 |
Previous video-conference App use experience Yes No | 4 (50.0%) 4 (50.0%) | 3 (37.5%) 5 (62.5%) | 1.000 |
Outcome | Tele-CO-OP (n = 8) | Waitlist Control (n = 8) | ||||
---|---|---|---|---|---|---|
T1 Median (IQR) | T2 Median (IQR) | p | T1 Median (IQR) | T2 Median (IQR) | p | |
COPM(P) COPM(S) | 2.8 (2.3–3.3) 2.5 (2.3–5.1) | 7.3 (6.1–8.6) 6.8 (5.5–9.3) | 0.012 0.028 | 3.8 (2.3–5.5) 4.0 (2.8–5.3) | 5.2 (4.1–7.8) 6.2 (3.3–7.3) | 0.106 0.050 |
MPAI-4-P | 45.5 (41.0–52.0) | 42.5 (30.0–49.8) | 0.123 | 47.0 (43.5–48.0) | 45.0 (41.0–50.5) | 0.553 |
MPAI-4-SO-total score | 45.0 (41.3–53.0) | 45.0 (38.0–51.3) | 0.074 | 42.0 (39.3–45.8) | 42.5 (37.5–48.5) | 0.933 |
DEX | 16.5 (4.8–28.8) | 17.0 (7.5–22.8) | 0.482 | 10.5 (1.8–20.8) | 8.0 (3.0–12.3) | 0.932 |
NGSE | 3.7 (3.6–4.1) | 4.2 (2.9–4.5) | 0.307 | 3.6 (3.0–3.8) | 3.3 (3.0–3.6) | 0.396 |
ZBI | 23.0 (17.5–31.8) | 21.5 (16.0–34.0) | 0.916 | 20.0 (18.0–25.0) | 18.0 (12.8–19.5) | 0.075 |
Frequency of leaving the house Daily or nearly daily Often Rarely | 5 (62.5%) 2 (25.0%) 1 (12.5%) | 6 (75.0%) 1 (12.5%) 1 (12.5%) | 0.317 | 3 (37.5%) 5 (62.5%) | 3 (37.5%) 5 (62.5%) | 1.000 |
Outcome | T1 (n = 12) | T2 (n = 12) | T1−T2 | T3 (n = 6) | T1−T3 | ||
---|---|---|---|---|---|---|---|
Median (IQR) or N (%) | Median (IQR) or N (%) | p | r (ES)⁑ | Median (IQR) or N (%) | p | r (ES)⁑ | |
COPM(P)-Trained COPM(P)-Untrained COPM(S)-Trained COPM(S)-Untrained | 3.33 (2.33–4.92) 3.00 (2.38–5.63) ¥ 3.47 (2.33–5.83) 2.75 (1.38–6.13) ¥ | 7.33 (6.08–8.60) 6.00 (3.88–7.88) ¥ 8.17 (6.08–9.58) 7.00 (5.75–8.13) ¥ | 0.002 0.012 0.005 0.012 | −0.63 −0.56 −0.57 −0.56 | 7.33 (3.17–9.42) 6.75 (4.00–8.25) 6.67 (4.42–9.50) 7.25 (5.75–10.00) | 0.028 0.043 0.046 0.028 | −0.64 −0.58 −0.58 −0.64 |
PQRS-Trained | 3.00 (2.25–3.67) | 7.50 (7.00–9.17) | 0.002 | −0.63 | 7.17 (4.92–9.08) † | 0.027 | −0.64 |
MPAI-4-P | 45.00 (41.00–49.75) | 39.00 (28.00–46.00) | 0.037 | −0.43 | 34.50 (26.00–54.25) | 0.068 | −0.53 |
MPAI-4-SO-total score | 45.00 (41.00–49.75) | 43.00 (35.50–48.75) | 0.035 | −0.43 | 37.00 (36.50–47.50) ǐ | 0.068 | −0.58 |
DEX | 11.50 (2.00–23.50) | 12.50 (3.25–21.00) | 0.969 | −0.01 | 13.00 (7.50–23.25) | 0.465 | −0.21 |
NGSE | 3.63 (3.19–3.97) | 4.15 (3.50–4.47) | 0.074 | −0.37 | 3.63 (2.94–4.22) | 0.598 | −0.15 |
ZBI | 20.00 (17.25–29.50) | 18.00 (16.00–25.00) | 0.573 | −0.12 | 19.00 (15.50–28.50) ǐ | 0.068 | −0.58 |
Frequency of leaving the house Daily or nearly daily Often Rarely | 6 (50.0%) 5 (41.7%) 1 (8.3%) | 10 (83.3%) 1 (8.3%) 1 (8.3%) | 0.046 | 4 (66.7%) 2 (33.3%) | 0.317 |
Item | Mean ± SD | |
---|---|---|
1. | In general, how satisfied are you with the treatment program you have received? | 4.67 ± 0.65 |
2. | How much did you enjoy participating in the treatment program? | 4.50 ± 0.67 |
3. | How satisfied are you with the course of treatment (number and length of sessions, frequency of sessions)? | 4.58 ± 0.52 |
4. | How satisfied are you with the treatment approach used in the sessions (e.g., “Goal, Plan, Do, Check”)? | 4.75 ± 0.45 |
5. | To what extent do you think you will continue to use the method you have learned to deal with other situations in your life? | 3.92 ± 1.38 |
6. | How satisfied are you with having a significant other (family member/formal caregiver/other) involved in the treatment program? | 4.00 ± 1.41 |
7. | How satisfied are you with the level of involvement of your significant other (family member/formal caregiver/other) in the treatment program? | 4.55 ± 0.69 |
8. | How satisfied are you with the therapeutic relationship between you and the occupational therapist during the treatment program? | 4.33 ± 0.89 |
9. | How satisfied are you with the remote treatment experience using video sessions? | 4.08 ± 1.17 |
10. | How satisfied are you with the experience of using Zoom\Skype TM in the treatment program (in terms of ease of use, quality of image and sound)? | 4.08 ± 1.17 |
11. | To what extent would you like to use this service again, if there were such a possibility? | 4.50 ± 0.67 |
12. | How likely are you to recommend our treatment program to a person with a similar health condition? | 4.58 ± 0.52 |
13. | To what extent would you prefer that the treatment had been done face-to-face? | 3.92 ± 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beit Yosef, A.; Jacobs, J.M.; Shames, J.; Schwartz, I.; Gilboa, Y. A Performance-Based Teleintervention for Adults in the Chronic Stage after Acquired Brain Injury: An Exploratory Pilot Randomized Controlled Crossover Study. Brain Sci. 2022, 12, 213. https://doi.org/10.3390/brainsci12020213
Beit Yosef A, Jacobs JM, Shames J, Schwartz I, Gilboa Y. A Performance-Based Teleintervention for Adults in the Chronic Stage after Acquired Brain Injury: An Exploratory Pilot Randomized Controlled Crossover Study. Brain Sciences. 2022; 12(2):213. https://doi.org/10.3390/brainsci12020213
Chicago/Turabian StyleBeit Yosef, Aviva, Jeremy Michael Jacobs, Jeffrey Shames, Isabella Schwartz, and Yafit Gilboa. 2022. "A Performance-Based Teleintervention for Adults in the Chronic Stage after Acquired Brain Injury: An Exploratory Pilot Randomized Controlled Crossover Study" Brain Sciences 12, no. 2: 213. https://doi.org/10.3390/brainsci12020213
APA StyleBeit Yosef, A., Jacobs, J. M., Shames, J., Schwartz, I., & Gilboa, Y. (2022). A Performance-Based Teleintervention for Adults in the Chronic Stage after Acquired Brain Injury: An Exploratory Pilot Randomized Controlled Crossover Study. Brain Sciences, 12(2), 213. https://doi.org/10.3390/brainsci12020213