The Role of Body in Brain Plasticity
Funding
Conflicts of Interest
References
- Leemhuis, E.; Giuffrida, V.; De Martino, M.L.; Forte, G.; Pecchinenda, A.; De Gennaro, L.; Giannini, A.M.; Pazzaglia, M. Rethinking the Body in the Brain after Spinal Cord Injury. J. Clin. Med. 2022, 11, 388. [Google Scholar] [CrossRef]
- Adams, M.M.; Hicks, A.L. Spasticity after spinal cord injury. Spinal Cord 2005, 43, 577–586. [Google Scholar] [CrossRef] [Green Version]
- Burchiel, K.J.; Hsu, F.P. Pain and spasticity after spinal cord injury: Mechanisms and treatment. Spine 2001, 26, S146–S160. [Google Scholar] [CrossRef]
- Karlsson, A.K. Autonomic dysfunction in spinal cord injury: Clinical presentation of symptoms and signs. Prog. Brain Res. 2006, 152, 1–8. [Google Scholar] [CrossRef]
- Yoon, E.J.; Kim, Y.K.; Shin, H.I.; Lee, Y.; Kim, S.E. Cortical and white matter alterations in patients with neuropathic pain after spinal cord injury. Brain Res. 2013, 1540, 64–73. [Google Scholar] [CrossRef]
- Gustin, S.M.; Wrigley, P.J.; Youssef, A.M.; McIndoe, L.; Wilcox, S.L.; Rae, C.D.; Edden, R.A.; Siddall, P.J.; Henderson, L.A. Thalamic activity and biochemical changes in individuals with neuropathic pain after spinal cord injury. Pain 2014, 155, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Hill, M.; Liu, S.; Chen, L.; Bangalore, L.; Waxman, S.G.; Tan, A.M. Dendritic spine remodeling following early and late Rac1 inhibition after spinal cord injury: Evidence for a pain biomarker. J. Neurophysiol. 2016, 115, 2893–2910. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Zheng, L.; Acosta, G.; Vega-Alvarez, S.; Chen, Z.; Muratori, B.; Cao, P.; Shi, R. Acrolein contributes to TRPA1 up-regulation in peripheral and central sensory hypersensitivity following spinal cord injury. J. Neurochem. 2015, 135, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Meisner, J.G.; Marsh, A.D.; Marsh, D.R. Loss of GABAergic interneurons in laminae I-III of the spinal cord dorsal horn contributes to reduced GABAergic tone and neuropathic pain after spinal cord injury. J. Neurotrauma 2010, 27, 729–737. [Google Scholar] [CrossRef]
- Henderson, L.A.; Gustin, S.M.; Macey, P.M.; Wrigley, P.J.; Siddall, P.J. Functional reorganization of the brain in humans following spinal cord injury: Evidence for underlying changes in cortical anatomy. J. Neurosci. 2011, 31, 2630–2637. [Google Scholar] [CrossRef]
- Leemhuis, E.; Giuffrida, V.; Giannini, A.M.; Pazzaglia, M. A Therapeutic Matrix: Virtual Reality as a Clinical Tool for Spinal Cord Injury-Induced Neuropathic Pain. Brain Sci. 2021, 11, 1201. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, M.; Leemhuis, E.; Giannini, A.M.; Haggard, P. The Homuncular Jigsaw: Investigations of Phantom Limb and Body Awareness Following Brachial Plexus Block or Avulsion. J. Clin. Med. 2019, 8, 182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flor, H.; Nikolajsen, L.; Staehelin Jensen, T. Phantom limb pain: A case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 2006, 7, 873–881. [Google Scholar] [CrossRef]
- Makin, T.R.; Scholz, J.; Henderson Slater, D.; Johansen-Berg, H.; Tracey, I. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation. Brain 2015, 138, 2140–2146. [Google Scholar] [CrossRef] [Green Version]
- Kikkert, S.; Pfyffer, D.; Verling, M.; Freund, P.; Wenderoth, N. Finger somatotopy is preserved after tetraplegia but deteriorates over time. eLife 2021, 10, e67713. [Google Scholar] [CrossRef] [PubMed]
- Halligan, P.W.; Marshall, J.C.; Wade, D.T. Sensory disorganization and perceptual plasticity after limb amputation: A follow-up study. Neuroreport 1994, 5, 1341–1345. [Google Scholar] [CrossRef] [PubMed]
- Gandevia, S.C.; Phegan, C.M. Perceptual distortions of the human body image produced by local anaesthesia, pain and cutaneous stimulation. J. Physiol. 1999, 514 Pt 2, 609–616. [Google Scholar] [CrossRef]
- Carruthers, G. Types of body representation and the sense of embodiment. Conscious. Cogn. 2008, 17, 1302–1316. [Google Scholar] [CrossRef]
- Barsalou, L.W. Grounded cognition. Annu. Rev. Psychol. 2008, 59, 617–645. [Google Scholar] [CrossRef] [Green Version]
- Piccardi, L.; Guariglia, P.; Nori, R.; Palmiero, M. The Role of Emotional Landmarks in Embodied and Not-Embodied Tasks. Brain Sci. 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Palmiero, M.; Piccardi, L. Is Visual Creativity Embodied? Thinking Aloud While Performing the Creative Mental Synthesis Task. Brain Sci. 2020, 10, 455. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, M.; Giannini, A.M.; Federico, F. Acquisition of Ownership Illusion with Self-Disownership in Neurological Patients. Brain Sci. 2020, 10, 170. [Google Scholar] [CrossRef] [Green Version]
- Botvinick, M.; Cohen, J. Rubber hands ‘feel’ touch that eyes see. Nature 1998, 391, 756. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, M.; Scivoletto, G.; Giannini, A.M.; Leemhuis, E. My hand in my ear: A phantom limb re-induced by the illusion of body ownership in a patient with a brachial plexus lesion. Psychol. Res. 2019, 83, 196–204. [Google Scholar] [CrossRef]
- Zabicki, A.; de Haas, B.; Zentgraf, K.; Stark, R.; Munzert, J.; Kruger, B. Imagined and Executed Actions in the Human Motor System: Testing Neural Similarity between Execution and Imagery of Actions with a Multivariate Approach. Cereb. Cortex 2017, 27, 4523–4536. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, M.; Galli, G. Action Observation for Neurorehabilitation in Apraxia. Front. Neurol. 2019, 10, 309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazzaglia, M.; Galli, G.; Lewis, J.W.; Scivoletto, G.; Giannini, A.M.; Molinari, M. Embodying functionally relevant action sounds in patients with spinal cord injury. Sci. Rep. 2018, 8, 15641. [Google Scholar] [CrossRef]
- Pazzaglia, M.; Haggard, P.; Scivoletto, G.; Molinari, M.; Lenggenhager, B. Pain and somatic sensation are transiently normalized by illusory body ownership in a patient with spinal cord injury. Restor. Neurol. Neurosci. 2016, 34, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Lenggenhager, B.; Scivoletto, G.; Molinari, M.; Pazzaglia, M. Restoring tactile awareness through the rubber hand illusion in cervical spinal cord injury. Neurorehabilit. Neural Repair 2013, 27, 704–708. [Google Scholar] [CrossRef]
- Pazzaglia, M. Body and odors: Non just molecules, after all. Curr. Dir. Psychol. Sci. 2015, 24, 329–333. [Google Scholar] [CrossRef]
- Grant, B.L.; Yielder, P.C.; Patrick, T.A.; Kapralos, B.; Williams-Bell, M.; Murphy, B.A. Audiohaptic Feedback Enhances Motor Performance in a Low-Fidelity Simulated Drilling Task. Brain Sci. 2019, 10, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumialis, A.; Smirnov, A.; Fadeev, K.; Alikovskaia, T.; Khoroshikh, P.; Sergievich, A.; Golokhvast, K. Motor Program Transformation of Throwing Dart from the Third-Person Perspective. Brain Sci. 2020, 10, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashida, K.; Nishi, Y.; Masuike, A.; Morioka, S. Intentional Binding Effects in the Experience of Noticing the Regularity of a Perceptual-Motor Task. Brain Sci. 2020, 10, 659. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, Y.; Otani, T.; Morioka, S. Dynamic Relationship between Sense of Agency and Post-Stroke Sensorimotor Deficits: A Longitudinal Case Study. Brain Sci. 2020, 10, 294. [Google Scholar] [CrossRef] [PubMed]
- Pazzaglia, M.; Galli, G. Loss of agency in apraxia. Front. Hum. Neurosci. 2014, 8, 751. [Google Scholar] [CrossRef] [Green Version]
- Pazzaglia, M.; Galli, G. Translating novel findings of perceptual-motor codes into the neuro-rehabilitation of movement disorders. Front. Behav. Neurosci. 2015, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Scivoletto, G.; Galli, G.; Torre, M.; Molinari, M.; Pazzaglia, M. The Overlooked Outcome Measure for Spinal Cord Injury: Use of Assistive Devices. Front. Neurol. 2019, 10, 272. [Google Scholar] [CrossRef]
- De Martino, M.L.; De Bartolo, M.; Leemhuis, E.; Pazzaglia, M. Rebuilding Body-Brain Interaction from the Vagal Network in Spinal Cord Injuries. Brain Sci. 2021, 11, 1084. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pazzaglia, M. The Role of Body in Brain Plasticity. Brain Sci. 2022, 12, 277. https://doi.org/10.3390/brainsci12020277
Pazzaglia M. The Role of Body in Brain Plasticity. Brain Sciences. 2022; 12(2):277. https://doi.org/10.3390/brainsci12020277
Chicago/Turabian StylePazzaglia, Mariella. 2022. "The Role of Body in Brain Plasticity" Brain Sciences 12, no. 2: 277. https://doi.org/10.3390/brainsci12020277
APA StylePazzaglia, M. (2022). The Role of Body in Brain Plasticity. Brain Sciences, 12(2), 277. https://doi.org/10.3390/brainsci12020277