A Hebbian Approach to Non-Spatial Prelinguistic Reasoning
Abstract
:1. Introduction
1.1. Hebbian-Based Rules
1.2. On the Neural Basis of Causality
1.3. Prelinguistic Reasoning
2. Related Work
2.1. Preliminary Work
2.2. Experimental Results on Animal Learning
3. Theoretical Background
3.1. Firing Rate Model
3.2. Hebbian Rules
3.2.1. The Oja Rule
3.2.2. The BCM Rule
3.2.3. Spike Timing-Dependent Plasticity Rules
3.3. Temporal Difference Learning
3.4. The Experiment of Sadacca et al., 2016
4. Materials and Methods
4.1. Experimental Description
- 1.
- Four visual stimuli A, B, C, and D are presented. The selected stimulus are the following:
- A
- Potato or lemon.
- B
- Medicine tablet.
- C
- Silver coin.
- D
- Notebook.
In this stage, the system needs to learn to discriminate the stimuli by labeling the visual pattern with the linguistic description (name). - 2.
- The stimuli are presented during 10 s, and then, A, B, and C, D are presented sequentially without delay, as the pre-conditioning stage. Each trial is separated with intervals of more than 30 s. This procedure is replicated 6–7 times.
- 3.
- The final step corresponds to the conditioning stage: stimulus B is presented during 10 s and after 1, 4, and 7 s an artificial reward is presented during a group of 3–9 trials. D is presented during 10 s without reward. Each operation is separated in an interval of more than 30 s.
4.2. Recurrent Network with STDP Learning
- 1.
- Let us consider . If and , then , assuming a sufficient number of presentations of A.
- 2.
- Let us consider . If and , then , assuming a sufficient and non-vanishing number of presentations of A.
- 1.
- If , therefore each presentation of A is followed by a presentation of B. Then, if , . In , , which means thatApplying this update to several times yields:Enough presentations yield . Thus, if , then .
- 2.
- If , therefore and LTD does not occur. Thus, using a similar argument of item 1 yields the result.□
4.3. Ring Model A
4.4. Ring Model B
5. Results
5.1. Real-Time Learning in Image Classification
- 1.
- Delay 10 s.
- 2.
- Show the item to the camera and input audio with the name of the item (training step).
- 3.
- Hold the item for 10 s.
- 4.
- Retire the item and wait 10 s.
- 5.
- Show the item and hold it during 10 s.
- 6.
- Repeat step 2 q times.
5.2. Ring Model A
5.3. Ring Model B
6. Discussion
7. Conclusions
7.1. Limitations
7.2. Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCM | Bienestock-Cooper-Munro |
STDP | Synaptic Timing-Dependent Plasticity |
TDL | Temporal Difference Learning |
LTP | Long Term-Potentiation |
LTD | Long Term-Depression |
ConvNet | Convolutional Network |
CNN | Convolutional Neural Network (alternative form) |
MNIST | Modified National Institute of Standards and Technology (dataset) |
STT | Speech-To-Text |
TTS | Text-To-Speech |
VTA | Ventral Tegmental Area |
OFC | Orbitofrontal Cortex |
References
- Sadacca, B.F.; Jones, J.L.; Schoenbaum, G. Midbrain dopamine neurons compute inferred and cached value prediction errors in a common framework. eLife 2016, 5, e13665. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Lømo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef] [PubMed]
- Lømo, T. Frequency potentiation of excitatory synaptic activity in dentate area of hippocampal formation. In Acta Physiologica Scandinavica; Blackwell Science: Oxon, UK, 1966; p. 128. [Google Scholar]
- Dayan, P.; Abbott, L.F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems; Computational Neuroscience Series; MIT Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 1982, 15, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Bienenstock, E.L.; Cooper, L.N.; Munro, P.W. Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. J. Neurosci. 1982, 2, 32–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udeigwe, L.C.; Munro, P.W.; Ermentrout, G.B. Emergent dynamical properties of the bcm learning rule. J. Math. Neurosci. 2017, 7, 1–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, L.N.; Bear, M.F. The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nat. Rev. Neurosci. 2012, 13, 798–810. [Google Scholar] [CrossRef]
- Zhang, L.I.; Tao, H.W.; Holt, C.E.; Harris, W.A.; Poo, M.-M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 1998, 395, 37–44. [Google Scholar] [CrossRef]
- Bi, G.-Q.; Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998, 18, 10464–10472. [Google Scholar] [CrossRef]
- Masuda, N.; Kori, H. Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. J. Comput. Neurosci. 2007, 22, 327–345. [Google Scholar] [CrossRef] [Green Version]
- Vogt, S.M.; Hofmann, U.G. Neuromodulation of stdp through short-term changes in firing causality. Cogn. Neurodynamics 2012, 6, 353–366. [Google Scholar] [CrossRef] [Green Version]
- Margáin, H. Racionalidad, Lenguaje y Filosofía; Fondo de Cultura Económica: Mexico City, Mexico, 1998. [Google Scholar]
- Mota Pinto, S. Hume Versus Aristotle, Locke and Leibniz on Causality. Tópicos 2020, 59, 367–396. [Google Scholar] [CrossRef]
- Bermúdez, J.L. Animal Reasoning and Proto-Logic; Oxford University Press: Oxford, UK, 2006; pp. 84–107. [Google Scholar]
- Mercier, H.; Sperber, D. Why do humans reason? arguments for an argumentative theory. Behav. Brain Sci. 2011, 34, 57–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, W. What proto-logic could not be. Axiomathes 2021, 1–32. [Google Scholar] [CrossRef]
- Bicanski, A.; Burgess, N. Neuronal vector coding in spatial cognition. Nat. Rev. Neurosci. 2020, 21, 453–470. [Google Scholar] [CrossRef] [PubMed]
- Gjorgjieva, J.; Clopath, C.; Audet, J.; Pfister, J.-P. A triplet spike-timing–dependent plasticity model generalizes the bienenstock–cooper–munro rule to higher-order spatiotemporal correlations. Proc. Natl. Acad. Sci. USA 2011, 108, 19383–19388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izhikevich, E.M.; Desai, N.S. Relating STDP to BCM. Neural Comput. 2003, 15, 1511–1523. [Google Scholar] [CrossRef]
- Galluppi, F.; Lagorce, X.; Stromatias, E.; Pfeiffer, M.; Plana, L.A.; Furber, S.B.; Benosman, R.B. A framework for plasticity implementation on the spinnaker neural architecture. Front. Neurosci. 2015, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zeng, T.; Ren, Y.; Lin, Y.; Xu, H.; Zhao, X.; Liu, Y.; Ielmini, D. Toward a generalized bienenstock-cooper-munro rule for spatiotemporal learning via triplet-stdp in memristive devices. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Baras, D.; Meir, R. Reinforcement learning, spike-time-dependent plasticity, and the bcm rule. Neural Comput. 2007, 19, 2245–2279. [Google Scholar] [CrossRef]
- Kok, M. Biologically Realistic Artificial Neural Networks. Bachelor’s Thesis, University of Twente, Enschede, The Netherlands, 2020. [Google Scholar]
- Amato, G.; Carrara, F.; Falchi, F.; Gennaro, C.; Lagani, G. Hebbian learning meets deep convolutional neural networks. In International Conference on Image Analysis and Processing; Springer: Berlin/Heidelberg, Germany, 2019; pp. 324–334. [Google Scholar]
- Amit, Y. Deep learning with asymmetric connections and Hebbian updates. Front. Comput. Neurosci. 2019, 13, 18. [Google Scholar] [CrossRef]
- Lagani, G.; Falchi, F.; Gennaro, C.; Amato, G. Hebbian semi-supervised learning in a sample efficiency setting. arXiv 2021, arXiv:2103.09002. [Google Scholar] [CrossRef] [PubMed]
- Pogodin, R.; Mehta, Y.; Lillicrap, T.; Latham, P. Towards biologically plausible convolutional networks. Adv. Neural Inf. Process. Syst. 2021, 34. Available online: https://proceedings.neurips.cc/paper/2021/hash/746b02b6680562f44ad7526675bac026-Abstract.html (accessed on 14 February 2022).
- Aguilar Canto, F.J. Convolutional Neural Networks with Hebbian-based rules in Online Transfer Learning. In Mexican International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; pp. 35–49. [Google Scholar]
- Botvinick, M.; Ritter, S.; Wang, J.X.; Kurth-Nelson, Z.; Blundell, C.; Hassabis, D. Reinforcement learning, fast and slow. Trends Cogn. Sci. 2019, 23, 408–422. [Google Scholar] [CrossRef] [Green Version]
- Gershman, S.J.; Daw, N.D. Reinforcement learning and episodic memory in humans and animals: An integrative framework. Annu. Rev. Psychol. 2017, 68, 101–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momennejad, I.; Russek, E.M.; Cheong, J.H.; Botvinick, M.M.; Daw, N.D.; Gershman, S.J. The successor representation in human reinforcement learning. Nat. Hum. Behav. 2017, 1, 680–692. [Google Scholar] [CrossRef]
- Wang, J.X.; Kurth-Nelson, Z.; Kumaran, D.; Tirumala, D.; Soyer, H.; Leibo, J.Z.; Hassabis, D.; Botvinick, M. Prefrontal cortex as a meta-reinforcement learning system. Nat. Neurosci. 2018, 21, 860–868. [Google Scholar] [CrossRef]
- Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw. 2019, 111, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Diehl, P.U.; Cook, M. Efficient implementation of stdp rules on spinnaker neuromorphic hardware. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4288–4295. [Google Scholar]
- Diehl, P.U.; Pedroni, B.U.; Cassidy, A.; Merolla, P.; Neftci, E.; Zarrella, G. Truehappiness: Neuromorphic emotion recognition on truenorth. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 4278–4285. [Google Scholar]
- Hazan, A.; Tsur, E.E. Neuromorphic spike timing dependent plasticity with adaptive oz spiking neurons. In Proceedings of the 2021 IEEE Biomedical Circuits and Systems Conference (BioCAS), Berlin, Germany, 7–9 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–4. [Google Scholar]
- Lin, C.-K.; Wild, A.; Chinya, G.N.; Cao, Y.; Davies, M.; Lavery, D.M.; Wang, H. Programming spiking neural networks on intel’s loihi. Computer 2018, 51, 52–61. [Google Scholar] [CrossRef]
- Pedroni, B.U.; Joshi, S.; Deiss, S.R.; Sheik, S.; Detorakis, G.; Paul, S.; Augustine, C.; Neftci, E.O.; Cauwenberghs, G. Memory-efficient synaptic connectivity for spike-timing-dependent plasticity. Front. Neurosci. 2019, 13, 357. [Google Scholar] [CrossRef]
- Serrano-Gotarredona, T.; Masquelier, T.; Prodromakis, T.; Indiveri, G. Linares-Barranco, B. Stdp and stdp variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 2013, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Kheradpisheh, S.R.; Ganjtabesh, M.; Thorpe, S.J.; Masquelier, T. Stdp-based spiking deep convolutional neural networks for object recognition. Neural Netw. 2018, 99, 56–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nessler, B.; Pfeiffer, M.; Buesing, L.; Maass, W. Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticity. PLoS Comput. Biol. 2013, 9, e1003037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 2015, 9, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavanaei, A.; Maida, A. BP-SDTP: Approximating backpropagation using spike timing dependent plasticity. Neurocomputing 2019, 330, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Tsur, E.E. Neuromorphic Engineering: The Scientist’s, Algorithm Designer’s, and Computer Architect’s Perspectives on Brain-Inspired Computing; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Serre, T. Hierarchical Models of the Visual System; Springer Publishing Company, Incorporated: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Khaligh-Razavi, S.-M.; Kriegeskorte, N. Deep supervised, but not unsupervised, models may explain it cortical representation. PLoS Comput. Biol. 2014, 10, e1003915. [Google Scholar] [CrossRef] [Green Version]
- Cichy, R.M.; Kaiser, D. Deep neural networks as scientific models. Trends Cogn. Sci. 2019, 23, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Montague, P.R.; Dayan, P.; Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive hebbian learning. J. Neurosci. 1996, 16, 1936–1947. [Google Scholar] [CrossRef] [Green Version]
- Schultz, W.; Dayan, P.; Montague, P.R. A neural substrate of prediction and reward. Science 1997, 275, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Sejnowski, T.J.; Dayan, P.; Montague, P.R. Predictive Hebbian learning. In Proceedings of the Eighth Annual Conference on Computational Learning Theory, Santa Cruz, CA, USA, 5–8 July 1995; pp. 15–18. [Google Scholar]
- Markram, H.; Lübke, J.; Frotscher, M.; Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 1997, 275, 213–215. [Google Scholar] [CrossRef] [Green Version]
- Caporale, N.; Dan, Y. Spike Timing–Dependent Plasticity: A Hebbian Learning Rule. Annu. Rev. Neurosci. 2008, 31, 25–46. [Google Scholar] [CrossRef] [Green Version]
- Anastasio, T.J. Tutorial on Neural Systems Modeling; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Langdon, A.J.; Sharpe, M.J.; Schoenbaum, G.; Niv, Y. Model-based predictions for dopamine. Curr. Opin. Neurobiol. 2018, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.L.; Esber, G.R.; McDannald, M.A.; Gruber, A.J.; Hernandez, A.; Mirenzi, A.; Schoenbaum, G. Orbitofrontal cortex supports behavior and learning using inferred but not cached values. Science 2012, 338, 953–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desimone, R.; Albright, T.D.; Gross, C.G.; Bruce, C. Stimulus-selective properties of inferior temporal neurons in the macaque. J. Neurosci. 1984, 4, 2051–2062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chollet, F. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258. [Google Scholar]
- Wikenheiser, A.M.; Schoenbaum, G. Over the river, through the woods: Cognitive maps in the hippocampus and orbitofrontal cortex. Nat. Rev. Neurosci. 2016, 17, 513–523. [Google Scholar] [CrossRef] [Green Version]
- Shimbo, A.; Izawa, E.-I.; Fujisawa, S. Scalable representation of time in the hippocampus. Sci. Adv. 2021, 7, eabd7013. [Google Scholar] [CrossRef]
- Reddy, L.; Self, M.W.; Zoefel, B.; Poncet, M.; Possel, J.K.; Peters, J.C.; Baayen, J.C.; Idema, S.; VanRullen, R.; Roelfsema, P.R. Theta-phase dependent neuronal coding during sequence learning in human single neurons. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Jaramillo, J.; Kempter, R. Phase precession: A neural code underlying episodic memory? Curr. Opin. Neurobiol. 2017, 43, 130–138. [Google Scholar] [CrossRef]
- Eichenbaum, H. Time cells in the hippocampus: A new dimension for mapping memories. Nat. Rev. Neurosci. 2014, 15, 732–744. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Canto, F.; Calvo, H. A Hebbian Approach to Non-Spatial Prelinguistic Reasoning. Brain Sci. 2022, 12, 281. https://doi.org/10.3390/brainsci12020281
Aguilar-Canto F, Calvo H. A Hebbian Approach to Non-Spatial Prelinguistic Reasoning. Brain Sciences. 2022; 12(2):281. https://doi.org/10.3390/brainsci12020281
Chicago/Turabian StyleAguilar-Canto, Fernando, and Hiram Calvo. 2022. "A Hebbian Approach to Non-Spatial Prelinguistic Reasoning" Brain Sciences 12, no. 2: 281. https://doi.org/10.3390/brainsci12020281
APA StyleAguilar-Canto, F., & Calvo, H. (2022). A Hebbian Approach to Non-Spatial Prelinguistic Reasoning. Brain Sciences, 12(2), 281. https://doi.org/10.3390/brainsci12020281