Cognitive Test Scores and Progressive Cognitive Decline in the Aberdeen 1921 and 1936 Birth Cohorts
Abstract
:1. Introduction
1.1. Background
1.2. Rey’s Auditory Verbal Learning Test (AVLT)
1.3. Physical and Mental Co-Morbidities
2. Method
2.1. Study Setting
2.2. Sampling
2.3. Demographic and Clinical Assessments
2.4. Cognitive Tests
2.5. Co-Morbidities
2.6. Statistical Methods
3. Results
3.1. Sampling
3.2. Sociodemographic and Clinical Data
3.3. Comorbidities
3.4. Classification of Outcomes by Degree of Cognitive Impairment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IQ | Intelligence Quotient |
RPM | Raven’s Standardized Progressive Matrices |
AVLT | Rey’s Auditory Verbal Learning Test |
MMSE | Mini-Mental State Examination |
HADS | Hospital Anxiety (Anx) and Depression (Dep) Scale scores |
References
- Elias, M.F.; Beiser, A.; Wolf, P.A.; Au, R.; White, R.F.; D’Agostino, R.B. The preclinical phase of Alzheimer Disease. Arch. Neurol. 2000, 57, 808–813. [Google Scholar] [CrossRef]
- Petersen, R.C.; Ba, H.J.W.; Ms, S.D.W.; Fields, J.A.; Geda, Y.E.; Graff-Radford, J.; Knopman, D.S.; Kremers, W.K.; Lowe, V.; Machulda, M.M.; et al. NIA-AA Alzheimer’s Disease framework: Clinical characterization of stages. Ann. Neurol. 2021, 89, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Caracciolo, B.; Brayne, C.; Gauthier, S.; Jelic, V.; Fratiglioni, L. Mild cognitive impairment: A concept in evolution. J. Intern. Med. 2014, 275, 214–228. [Google Scholar] [CrossRef] [PubMed]
- Matthews, F.E.; Stephan, B.C.M.; Bond, J.; MacKeith, I.; Brayne, C. Operationalisation of mild cognitive impairment: A graphical approach. PLoS Med. 2007, 4, e304. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Doody, R.; Kurz, A.; Mohs, R.C.; Morris, J.C.; Rabins, P.V.; Ritchie, K.; Rossor, M.; Thal, L.; Winblad, B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001, 58, 1985–1992. [Google Scholar] [CrossRef]
- Ritchie, K.; Ritchie, C.W. Mild cognitive impairment (MCI) twenty years on. Int. Psychogeriatr. 2012, 24, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment–beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, K.; Touchon, J. Mild cognitive impairment: Conceptual basis and current nosological status. Lancet 2000, 355, 225–228. [Google Scholar] [CrossRef]
- Mitchell, A.J.; Shiri-Feshki, M. Rate of progression of mild cognitive impairment to dementia—Meta-analysis of 41 robust inception cohort studies. Acta Psychiatr. Scand. 2009, 119, 252–265. [Google Scholar] [CrossRef]
- Stephan, B.C.; Kurth, T.; Matthews, F.E.; Brayne, C.; Dufouil, C. Dementia risk prediction in the population: Are screening models accurate? Nat. Rev. Neurol. 2010, 6, 126–318. [Google Scholar] [CrossRef]
- Ritchie, K.; Carriere, I.; Su, L.; O’Brien, J.T.; Lovestone, S.; Wells, K.; Ritchie, C.W. The midlife cognitive profiles of adults at high risk of late-onset Alzheimer’s disease: The PREVENT study. Alzheimer’s Dement. 2017, 13, 1089–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hessen, E.; Eckerstrom, M.; Nordlund, A.; Almdahl, I.; Stalhammar, J.; Bjerke, M.; Eckerstrom, C.; Gothlin, M.; Fladby, T.; Reinvang, I.; et al. Subjective cognitive impairment is a predominantly benign condition in memory clinic patients followed for 6 years: The Gothenburg-Oslo MCI study. Dement. Geriatr. Cogn. Disord. Extra 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Yates, J.A.; Clare, L.; Woods, R.T. MRC-CFAS Subjective memory complaints, mood and MCI: A follow-up study. Aging Ment. Health 2017, 21, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowe, M.; Andel, R.; Wadley, V.; Cook, S.; Unverzagt, F.; Marsiske, M.; Ball, K. Subjective cognitive function and decline among older adults with psychometrically defined amnestic MCI. Int. J. Geriatr. Psychiatry 2006, 21, 1187–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweizer, S.; Kievit, R.A.; Emery, T.; Henson, R.N. Symptoms of depression in a large healthy population cohort are related to subjective memory complaints and memory performance in negative contexts. Psychol. Med. 2018, 48, 104–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portet, F.; Ousset, P.; Visser, P.J.; Frisoni, G.B.; Nobili, F.; Scheltens, P.; Vellas, B.; Touchon, J. Mild cognitive impairment (MCI) in medical practice: A critical review of the concept and new diagnostic procedure. Report of the MCI Working Group of the European Consortium on Alzheimer’s Disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 714–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. ‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Godbolt, A.K.; Cipolotti, V.M.; Anderson, V.M.; Archer, H.; Janssen, J.C.; Price, S.; Rossor, M.N.; Fox, N.C. A decade of pre-diagnostic assessment in a case of familial Alzheimer’s disease: Tracking progression from asymptomatic to MCI and dementia. Neurocase 2005, 11, 56–64. [Google Scholar] [CrossRef]
- Saunders, S.; Ritchie, K.; Russ, T.C.; Muniz-Terrera, G.; Ritchie, C.W. Evolution and future directions for the concept of mild cognitive impairment. Int. Psychogeriatr. 2018, 30, 1431–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cloutier, S.; Chertkow, H.; Kergoat, M.J.; Gauthier, S.; Belleville, S. Patterns of cognitive decline prior to dementia in persons with mild cognitive impairment. J. Alzheimer’s Dis. 2015, 47, 901–913. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, K.; Ancelin, M.L.; Beaino, E.; Portet, F.; Brickman, A.M.; Dartigues, J.F.; Tzourio, C.; Dupuy, A.M.; Ritchie, C.W.; Berr, C.; et al. Retrospective identification and characterization of mild cognitive impairment from a prospective population cohort. Am. J. Geriatr. Psychiatry 2010, 18, 692–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortamais, M.; Ash, J.A.; Harrison, J.; Kaye, J.; Kramer, J.; Randolph, C.; Pose, C.; Albala, B.; Ropacki, M.; Ritchie, C.W.; et al. Detecting cognitive changes in preclinical Alzheimer’s disease: A review of its feasibility. Alzheimer’s Dement. 2017, 13, 468–492. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.; Christensen, H. Education, activity, health, blood pressure and apolipoprotein E as predictors of cognitive change in old age: A review. Gerontology 2000, 46, 163–177. [Google Scholar] [CrossRef]
- Richardson, C.; Stephan, B.C.M.; Robinson, L.; Brayne, C.; Matthews, F.E.; MRC-CFAS Group. Two-decade change in prevalence of cognitive impairment in the UK. Eur. J. Epidemiol. 2019, 34, 1085–1092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, B.C.; Brayne, C.; Savva, G.M.; Matthews, F.E. Occurrence of medical co-morbidity in mild cognitive impairment: Implications for generalisation of MCI research. Age Ageing 2011, 40, 501–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, S.L.; Ding, J.; Tang, E.Y.H.; Siervo, M.; Robinson, L.; Jagger, C.; Stephan, B.C.M. Cardiovascular disease risk models and longitudinal changes in cognition: A systematic review. PLoS ONE 2014, 9, e114431. [Google Scholar] [CrossRef] [PubMed]
- Anstey, K.J.; Peters, R.; Mortby, M.E.; Kiely, K.M.; Eramudugolla, R.; Cherbuin, N.; Huque, M.H.; Dixon, R.A. Association of sex differences in dementia risk factors with sex differences in memory decline in a population-based cohort spanning 20–76 year. Sci. Rep. 2021, 11, 7710. [Google Scholar] [CrossRef]
- Finkel, D.; Andel, R.; Pedersen, N.L. Sex Differences in Longitudinal Trajectories of Change in Physical, Social, and Cognitive/Sedentary Leisure Activities. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, 1491–1500. [Google Scholar] [CrossRef]
- Finkel, D.; Ernsth-Bravell, M.; Pedersen, N.L. Sex Differences in Genetic and Environmental Influences on Longitudinal Change in Functional Ability in Late Adulthood. J. Gerontol. B Psychol. Sci. Soc. Sci. 2015, 70, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Golchert, J.; Roehr, S.; Luck, T.; Wagner, M.; Fuchs, A.; Wiese, B.; Bussche, H.V.D.; Brettschneider, C.; Werle, J.; Bickel, H.; et al. Women outperform men in verbal episodic memory even in oldest-old age: 13-year longitudinal results of the AgeCoDe/AgeQualiDe Study. J. Alzheimer’s Dis. 2019, 69, 857–869. [Google Scholar] [CrossRef]
- Gerstorf, D.; Herlitz, A.; Smith, J. Stability of sex differences in advanced old age: The roles of education and attrition. J. Gerontol. Ser. B-Psychol. Sci. Soc. Sci. 2006, 61, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Hassing, L. Sex Differences in the Association between Leisure Activity in Adulthood and Cognitive Function in Old Age: A Prospective Longitudinal Population-Based Study. J. Gerontol. B Psychol. Sci. Soc. Sci. 2017, 75, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Scholes, S. Association of Social Support and Cognitive Aging Modified by Sex and Relationship Type: A Prospective Investigation in the English Longitudinal Study of Ageing. Am. J. Epidemiol. 2017, 186, 787–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarrey, A.C.; An, Y.; Kitner-Triolo Ferrucci, L.; Resnick, S.M. Sex differences in cognitive trajectories in clinically normal older adults. Psychol. Aging 2016, 31, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Glymour, M.M.; Kawachi, I.; Jencks, C.S.; Berkman, L.F. Does childhood schooling affect old age memory or mental status? Using State schooling laws as a natural experiment. J. Epidemiol. Commun. Health 2008, 62, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Schneeweis, N.; Skirbekk, V.; Winter-Ebmer, R. Does education improve cognitive performance four decades after school completion? Demography 2014, 51, 619–643. [Google Scholar] [CrossRef]
- Staff, R.T.; Hogan, M.J.; Whalley, L.J. The influence of childhood intelligence, social class, education and social mobility on memory and memory decline in late life. Age Ageing 2018, 47, 847–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kragh-Sorensen, P.; Baldereschi, M.; Brayne, C.; Lobo, A.; Martinez-Lage, J.M.; Stijnen, T.; Hofman, A. Education and the risk for Alzheimer’s disease: Sex makes a difference. EURODEM pooled analyses. EURODEM Incidence Research Group. Am. J. Epidemiol. 2012, 41, 1729–1736. [Google Scholar]
- Berggren, R.; Nilsson, J.; Lövdén, M. Education Does Not Affect Cognitive Decline in Aging: A Bayesian Assessment of the Association Between Education and Change in Cognitive Performance. Front. Psychol. 2018, 9, 1138. [Google Scholar] [CrossRef] [Green Version]
- Staff, R.T.; Hogan, M.J.; Williams, D.S.; Whalley, L.J. Intellectual engagement and cognitive ability in later life (the “use it or lose it” conjecture): Longitudinal, prospective study. Br. Med. J. 2018, 363, k4925. [Google Scholar] [CrossRef] [Green Version]
- Grande, G.; Vanacore, N.; Maggiore, L.; Cucumo, V.; Ghiretti, R.; Galimberti, D.; Scarpini, E.; Mariani, C.; Clerici, F. Physical activity reduces the risk of dementia in mild cognitive impairment subjects: A cohort study. J. Alzheimer’s Dis. 2014, 39, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Sattler, C.; Toro, P.; Schönknecht, P.; Schröder, J. Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Res. 2012, 196, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R., Jr.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [Green Version]
- Rey, A. L’examen Clinique en Psychologie; Presses Universitaires de France: Paris, France, 1964. [Google Scholar]
- Rabbitt, P.; Diggle, P.; Smith, D.; Holland, F.; McInnes, L. Identifying and separating the effects of practice and cognitive ageing during a large longitudinal study of elderly community residents. Neuropsychologia 2001, 39, 532–543. [Google Scholar] [CrossRef]
- Staff, R.T.; Hogan, M.J.; Whalley, L.J. Aging trajectories of fluid intelligence in late life: The influence of age, practice and childhood IQ on Raven’s Progressive Matrices. Intelligence 2014, 47, 194–201. [Google Scholar] [CrossRef]
- Fernaeus, S.E.; Östberg, P.; Wahlund, L.O.; Hellström, Å. Memory factors in Rey AVLT: Implications for early staging of cognitive decline. Scand. J. Psychol. 2014, 55, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Geffen, G.M.; Geffen, L.; Bishop, K.; Manning, L. Extended delayed recall of avlt word lists: Effects of age and sex on adult performance. Aust. J. Psychol. 1997, 49, 78–84. [Google Scholar] [CrossRef]
- Knight, R.G.; McMahon, J.; Skeaff, C.M.; Green, T.J. Reliable Change Index scores for persons over the age of 65 tested on alternate forms of the Rey AVLT. Arch. Clin. Neuropsychol. 2007, 22, 513–518. [Google Scholar] [CrossRef] [Green Version]
- Deary, I.J.; Starr, J.M.; Whalley, L.J. A Lifetime of Intelligence: Follow-Up Studies of the Scottish Mental Surveys of 1932 and 1947; American Psychological Association: Washington, DC, USA, 2009. [Google Scholar]
- Whalley, L.J.; Murray, A.D.; Staff, R.T.; Starr, J.M.; Deary, I.J.; Fox, H.C.; Lemmon, H.; Duthie, S.J.; Collins, A.R.; Crawford, J.R. How the 1932 and 1947 mental surveys of Aberdeen schoolchildren provide a framework to explore the childhood origins of late onset disease and disability. Maturitas 2011, 69, 365–372. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Assembly Update, International Statistical Classification of Diseases and Related Health Problems (ICD-11); World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Raven, J.C. Guide to the Standard Progressive Matrices; H.K. Lewis: London, UK, 1960. [Google Scholar]
- Wechsler, D. Wechsler Adult Intelligence Scale, 4th ed.; Pearson: San Antonio, TX, USA, 2008. [Google Scholar]
- Nelson, H.E. National Adult Reading Test (NART): For the Assessment of Premorbid Intelligence in Patients with Dementia: Test Manual; NFER-Nelson: Windsor, UK, 1982. [Google Scholar]
- Horn, J.L.; Cattell, R.B. Age differences in fluid and crystallized intelligence. Acta Psychol. 1967, 26, 107–129. [Google Scholar] [CrossRef]
- Crawford, J.R.; Deary, I.J.; Starr, J.; Whalley, L.J. The NART as an index of prior intellectual functioning: A retrospective validity study covering a 66-year interval. Psychol. Med. 2001, 31, 451–458. [Google Scholar] [CrossRef] [Green Version]
- Ancelin, M.L.; Artero, S.; Portet, F.; Dupuy, A.M.; Touchon, J.; Ritchie, K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: Longitudinal cohort study. BMJ 2006, 332, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Whalley, L.J.; Sharma, S.; Fox, H.C.; Murray, A.D.; Staff, R.T.; Duthie, A.C.; Deary, I.J.; Starr, J.M. Anticholinergic drugs in late life: Adverse effects on cognition but not on progress to dementia. J. Alzheimer’s Dis. 2012, 30, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Zigmond, A.S.; Snaith, R.P. The Hospital Anxiety and Depression Scale. Acta Psychiatr. Scand. 1983, 67, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deary, I.J.; Whalley, L.J.; Lemmon, H.; Crawford, J.R.; Starr, J.M. The stability of individual differences in mental ability from childhood to old age: Follow-up of the 1932 Scottish Mental Survey. Intelligence 2000, 28, 49–55. [Google Scholar] [CrossRef]
- Au, B.; Dale-McGrath, S.; Tierney, M.C. Sex differences in the prevalence and incidence of mild cognitive impairment: A meta-analysis. Ageing Res. Rev. 2017, 35, 176–183. [Google Scholar] [CrossRef]
- Pessoa, R.M.P.; Bomfim, A.J.L.; Ferreira, B.L.C.; Chagas, M.H.N. Diagnostic criteria and prevalence of mild cognitive impairment in older adults living in the community: A systematic review and meta-analysis. Arch. Clin. Psychiatry 2019, 46, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Zhao, S.; Cheng, G.; Yang, J.; Li, B.; Xu, K.; Xiao, P.; Li, W.; Rong, S. The prevalence of mild cognitive impairment among Chinese people: A meta-analysis. Neuroepidemiology 2021, 55, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, C.; Yu, D.; Fawkes, S.; Ma, J.; Zhang, M.; Li, C. Prevalence of mild cognitive impairment in community-dwelling Chinese populations aged over 55 years: A meta-analysis and systematic review. BMC Geriatr. 2021, 21, 10. [Google Scholar] [CrossRef]
- Welstead, M.; Luciano, M.; Muniz-Terrera, G.; Taylor, A.M.; Russ, T.C. Prevalence of Mild Cognitive Impairment in the Lothian Birth Cohort 1936. Alzheimer Dis. Assoc. Disord. 2021, 35, 230. [Google Scholar] [CrossRef]
- Welstead, M.; Luciano, M.; Muniz-Terrera, G.; Saunders, S.; Mullin, D.S.; Russ, T.C. Predictors of Mild Cognitive Impairment Stability, Progression, or Reversion in the Lothian Birth Cohort 1936. J. Alzheimer’s Dis. 2021, 80, 225–232. [Google Scholar] [CrossRef]
- Ritchie, C.W.; Ritchie, K. The PREVENT study: A prospective cohort study to identify mid-life biomarkers of late-onset Alzheimer’s disease. BMJ Open 2012, 2, e001893. [Google Scholar] [CrossRef] [Green Version]
- Stern, Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012, 11, 1006–1012. [Google Scholar] [CrossRef] [Green Version]
- Murray, A.D.; Staff, R.T.; McNeil, C.M.; Salarirad, S.; Ahearn, T.A.; Mustafa, N.; Whalley, L.J. The balance of cognitive reserve and brain imaging biomarkers of cerebrovascular and Alzheimer’s diseases. Brain 2011, 134, 3684–3693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, B.; McGorry, P.D.; Wichers, M.; Wigman, J.T.; Hartmann, J.A. Moving from static to dynamic models of the onset of mental disorder: A review. JAMA Psychiatry 2017, 74, 528–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebastiani, P.; Andersen, S.L.; Sweigart, B.; Du, M.; Cosentino, S.; Thyagarajan, B.; Christensen, K.; Schupf, N.; Perls, T.T. Patterns of multi-domain cognitive aging in participants of the Long Life Family Study. GeroScience 2020, 42, 1335–1350. [Google Scholar] [CrossRef] [PubMed]
- Mårtensson, G.; Pereira, J.B.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kłoszewska, I.; Soininen, H.; Lovestone, S.; Simmons, A.; Volpe, G.; et al. Stability of graph theoretical measures in structural brain networks in Alzheimer’s disease. Sci. Rep. 2018, 8, 11592. [Google Scholar] [CrossRef]
- Whalley, L.J.; Starr, J.M.; Athawes, R.; Hunter, D.; Pattie, A.; Deary, I.J. Childhood mental ability and dementia. Neurology 2000, 55, 1455–1459. [Google Scholar] [CrossRef]
- Rocca, W.A.; Mielke, M.M.; Vemuri, P.; Miller, V.M. Sex and gender differences in the causes of dementia: A narrative review. Maturitas 2014, 79, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Ganguli, M.; Mulsant, B.H.; DeKosky, S.T. The temporal relationship between depressive symptoms and dementia: A community-based prospective study. Arch. Gen. Psychiatry 1999, 56, 261–266. [Google Scholar] [CrossRef]
- Chen, R.; Hu, Z.; Wei, L.; Qin, X.; McCracken, C.; Copeland, J.R. Severity of depression and risk for subsequent dementia: Cohort studies in China and the UK. Br. J. Psychiatry 2008, 193, 373–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P. Pathways towards and away from Alzheimer’s disease. Nature 2004, 430, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
ABC21 | ABC36 | |||||||
---|---|---|---|---|---|---|---|---|
Sex Total (n) | Men n = 130 | Women n = 102 | Correlation IQ Age 11 n = 232 | Men n = 236 | Women n = 244 | Correlation IQ Age 11 n = 480 | Sex Differences | |
Age mean ± SD | 77.2 ± 0.8 | 76.9 ± 0.3 | −0.11 | 64.2 ± 1.6 | 64.2 ± 1.0 | - | ABC21 | ABC36 |
Education | 0.32 *** | rho = 0.48 *** | χ2 = 3.8, ns | χ2 = 0.34, ns | ||||
1 minimum | 100 | 67 | 150 | 143 | ||||
2 intermediate | 18 | 23 | 46 | 61 | ||||
3 higher | 12 | 12 | 40 | 40 | ||||
Occupation | χ2 = 4.84 ns | χ2 = 3.97 ns | ||||||
1 profession/manager | 35 | 17 | 65 | 58 | ||||
2 skilled/semiskilled | 66 | 52 | 110 | 141 | ||||
3 unskilled | 29 | 33 | 61 | 45 | ||||
Childhood IQ | 99.9 ± 15.5 | 101.6 ± 13.1 | -- | 101.0 ± 15.1 | 102.5 ± 13.8 | -- | F = 1.44, ns | F = 3.27, ns |
Cognitive scores at study entry (mean ± SD) | ||||||||
RPM correct | 27.5 ± 8.8 | 27.9 ± 12.6 | r = 0.09, ns | 36.4 ± 8.3 | 35.0 ± 8.9 | r = 0.570 *** | F = 2.1, ns | F = 6.6 * |
AVLT | 47.6 ± 14.2 | 49.4 ± 14.1 | r = 0.28 ** | 41.7 ± 9.4 | 49.0 ± 8.9 *** | r = 0.15 * | F = 4.9 * | F = 74.4 *** |
Digit Symbol | 30.9 ± 10.2 | 32.4 ± 12.4 | r = 0.14, ns | 41.6 ± 10.7 | 45.5 ± 11.3 *** | r = 0.504 *** | F = 2.8, ns | F = 15.7 *** |
Block Design | 19.5 ± 6.9 | 19.1 ± 8.0 | r = 0.116 | 26.4 ± 8.5 *** | 23.0 ± 8.3 | r = 0.402 *** | F = 5.9 * | F = 14.7 *** |
MMSE | 28.4 ± 1.5 | 28.6 ± 1.4 | rho = 0.34 *** | 28.8 ± 1.5 | 28.9 ± 1.4 | rho = 0.33 *** | F = 0.04, ns | F = 0.89, ns |
HADS-D | 3.8 ± 3.3 | 3.5 ± 2.3 | r = −0.09, ns | 3.1 ± 2.6 | 3.0 ± 2.5 | r = 0.03, ns | F = 0.04, ns | F = 0.82, ns |
HADS-A | 4.8 ± 2.7 | 5.6 ± 3.1 ** | r = −0.11, ns | 5.9 ± 3.1 | 5.9 ± 3.3 | r = 0.07, ns | F = 5.7 * | F = 15.5 *** |
ABC21 | ABC36 | |||||
---|---|---|---|---|---|---|
Comorbidity | Men n = 130 | Women n = 102 | All n = 232 | Men n = 236 | Women n = 244 | All n = 480 |
1. pernicious anemia | 0 | 1 | 1 | 3 | 0 | 3 |
2. Parkinson’s disease | 0 | 0 | 0 | 4 | 3 | 7 |
3. breathing problems | 5 | 8 | 13 | 5 | 2 | 7 |
4. hypertension | 45 | 27 | 72 | 47 | 51 | 98 |
5. diabetes | 4 | 7 | 11 | 12 | 8 | 20 |
6. pvd | 1 | 2 | 3 | 2 | 0 | 2 |
7.stroke or TIA | 7 | 5 | 12 | 12 | 8 | 20 |
8. heart problems | 39 | 28 | 67 | 32 | 27 | 59 |
comorbidity index no comorbidity one comorbid disorder ≥2 comorbid disorders χ2 | 65 | 56 | 121 80 31 | 114 | 141 | 255 141 84 * |
44 | 36 | 71 | 70 | |||
21 | 10 | 51 | 33 | |||
0.36 | ns | 12.0 | p < 0.01 | |||
Prescribed medications No prescribed drugs Prescribed drugs–not anticholinergic Probable or definite anticholinergic Missing χ2 | 31 | 26 | 58 106 68 | 118 | 117 | 236 121 123 |
61 | 44 | 61 | 59 | |||
36 | 32 | 57 | 66 | |||
2 | 0 | 0 | 2 | |||
0.8 | ns | 0.7 | ns |
ABC21 | ABC36 | |||||
---|---|---|---|---|---|---|
MCI Classification at Recruitment N | Cognitively Normal 163 | Amnestic MCI 11 | Non-Amnestic MCI 4 | Cognitively Normal 386 | Amnestic MCI 27 | Non-Amnestic MCI 12 |
IQ at age 10.5–11.5 y | 100.8 ± 13.9 | 102.3 ± 10.3 | 102.1 ± 7.2 | 103.5 ± 13.6 | 90.8 ± 13.9 | 108.6 ± 12.3 |
Sex M:F | 91:72 | 6:5 | 4:0 | 192:194 | 15:12 | 8:4 |
education | ||||||
basic | 125 | 6 | 2 | 299 | 21 | 10 |
intermediate | 23 | 6 | 2 | 37 | 2 | 1 |
higher | 15 | 0 | 0 | 50 | 4 | 1 |
Cognitive test scores on entry | ||||||
RPM | 28.3 ± 18.9 | 22.1 ± 6.8 | 17.5 ± 4.8 | 36.3 ± 8.1 | 37.6 ± 5.9 | 23.9 ± 9.1 *** |
AVLT | 49.8 ± 12.8 | 23.5 ± 3.6 | 40.7 ± 8.3 | 36.4 ± 7.0 | 21.6 ± 5.9 | 34.7 ± 6.9 |
Digit Symbol | 32.7 ± 10.8 | 21.8 ± 7.1 | 12.3 ± 2.2 | 44.3 ± 11.2 | 39.4 ± 9.8 | 32.0 ± 12.9 *** |
Block Design | 31.5 ± 11.2 | 19.8 ± 7.1 | 8.1 ± 8.4 | 25.0 ± 8.4 | 27.0 ± 6.8 | 13.7 ± 6.7 *** |
IQ at W1 | 103.4 ± 12.0 | 91.2 ± 13.5 | 75.3 ± 5.9 | 101.6 ± 13.6 | 91.9 ± 14.9 | 66.5 ± 9.1 |
IQ age 11 ± 0.5 y | 100.8 ± 13.9 | 102.3 ± 10.3 | 102.1 ± 7.2 | 103.5 ± 13.6 | 90.8 ± 13.9 | 108.6 ± 12.3 |
All-cause dementias | ||||||
None | 122 | 9 | 1 | 350 | 26 | 11 |
Any dementia | 28 | 2 | 3 | 24 | 1 | 1 |
Lost to follow up | 13 | 0 | 0 | 12 | 0 | 0 |
ABC21 | ||||||
---|---|---|---|---|---|---|
First Assessment | Group Change | Second Assessment | Group Change | Third Assessment | Dementia before 2014 | |
Age (mean ± SD) 76.9 ± 0.4 | Age (mean ± SD) 78.2 ± 0.4 | Age (mean ± SD) 79.7 ± 0.4 | ||||
‘n’ totals for assessments first = 178 ‘n’ totals for assessments second = 127 ‘n’ totals for assessments third = 87 | ||||||
Not MCI | 163 | Amnestic (9) lost to follow-up (51) | 115 | Amnestic (7) Non-amnestic (3) lost to follow-up (30) | 75 | 24 |
Amnestic MCI | 11 | Not MCI (9) Amnestic (2) Non-amnestic (2) lost to follow-up (1) | 12 | Not MCI (3) lost to follow-up (1) | 9 | 2 |
Non-amnestic | 4 | to not MCI (3) to amnestic (1) | 0 | 3 | 3 | |
ABC36 | ||||||
First Assessment | Group Change | Second Assessment | Group Change | Third Assessment | Dementia before 2014 | |
Age (mean ± SD) 64.2 ± 1.0 | Age (mean ± SD) 66.3 ± 0.9 | Age (mean ± SD) 68.3 ± 0.9 | ||||
‘n’ totals for assessments first = 425 ‘n’ totals for assessments second = 352 ‘n’ totals for assessments third = 323 | ||||||
Not MCI | 386 | Amnestic (18) Non-amnestic (5) lost to follow-up (65) | 318 | Amnestic (17) Non-amnestic (5) lost to follow-up (35) | 277 | 30 |
Amnestic MCI | 27 | Not MCI (18) Non-amnestic (2) lost to follow-up (0) | 27 | Not MCI (14) to non-amnestic (1) lost to follow-up (13) | 28 | 1 |
Non-amnestic | 12 | to not MCI (2) to amnestic (1) lost to follow-up (0) | 16 | to not MCI (2) to amnestic (3) lost to follow-up (0) | 17 | 1 |
Predictor | ABC21 (n = 123) | ABC36 (n = 297) | ||
---|---|---|---|---|
Odds Ratio (95% CI) | Significance | Odds Ratio (95%CI) | Significance | |
MCI | ||||
not MCI | ||||
amnestic MCI | 3.27 (0.75–14.35) | p = 0.12 | 3.45 (0.33–35.9) | p = 0.30 |
non-amnestic MCI | 6.05 (1.55–25.58) | p = 0.009 ** | 0.73 (0.43–12.22) | p = 0.82 |
IQ age 11 y | 1.02 (0.98–1.06) | p = 0.31 | 0.99 (0.95–1.04) | p = 0.78 |
IQ at W1 | 0.95 (0.91–1.0) | p = 0.03 * | 1.10 (0.97–1.23) | p = 0.13 |
Age at W1 | 0.95 (0.91–1.00) | p = 0.03 * | 1.1 (0.58–2.33) | p = 0.68 |
HADS-dep score | 0.69 (0.51–0.92) | p = 0.01 ** | 1.20 (0.98–1.48) | p = 0.08 |
treated depression | 5.0 (0.30–81.9) | p = 0.26 | 2.60 (0.43–15.9) | p = 0.30 |
heart disease | 0.93 (0.14–5.55) | p = 0.93 | 1.76 (0.44–7.13) | p = 0.43 |
hypertension | 0.72 (0.25–2.10) | p = 0.32 | 1.58 (0.47–5.25) | p = 0.46 |
Occupation | ||||
1. professional/manager | 0.81 | p = 0.80 | 0.74 | p = 0.68 |
2. skilled worker | (0.17–3.89) 0.86 | p = 0.88 | (0.18–3.01) 0.53 | p = 0.51 |
3. unskilled manual | (0.14–5.55) | (0.08–3.44) | ||
Education | ||||
1. basic | ||||
2. intermediate | 0.46 (0.10–2.05) | p = 0.31 | 3.17 (0.56–18.1) | p = 0.57 |
3. higher | 1.29 (0.21–8.09) | p = 0.78 | 3.6 (0.08–3.02) | p = 0.43 |
Sex male = 1 Female = 2 | 3.79 (1.20–11.96) | p = 0.023 * | 1.39 (0.42–4.6) | p = 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Whalley, L.J.; Staff, R.T.; Lemmon, H.; Fox, H.C.; McNeil, C.; Murray, A.D. Cognitive Test Scores and Progressive Cognitive Decline in the Aberdeen 1921 and 1936 Birth Cohorts. Brain Sci. 2022, 12, 318. https://doi.org/10.3390/brainsci12030318
Whalley LJ, Staff RT, Lemmon H, Fox HC, McNeil C, Murray AD. Cognitive Test Scores and Progressive Cognitive Decline in the Aberdeen 1921 and 1936 Birth Cohorts. Brain Sciences. 2022; 12(3):318. https://doi.org/10.3390/brainsci12030318
Chicago/Turabian StyleWhalley, Lawrence J., Roger T. Staff, Helen Lemmon, Helen C. Fox, Chris McNeil, and Alison D. Murray. 2022. "Cognitive Test Scores and Progressive Cognitive Decline in the Aberdeen 1921 and 1936 Birth Cohorts" Brain Sciences 12, no. 3: 318. https://doi.org/10.3390/brainsci12030318
APA StyleWhalley, L. J., Staff, R. T., Lemmon, H., Fox, H. C., McNeil, C., & Murray, A. D. (2022). Cognitive Test Scores and Progressive Cognitive Decline in the Aberdeen 1921 and 1936 Birth Cohorts. Brain Sciences, 12(3), 318. https://doi.org/10.3390/brainsci12030318