Dyscalculia in Early Adulthood: Implications for Numerical Activities of Daily Living
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
- (a)
- The Informal Test evaluates the participants’ competencies in everyday numerical activities. It consists of real-world tasks/questions regarding numerical knowledge in the domains of Time (e.g., can you tell me for how long we have been doing this interview?), Measure (what would be the amount of pasta in an average portion?), Distance (can you estimate the distance between your home and this hospital?), Communication (could you please tell me your own telephone number?), General semantic numerical knowledge (e.g., do you remember the dates of the last world war?), and Money (e.g., if a shirt normally costs 50 euros but it is discounted by 10%, how much would you have to pay for it?).
- (b)
- The Formal Test assesses the participants numerical abilities acquired at school. It focuses on:
- Number comprehension, i.e., the ability to match numbers to their corresponding magnitudes. It consists of three subtasks: (1) Number Line Marking (estimating the position of a number on a line whose the extremities are known; the extremities varied between 0 and 10, 0 and 100, and 0 and 1000), (2) Numerosity Comparison (compare the number of squares displayed simultaneously in two sets; quantities varied between 2 and 9), and (3) Digit Comprehension (pointing at the symbolic number that corresponds to the number of squares in a set; the listed numbers were from 1 to 10).
- Transcoding, i.e., the ability to relate number words to their Arabic symbols. It consists of two subtasks: (1) Reading numbers aloud (the presented numbers were 12, 53, 104, 2600, 65,300) and (2) Writing Numbers to Dictation (the presented numbers were 2, 51, 307, 2005, 42, 300).
- Mental calculation of additions (N = 6, single-digit operations), subtractions (N = 3, single-digit operations; and N = 3 two-digit minuend and one-digit subtrahend operations), and multiplications (N = 6 one-digit multiplications).
- Knowledge of rules and principles of calculation. It consists of three subtasks: (1) Arithmetical Rules (N = 7), (2) Addition Principles (N = 4), and (3) Multiplication Principles (N = 4).
- Written operations with multi-digit additions (N = 6), subtractions (N = 6), and multiplications (N = 6).
2.3. Data Analysis
3. Results
3.1. Demographic Differences between the Two Groups
3.2. Numerical Abilities
3.2.1. Participant Interview
3.2.2. Informal Test (Participants’ Competences in Everyday Numerical Activities)
3.2.3. Formal Test (Participants’ Numerical Abilities Acquired at School)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butterworth, B. The Implications for Education of an Innate Numerosity-Processing Mechanism. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170118. [Google Scholar] [CrossRef] [PubMed]
- Gross-Tsur, V.; Manor, O.; Shalev, R.S. Developmental Dyscalculia: Prevalence and Demographic Features. Dev. Med. Child Neurol. 1996, 38, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Shalev, R.S.; von Aster, M. Identification, Classification, and Prevalence of Developmental Dyscalculia. In Encyclopaedia of Language and Literacy Development; Canadian Language and Literacy Research Network: London, ON, Canada, 2008. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Desoete, A. Dyscalculia: Early Predictors and Practical Recommendations. Pediatr. Dimens. 2019, 4, 1–2. [Google Scholar] [CrossRef]
- Butterworth, B. Dyscalculia: From Science to Education, 1st ed.; Routledge: New York, NY, USA, 2018; ISBN 978-1-138-68861-2. [Google Scholar]
- Haberstroh, S.; Schulte-Körne, G. The Diagnosis and Treatment of Dyscalculia. Dtsch. Arzteblatt Int. 2019, 116, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Fias, W.; Menon, V.; Szucs, D. Multiple Components of Developmental Dyscalculia. Trends Neurosci. Educ. 2013, 2, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Peng, P.; Namkung, J.; Barnes, M.; Sun, C. A Meta-Analysis of Mathematics and Working Memory: Moderating Effects of Working Memory Domain, Type of Mathematics Skill, and Sample Characteristics. J. Educ. Psychol. 2016, 108, 455–473. [Google Scholar] [CrossRef]
- Henik, A.; Rubinsten, O.; Ashkenazi, S. The “Where” and “What” in Developmental Dyscalculia. Clin. Neuropsychol. 2011, 25, 989–1008. [Google Scholar] [CrossRef]
- Rubinsten, O.; Henik, A. Developmental Dyscalculia: Heterogeneity Might Not Mean Different Mechanisms. Trends Cogn. Sci. 2009, 13, 92–99. [Google Scholar] [CrossRef]
- Kaufmann, L.; von Aster, M.; Göbel, S.M.; Marksteiner, J.; Klein, E. Developmental Dyscalculia in Adults: Current Issues and Open Queastions for Future Research. Lern. Lernstörungen 2020, 9, 126–137. [Google Scholar] [CrossRef]
- Wilson, A.J.; Andrewes, S.G.; Struthers, H.; Rowe, V.M.; Bogdanovic, R.; Waldie, K.E. Dyscalculia and Dyslexia in Adults: Cognitive Bases of Comorbidity. Learn. Individ. Differ. 2015, 37, 118–132. [Google Scholar] [CrossRef]
- Cohen, Z.Z.; Gliksman, Y.; Henik, A. Modal-Independent Pattern Recognition Deficit in Developmental Dyscalculia Adults: Evidence from Tactile and Visual Enumeration. Neuroscience 2019, 423, 109–121. [Google Scholar] [CrossRef]
- Gliksman, Y.; Henik, A. Enumeration and Alertness in Developmental Dyscalculia. J. Cogn. 2019, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Rubinsten, O.; Henik, A. Automatic Activation of Internal Magnitudes: A Study of Developmental Dyscalculia. Neuropsychology 2005, 19, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Ashkenazi, S.; Henik, A. A Disassociation between Physical and Mental Number Bisection in Developmental Dyscalculia. Neuropsychologia 2010, 48, 2861–2868. [Google Scholar] [CrossRef]
- Mussolin, C.; Martin, R.; Schiltz, C. Relationships between Number and Space Processing in Adults with and without Dyscalculia. Acta Psychol. 2011, 138, 193–203. [Google Scholar] [CrossRef]
- Cappelletti, M.; Price, C.J. Residual Number Processing in Dyscalculia. NeuroImage Clin. 2014, 4, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Eckstein, B. Rechnen Mit Brüchen Und Dezimalzahlen Vor Dem Beginn Einer Berufsausbildung. Lern. Lernstörungen 2016, 5, 189–195. [Google Scholar] [CrossRef]
- Ashkenazi, S.; Rubinsten, O.; Henik, A. Attention, Automaticity, and Developmental Dyscalculia. Neuropsychology 2009, 23, 535–540. [Google Scholar] [CrossRef] [Green Version]
- De Visscher, A.; Noël, M.-P.; Pesenti, M.; Dormal, V. Developmental Dyscalculia in Adults: Beyond Numerical Magnitude Impairment. J. Learn. Disabil. 2018, 51, 600–611. [Google Scholar] [CrossRef]
- Fritz, A.; Haase, V.G.; Räsänen, P. International Handbook of Mathematical Learning Difficulties: From the Laboratory to the Classroom; Springer Nature: New York, NY, USA, 2019; ISBN 978-3-319-97147-6. [Google Scholar]
- Bruine de Bruin, W.; Slovic, P. Low Numeracy Is Associated with Poor Financial Well-Being around the World. PLoS ONE 2021, 16, e0260378. [Google Scholar] [CrossRef]
- Parsons, S.; Bynner, J. Numeracy and Employment. Educ. Train. 1997, 39, 43–51. [Google Scholar] [CrossRef]
- Rivera-Batiz, F.L. Quantitative Literacy and the Likelihood of Employment among Young Adults in the United States. J. Hum. Resour. 1992, 27, 313–328. [Google Scholar] [CrossRef]
- Jensen, J.D.; King, A.J.; Davis, L.A.; Guntzviller, L.M. Utilization of Internet Technology by Low-Income Adults: The Role of Health Literacy, Health Numeracy, and Computer Assistance. J. Aging Health 2010, 22, 804–826. [Google Scholar] [CrossRef] [PubMed]
- Reyna, V.F.; Nelson, W.L.; Han, P.K.; Dieckmann, N.F. How Numeracy Influences Risk Comprehension and Medical Decision Making. Psychol. Bull. 2009, 135, 943–973. [Google Scholar] [CrossRef] [Green Version]
- Ghidoni, E.; Angelini, D.; Stella, G. Attività Del Servizio Di Diagnosi per Studenti e Adulti Con DSA a Reggio Emilia. In Dislessia e Università, Esperienze ed Interventi di Supporto; Centro Studi Erickson: Trento, Italy, 2010; pp. 58–70. [Google Scholar]
- Burgio, F.; Benavides-Varela, S.; Arcara, G.; Trevisson, E.; Frizziero, D.; Clementi, M.; Semenza, C. Numerical Activities of Daily Living in Adults with Neurofibromatosis Type 1: Numerical Abilities in Adult Patients with NF1. J. Intellect. Disabil. Res. 2017, 61, 1069–1077. [Google Scholar] [CrossRef]
- Semenza, C.; Meneghello, F.; Arcara, G.; Burgio, F.; Gnoato, F.; Facchini, S.; Benavides-Varela, S.; Clementi, M.; Butterworth, B. A New Clinical Tool for Assessing Numerical Abilities in Neurological Diseases: Numerical Activities of Daily Living. Front. Aging Neurosci. 2014, 6, 112. [Google Scholar] [CrossRef] [PubMed]
- Benavides-Varela, S.; Burgio, F.; Meneghello, F.; De Marco, M.; Arcara, G.; Rigon, J.; Pilosio, C.; Butterworth, B.; Venneri, A.; Semenza, C. Anatomical Substrates and Neurocognitive Predictors of Daily Numerical Abilities in Mild Cognitive Impairment. Cortex 2015, 71, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Skagerlund, K.; Träff, U. Development of Magnitude Processing in Children with Developmental Dyscalculia: Space, Time, and Number. Front. Psychol. 2014, 5, 675. [Google Scholar] [CrossRef] [Green Version]
- Vicario, C.M.; Rappo, G.; Pepi, A.; Pavan, A.; Martino, D. Temporal Abnormalities in Children with Developmental Dyscalculia. Dev. Neuropsychol. 2012, 37, 636–652. [Google Scholar] [CrossRef]
- Cappelletti, M.; Freeman, E.; Butterworth, B. Time Processing in Dyscalculia. Front. Psychol. 2011, 2, 364. [Google Scholar] [CrossRef] [Green Version]
- Walsh, V. A Theory of Magnitude: Common Cortical Metrics of Time, Space and Quantity. Trends Cogn. Sci. 2003, 7, 483–488. [Google Scholar] [CrossRef]
- Meck, W.; Church, R. A Mode Control Model of Counting and Timing Processes. J. Exp. Psychol. Anim. Behav. Process. 1983, 9, 320–334. [Google Scholar] [CrossRef]
- Arcara, G.; Burgio, F.; Benavides-Varela, S.; Toffano, R.; Gindri, P.; Tonini, E.; Meneghello, F.; Semenza, C. Numerical Activities of Daily Living-Financial (NADL-F): A Tool for the Assessment of Financial Capacities. Neuropsychol. Rehabil. 2019, 29, 1062–1084. [Google Scholar] [CrossRef]
- Bangma, D.F.; Tucha, O.; Tucha, L.; De Deyn, P.P.; Koerts, J. How Well Do People Living with Neurodegenerative Diseases Manage Their Finances? A Meta-Analysis and Systematic Review on the Capacity to Make Financial Decisions in People Living with Neurodegenerative Diseases. Neurosci. Biobehav. Rev. 2021, 127, 709–739. [Google Scholar] [CrossRef]
- Chaytor, N.; Schmitter-Edgecombe, M. The Ecological Validity of Neuropsychological Tests: A Review of the Literature on Everyday Cognitive Skills. Neuropsychol. Rev. 2003, 13, 181–197. [Google Scholar] [CrossRef]
- Toffano, R.; Burgio, F.; Palmer, K.; Benavides-Varela, S.; Meneghello, F.; Orrù, G.; Sartori, G.; Arcara, G.; Semenza, C. Numerical Activities of Daily Living-Financial: A Short Version. Neurol. Sci. 2021, 42, 4183–4191. [Google Scholar] [CrossRef]
- Benavides-Varela, S.; Burgio, F.; Weis, L.; Mitolo, M.; Palmer, K.; Toffano, R.; Arcara, G.; Vallesi, A.; Mantini, D.; Meneghello, F.; et al. The Role of Limbic Structures in Financial Abilities of Mild Cognitive Impairment Patients. NeuroImage Clin. 2020, 26, 102222. [Google Scholar] [CrossRef]
- Caviola, S.; Toffalini, E.; Giofrè, D.; Ruiz, J.M.; Szűcs, D.; Mammarella, I.C. Math Performance and Academic Anxiety Forms, from Sociodemographic to Cognitive Aspects: A Meta-Analysis on 906,311 Participants. Educ. Psychol. Rev. 2021, 34, 363–399. [Google Scholar] [CrossRef]
- Mammarella, I.C.; Toffalini, E.; Caviola, S.; Colling, L.; Szűcs, D. No Evidence for a Core Deficit in Developmental Dyscalculia or Mathematical Learning Disabilities. J. Child Psychol. Psychiatry 2021, 62, 704–714. [Google Scholar] [CrossRef]
- Szucs, D.; Devine, A.; Soltesz, F.; Nobes, A.; Gabriel, F. Developmental Dyscalculia Is Related to Visuo-Spatial Memory and Inhibition Impairment. Cortex J. Devoted Study Nerv. Syst. Behav. 2013, 49, 2674–2688. [Google Scholar] [CrossRef] [Green Version]
- Benavides-Varela, S.; Zandonella Callegher, C.; Fagiolini, B.; Leo, I.; Altoè, G.; Lucangeli, D. Effectiveness of Digital-Based Interventions for Children with Mathematical Learning Difficulties: A Meta-Analysis. Comput. Educ. 2020, 157, 103953. [Google Scholar] [CrossRef]
- Re, A.M.; Benavides-Varela, S.; Pedron, M.; De Gennaro, M.A.; Lucangeli, D. Response to a Specific and Digitally Supported Training at Home for Students with Mathematical Difficulties. Front. Psychol. 2020, 11, 2039. [Google Scholar] [CrossRef]
- Burgio, F.; Delazer, M.; Meneghello, F.; Pertl, M.-T.; Semenza, C.; Zamarian, L. Cognitive Training Improves Ratio Processing and Decision Making in Patients with Mild Cognitive Impairment. J. Alzheimers Dis. 2018, 64, 1213–1226. [Google Scholar] [CrossRef]
- Zamarian, L.; Lenhart, L.; Nagele, M.; Steiger, R.; Gizewski, E.R.; Benke, T.; Scherfler, C.; Delazer, M. Effects of Cognitive Functioning and Education on Later-Life Health Numeracy. Gerontology 2020, 66, 582–592. [Google Scholar] [CrossRef] [PubMed]
Test | Maximum Score | DD | Controls | U or Chi Square | P (One-Sided) | r (Effect Size) | Bayes Factor (Rouder Method) | ||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | ||||||
INTERVIEW * | 10 | 7.82 | 1.59 | 9.73 | 0.45 | 89.5 | <0.001 | −0.631 | 0.000 |
Time * | 5 | 4.24 | 1.22 | 4.85 | 0.46 | 175.5 | 0.004 | −0.389 | 0.444 |
Measure * | 1 | 0.76 | 0.44 | 1.00 | 0.00 | 6.93 | 0.004 | −0.384 | 0.179 |
Distance | 1 | 0.67 | 0.48 | 0.73 | 0.45 | 0.228 | 0.315 | −0.069 | 4.165 |
Communication | 1 | 0.95 | 0.22 | 1.00 | 0.00 | 1.26 | 0.130 | −0.164 | 2.650 |
General knowledge | 7 | 6.00 | 0.84 | 6.42 | 0.64 | 196.0 | 0.038 | −0.259 | 0.874 |
Money * | 8 | 6.95 | 0.92 | 7.62 | 0.75 | 156.5 | 0.003 | −0.403 | 0.208 |
TOTAL INFORMAL * | 23 | 19.57 | 2.86 | 21.62 | 1.10 | 130.5 | 0.001 | −0.458 | 0.047 |
Total number comprehension | 17 | 16.58 | 0.76 | 16.69 | 0.62 | 313.0 | 0.278 | −0.082 | 4.100 |
Total transcoding | 10 | 9.92 | 0.28 | 9.81 | 0.49 | 289.0 | 0.214 | −0.112 | 3.167 |
Total mental calculation* | 18 | 15.15 | 1.67 | 17.23 | 1.14 | 102.5 | <0.001 | −0.614 | .000 |
Total rules * | 15 | 13.5 | 1.56 | 14.53 | 0.71 | 199.5 | 0.003 | −0.379 | 0.087 |
Total written calculation * | 17 | 12.11 | 2.80 | 14.81 | 1.52 | 142.5 | <0.001 | −0.500 | 0.003 |
TOTAL FORMAL * | 77 | 67.21 | 4.11 | 73.07 | 2.71 | 71 | <0.001 | −0.665 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigna, G.; Ghidoni, E.; Burgio, F.; Danesin, L.; Angelini, D.; Benavides-Varela, S.; Semenza, C. Dyscalculia in Early Adulthood: Implications for Numerical Activities of Daily Living. Brain Sci. 2022, 12, 373. https://doi.org/10.3390/brainsci12030373
Vigna G, Ghidoni E, Burgio F, Danesin L, Angelini D, Benavides-Varela S, Semenza C. Dyscalculia in Early Adulthood: Implications for Numerical Activities of Daily Living. Brain Sciences. 2022; 12(3):373. https://doi.org/10.3390/brainsci12030373
Chicago/Turabian StyleVigna, Giulia, Enrico Ghidoni, Francesca Burgio, Laura Danesin, Damiano Angelini, Silvia Benavides-Varela, and Carlo Semenza. 2022. "Dyscalculia in Early Adulthood: Implications for Numerical Activities of Daily Living" Brain Sciences 12, no. 3: 373. https://doi.org/10.3390/brainsci12030373
APA StyleVigna, G., Ghidoni, E., Burgio, F., Danesin, L., Angelini, D., Benavides-Varela, S., & Semenza, C. (2022). Dyscalculia in Early Adulthood: Implications for Numerical Activities of Daily Living. Brain Sciences, 12(3), 373. https://doi.org/10.3390/brainsci12030373