Relating Suprathreshold Auditory Processing Abilities to Speech Understanding in Competition
Abstract
:1. Introduction
Evidence for the Influence of Suprathreshold Auditory Abilities on Speech in Competition Performance
2. Materials and Methods
2.1. Participants
2.2. Stimuli and Procedures
2.2.1. Temporal Fine Structure
2.2.2. Temporal, Spectral, and Spectrotemporal Modulation Sensitivity
2.2.3. Speech in Competition
3. Statistical Analyses
Results: Linear Regression Modeling
4. Discussion
4.1. The Relationships among Tests of Suprathreshold Processing and Speech Understanding
4.2. The Importance of Cognitive Processing Abilities for Speech Understanding
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gordon-Salant, S. Hearing loss and aging: New research findings and clinical implications. J. Rehabil. Res. Dev. 2005, 42, 9–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goossens, T.; Vercammen, C.; Wouters, J.; van Wieringen, A. Masked speech perception across the adult lifespan: Impact of age and hearing impairment. Hear. Res. 2017, 344, 109–124. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, J.G.W.; Mehraei, G.; Shamma, S.; Gallun, F.J.; Theodoroff, S.M.; Leek, M.R. Spectrotemporal Modulation Sensitivity as a Predictor of Speech Intelligibility for Hearing-Impaired Listeners. J. Am. Acad. Audiol. 2013, 24, 293–306. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, J.G.W.; Danielsson, H.; Hallgren, M.; Stenfelt, S.; Rönnberg, J.; Lunner, T. Spectrotemporal Modulation Sensitivity as a Predictor of Speech-Reception Performance in Noise With Hearing Aids. Trends Hear. 2016, 20, 2331216516670387. [Google Scholar] [CrossRef]
- Dubno, J.R.; Dirks, D.D.; Morgan, D.E. Effects of age and mild hearing loss on speech recognition in noise. J. Acoust. Soc. Am. 1984, 76, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Füllgrabe, C.; Moore, B.C.J.; Stone, M.A. Age-group differences in speech identification despite matched audiometrically normal hearing: Contributions from auditory temporal processing and cognition. Front. Aging Neurosci. 2015, 6, 347. [Google Scholar] [CrossRef] [PubMed]
- Neher, T.; Laugesen, S.; Jensen, N.S.; Kragelund, L. Can basic auditory and cognitive measures predict hearing-impaired listeners’ localization and spatial speech recognition abilities? J. Acoust. Soc. Am. 2011, 130, 1542–1558. [Google Scholar] [CrossRef]
- Rönnberg, J.; Lunner, T.; Ng, E.H.N.; Lidestam, B.; Zekveld, A.A.; Sörqvist, P.; Lyxell, B.; Träff, U.; Yumba, W.; Classon, E.; et al. Hearing impairment, cognition and speech understanding: Exploratory factor analyses of a comprehensive test battery for a group of hearing aid users, the n200 study. Int. J. Audiol. 2016, 55, 623–642. [Google Scholar] [CrossRef]
- Marsja, E.; Stenbäck, V.; Moradi, S.; Danielsson, H.; Rönnberg, J. Is Having Hearing Loss Fundamentally Different? Multigroup Structural Equation Modeling of the Effect of Cognitive Functioning on Speech Identification. Ear Hear. 2022. [Google Scholar] [CrossRef]
- Peng, Z.E.; Buss, E.; Shen, Y.; Bharadwaj, H.; Stecker, G.C.; Beim, J.A.; Bosen, A.K.; Braza, M.; Diedesch, A.C.; Dorey, C.M.; et al. Remote testing for psychological and physiological acoustics: Initial report of the P&P Task Force on Remote Testing. Proc. Meet. Acoust. Acoust. Soc. Am. 2020, 42, 050009. [Google Scholar] [CrossRef]
- Gallun, F.J.; Seitz, A.; Eddins, D.A.; Molis, M.R.; Stavropoulos, T.; Jakien, K.M.; Kampel, S.D.; Diedesch, A.C.; Hoover, E.C.; Bell, K.; et al. Development and validation of Portable Automated Rapid Testing (PART) measures for auditory research. Proc. Meet. Acoust. Acoust. Soc. Am. 2018, 33, 050002. [Google Scholar] [CrossRef] [Green Version]
- Larrea-Mancera, E.S.L.; Stavropoulos, T.; Hoover, E.C.; Eddins, D.A.; Gallun, F.J.; Seitz, A.R. Portable Automated Rapid Testing (PART) for auditory assessment: Validation in a young adult normal-hearing population. J. Acoust. Soc. Am. 2020, 148, 1831–1851. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, N.K.; Holtz, A.; Gallun, F.J. Comparing Spatial Release From Masking Using Traditional Methods and Portable Automated Rapid Testing iPad App. Am. J. Audiol. 2020, 29, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Diedesch, A.C.; Bock, S.J.A.; Gallun, F.J. Clinical Importance of Binaural Information: Extending Auditory Assessment in Clinical Populations Using a Portable Testing Platform. Am. J. Audiol. 2021, 30, 655–668. [Google Scholar] [CrossRef]
- Larrea-Mancera, E.S.L.; Philipp, M.A.; Stavropoulos, T.; Carrillo, A.A.; Cheung, S.; Koerner, T.K.; Molis, M.R.; Gallun, F.J.; Seitz, A.R. Training with an auditory perceptual learning game transfers to speech in competition. J. Cogn. Enhanc. 2021, 6, 47–66. [Google Scholar] [CrossRef]
- Larrea-Mancera, E.L.; de Stavropoulos, T.; Carrillo, A.A.; Cheung, S.; Eddins, D.A.; Molis, M.R.; Gallun, F.; Seitz, A. Portable Automated Rapid Testing (PART) of Auditory Processing Abilities in Young Normally Hearing Listeners: A Remotely Administered Replication with Participant-Owned Devices. 2021. Available online: https://psyarxiv.com/9u68p/ (accessed on 24 May 2022).
- Coco, L.; Titlow, K.S.; Marrone, N. Geographic Distribution of the Hearing Aid Dispensing Workforce: A Teleaudiology Planning Assessment for Arizona. Am. J. Audiol. 2018, 27, 462–473. [Google Scholar] [CrossRef]
- Planey, A.M. Audiologist availability and supply in the United States: A multi-scale spatial and political economic analysis. Soc. Sci. Med. 2019, 222, 216–224. [Google Scholar] [CrossRef]
- Windmill, I.M.; Freeman, B.A. Demand for Audiology Services: 30-yr Projections and Impact on Academic Programs. J. Am. Acad. Audiol. 2013, 24, 407–416. [Google Scholar] [CrossRef]
- Snell, K.B.; Frisina, D.R. Relationships among age-related differences in gap detection and word recognition. J. Acoust. Soc. Am. 2000, 107, 1615–1626. [Google Scholar] [CrossRef]
- Walton, J.P. Timing is everything: Temporal processing deficits in the aged auditory brainstem. Hear. Res. 2010, 264, 63–69. [Google Scholar] [CrossRef]
- Recanzone, G. The effects of aging on auditory cortical function. Hear. Res. 2018, 366, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Eddins, A.C.; Ozmeral, E.J.; Eddins, D.A. How aging impacts the encoding of binaural cues and the perception of auditory space. Hear. Res. 2018, 369, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Gallun, F.J.; Diedesch, A.C.; Kampel, S.D.; Jakien, K.M. Independent impacts of age and hearing loss on spatial release in a complex auditory environment. Front. Neurosci. 2013, 7, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallun, F.J.; Diedesch, A.C.; Beasley, R. Impacts of age on memory for auditory intensity. J. Acoust. Soc. Am. 2012, 132, 944–956. [Google Scholar] [CrossRef]
- Shinn-Cunningham, B.; Ruggles, D.R.; Bharadwaj, H. How Early Aging and Environment Interact in Everyday Listening: From Brainstem to Behavior Through Modeling. In Basic Aspects of Hearing; Moore, B.C.J., Patterson, R.D., Winter, I.M., Carlyon, R.P., Gockel, H.E., Eds.; Springer: New York, NY, USA, 2013; pp. 501–510. [Google Scholar]
- Gallun, F.J.; McMillan, G.P.; Molis, M.R.; Kampel, S.D.; Dann, S.M.; Konrad-Martin, D.L. Relating age and hearing loss to monaural, bilateral, and binaural temporal sensitivity. Front. Neurosci. 2014, 8, 172. [Google Scholar] [CrossRef] [Green Version]
- Ozmeral, E.J.; Eddins, A.C.; Frisina, D.R.; Eddins, D.A. Large cross-sectional study of presbycusis reveals rapid progressive decline in auditory temporal acuity. Neurobiol. Aging 2016, 43, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Ozmeral, E.J.; Eddins, D.A.; Eddins, A.C. Reduced temporal processing in older, normal-hearing listeners evident from electrophysiological responses to shifts in interaural time difference. J. Neurophysiol. 2016, 116, 2720–2729. [Google Scholar] [CrossRef] [Green Version]
- Palandrani, K.N.; Hoover, E.C.; Stavropoulos, T.; Seitz, A.R.; Isarangura, S.; Gallun, F.J.; Eddins, D.A. Temporal integration of monaural and dichotic frequency modulation. J. Acoust. Soc. Am. 2021, 150, 745–758. [Google Scholar] [CrossRef]
- Hoover, E.C.; Kinney, B.N.; Bell, K.L.; Gallun, F.J.; Eddins, D.A. A Comparison of Behavioral Methods for Indexing the Auditory Processing of Temporal Fine Structure Cues. J. Speech Lang. Hear. Res. 2019, 62, 2018–2034. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, N.; Depireux, D.A.; Shamma, S.A. Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J. Neurophysiol. 1996, 76, 3503–3523. [Google Scholar] [CrossRef] [Green Version]
- Theunissen, F.E.; Sen, K.; Doupe, A.J. Spectral-Temporal Receptive Fields of Nonlinear Auditory Neurons Obtained Using Natural Sounds. J. Neurosci. 2000, 20, 2315–2331. [Google Scholar] [CrossRef] [PubMed]
- Depireux, D.A.; Simon, J.Z.; Klein, D.J.; Shamma, S.A. Spectro-Temporal Response Field Characterization With Dynamic Ripples in Ferret Primary Auditory Cortex. J. Neurophysiol. 2001, 85, 1220–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, S.V.; Mesgarani, N.; Shamma, S.A. Estimating sparse spectro-temporal receptive fields with natural stimuli. Network Comput. Neural Syst. 2007, 18, 191–212. [Google Scholar] [CrossRef] [PubMed]
- Elliott, T.M.; Theunissen, F.E. The Modulation Transfer Function for Speech Intelligibility. PLoS Comput. Biol. 2009, 5, e1000302. [Google Scholar] [CrossRef]
- Zatorre, R.J.; Belin, P. Spectral and Temporal Processing in Human Auditory Cortex. Cereb. Cortex 2001, 11, 946–953. [Google Scholar] [CrossRef]
- Chi, T.; Gao, Y.; Guyton, M.C.; Ru, P.; Shamma, S. Spectro-temporal modulation transfer functions and speech intelligibility. J. Acoust. Soc. Am. 1999, 106, 2719–2732. [Google Scholar] [CrossRef] [Green Version]
- Elhilali, M.; Chi, T.; Shamma, S.A. A spectro-temporal modulation index (STMI) for assessment of speech intelligibility. Speech Commun. 2003, 41, 331–348. [Google Scholar] [CrossRef]
- Edraki, A.; Chan, W.-Y.; Jensen, J.; Fogerty, D. Speech Intelligibility Prediction Using Spectro-Temporal Modulation Analysis. IEEE/ACM Trans. Audio Speech Lang. Process. 2021, 29, 210–225. [Google Scholar] [CrossRef]
- Spille, C.; Ewert, S.D.; Kollmeier, B.; Meyer, B.T. Predicting speech intelligibility with deep neural networks. Comput. Speech Lang. 2018, 48, 51–66. [Google Scholar] [CrossRef]
- Chabot-Leclerc, A.; Jørgensen, S.; Dau, T. The role of auditory spectro-temporal modulation filtering and the decision metric for speech intelligibility prediction. J. Acoust. Soc. Am. 2014, 135, 3502–3512. [Google Scholar] [CrossRef]
- Mehraei, G.; Gallun, F.J.; Leek, M.R.; Bernstein, J.G.W. Spectrotemporal modulation sensitivity for hearing-impaired listeners: Dependence on carrier center frequency and the relationship to speech intelligibility. J. Acoust. Soc. Am. 2014, 136, 301–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Won, J.H.; Drennan, W.R.; Rubinstein, J.T. Spectral-Ripple Resolution Correlates with Speech Reception in Noise in Cochlear Implant Users. J. Assoc. Res. Otolaryngol. 2007, 8, 384–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aronoff, J.M.; Landsberger, D.M. The development of a modified spectral ripple test. J. Acoust. Soc. Am. 2013, 134, EL217–EL222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saoji, A.A.; Litvak, L.; Spahr, A.J.; Eddins, D.A. Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners. J. Acoust. Soc. Am. 2009, 126, 955–958. [Google Scholar] [CrossRef]
- Hopkins, K.; Moore, B.C.J. The contribution of temporal fine structure to the intelligibility of speech in steady and modulated noise. J. Acoust. Soc. Am. 2009, 125, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.; Carlyon, R.P.; Darwin, C.J.; Russell, I.J. Temporal information in speech: Acoustic, auditory and linguistic aspects. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1992, 336, 367–373. [Google Scholar] [CrossRef]
- Viswanathan, V.; Shinn-Cunningham, B.G.; Heinz, M.G. Temporal fine structure influences voicing confusions for consonant identification in multi-talker babble. J. Acoust. Soc. Am. 2021, 150, 2664–2676. [Google Scholar] [CrossRef]
- Frisina, R.D. Subcortical neural coding mechanisms for auditory temporal processing. Hear. Res. 2001, 158, 1–27. [Google Scholar] [CrossRef]
- Tremblay, K.L.; Piskosz, M.; Souza, P. Effects of age and age-related hearing loss on the neural representation of speech cues. Clin. Neurophysiol. 2003, 114, 1332–1343. [Google Scholar] [CrossRef]
- Grose, J.H.; Mamo, S.K. Frequency modulation detection as a measure of temporal processing: Age-related monaural and binaural effects. Hear. Res. 2012, 294, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Koerner, T.K.; Muralimanohar, R.K.; Gallun, F.J.; Billings, C.J. Age-Related Deficits in Electrophysiological and Behavioral Measures of Binaural Temporal Processing. Front. Neurosci. 2020, 14, 578566. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, C.; Gilbert, G.; Carn, H.; Garnier, S.; Moore, B.C.J. Speech perception problems of the hearing impaired reflect inability to use temporal fine structure. Proc. Natl. Acad. Sci. USA 2006, 103, 18866–18869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichora-Fuller, M.K.; Schneider, B.A.; MacDonald, E.; Pass, H.E.; Brown, S. Temporal jitter disrupts speech intelligibility: A simulation of auditory aging. Hear. Res. 2007, 223, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Ellinger, R.L.; Jakien, K.M.; Gallun, F.J. The role of interaural differences on speech intelligibility in complex multi-talker environments. J. Acoust. Soc. Am. 2017, 141, EL170–EL176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddins, A.C.; Eddins, D.A. Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults. Ear Hear. 2018, 39, 594–604. [Google Scholar] [CrossRef] [PubMed]
- Saoji, A.A.; Eddins, D.A. Spectral modulation masking patterns reveal tuning to spectral envelope frequency. J. Acoust. Soc. Am. 2007, 122, 1004–1013. [Google Scholar] [CrossRef] [PubMed]
- Ozmeral, E.J.; Eddins, A.C.; Eddins, D.A. How Do Age and Hearing Loss Impact Spectral Envelope Perception? J. Speech Lang. Hear. Res. 2018, 61, 2376–2385. [Google Scholar] [CrossRef]
- Hoover, E.C.; Eddins, A.C.; Eddins, D.A. Distribution of spectral modulation transfer functions in a young, normal-hearing population. J. Acoust. Soc. Am. 2018, 143, 306–309. [Google Scholar] [CrossRef]
- Dau, T.; Kollmeier, B.; Kohlrausch, A.A. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J. Acoust. Soc. Am. 1997, 102, 2892–2905. [Google Scholar] [CrossRef] [Green Version]
- Ewert, S.D.; Dau, T. Characterizing frequency selectivity for envelope fluctuations. J. Acoust. Soc. Am. 2000, 108, 1181–1196. [Google Scholar] [CrossRef]
- Isarangura, S.; Eddins, A.C.; Ozmeral, E.J.; Eddins, D.A. The Effects of Duration and Level on Spectral Modulation Perception. J. Speech Lang. Hear. Res. 2019, 62, 3876–3886. [Google Scholar] [CrossRef]
- Stavropoulos, T.A.; Isarangura, S.; Hoover, E.C.; Eddins, D.A.; Seitz, A.R.; Gallun, F.J. Exponential spectro-temporal modulation generation. J. Acoust. Soc. Am. 2021, 149, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Whiteford, K.L.; Oxenham, A.J. Using individual differences to test the role of temporal and place cues in coding frequency modulation. J. Acoust. Soc. Am. 2015, 138, 3093–3104. [Google Scholar] [CrossRef] [Green Version]
- Marrone, N.; Mason, C.R.; Kidd, G. The effects of hearing loss and age on the benefit of spatial separation between multiple talkers in reverberant rooms. J. Acoust. Soc. Am. 2008, 124, 3064–3075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakien, K.M.; Gallun, F.J. Normative Data for a Rapid, Automated Test of Spatial Release From Masking. Am. J. Audiol. 2018, 27, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.; Gallun, F.; Wright, R. Contributions to Speech-Cue Weighting in Older Adults With Impaired Hearing. J. Speech Lang. Hear. Res. 2020, 63, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Whiteford, K.L.; Kreft, H.A.; Oxenham, A.J. Assessing the Role of Place and Timing Cues in Coding Frequency and Amplitude Modulation as a Function of Age. J. Assoc. Res. Otolaryngol. 2017, 18, 619–633. [Google Scholar] [CrossRef]
- Viemeister, N.F. Temporal modulation transfer functions based upon modulation thresholds. J. Acoust. Soc. Am. 1979, 66, 1364–1380. [Google Scholar] [CrossRef]
- Bolia, R.S.; Nelson, W.T.; Ericson, M.A.; Simpson, B.D. A speech corpus for multitalker communications research. J. Acoust. Soc. Am. 2000, 107, 1065–1066. [Google Scholar] [CrossRef] [Green Version]
- Marrone, N.; Mason, C.R.; Kidd, G. Tuning in the spatial dimension: Evidence from a masked speech identification task. J. Acoust. Soc. Am. 2008, 124, 1146–1158. [Google Scholar] [CrossRef] [Green Version]
- Jakien, K.M.; Kampel, S.D.; Stansell, M.M.; Gallun, F.J. Validating a Rapid, Automated Test of Spatial Release From Masking. Am. J. Audiol. 2017, 26, 507–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakien, K.M.; Kampel, S.D.; Gordon, S.Y.; Gallun, F.J. The Benefits of Increased Sensation Level and Bandwidth for Spatial Release From Masking. Ear Hear. 2017, 38, e13–e21. [Google Scholar] [CrossRef] [PubMed]
- Strelcyk, O.; Dau, T. Relations between frequency selectivity, temporal fine-structure processing, and speech reception in impaired hearing. J. Acoust. Soc. Am. 2009, 125, 3328–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallun, F.J. Impaired Binaural Hearing in Adults: A Selected Review of the Literature. Front. Neurosci. 2021, 15, 610957. [Google Scholar] [CrossRef]
- Souza, P.E.; Wright, R.A.; Blackburn, M.C.; Tatman, R.; Gallun, F.J. Individual Sensitivity to Spectral and Temporal Cues in Listeners With Hearing Impairment. J. Speech Lang. Hear. Res. 2015, 58, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Souza, P.; Wright, R.; Gallun, F.; Reinhart, P. Reliability and Repeatability of the Speech Cue Profile. J. Speech Lang. Hear. Res. 2018, 61, 2126–2137. [Google Scholar] [CrossRef]
- Humes, L.E. Factors Underlying Individual Differences in Speech-Recognition Threshold (SRT) in Noise Among Older Adults. Front. Aging Neurosci. 2021, 13, 702739. [Google Scholar] [CrossRef]
- Nuesse, T.; Steenken, R.; Neher, T.; Holube, I. Exploring the Link Between Cognitive Abilities and Speech Recognition in the Elderly Under Different Listening Conditions. Front. Psychol. 2018, 9, 678. [Google Scholar] [CrossRef] [Green Version]
- Gallun, F.J.; Jakien, K.M. The Ability to Allocate Attentional Resources to a Memory Task Predicts Speech-on-Speech Masking for Older Listeners. In Proceedings of the International Congress on Acoustics, Aachen, Germany, 9–13 September 2019. [Google Scholar]
- Loughrey, D.G.; Kelly, M.E.; Kelley, G.A.; Brennan, S.; Lawlor, B.A. Association of age-related hearing loss with cognitive function, cognitive impairment, and dementia: A systematic review and meta-analysis. JAMA Otolaryngol. Neck Surg. 2018, 144, 115–126. [Google Scholar] [CrossRef]
Units | Minimum | Maximum | Mean | Std. Deviation | |
---|---|---|---|---|---|
CO | dB | 0.00 | 4.50 | 2.23 | 1.21 |
SEP | dB | −9.00 | 5.55 | −2.39 | 3.64 |
SRM | dB | −4.15 | 12.40 | 4.62 | 3.62 |
Age | Years | 23.00 | 80.00 | 51.05 | 16.70 |
PTA | dB HL | −3.13 | 41.25 | 15.58 | 11.19 |
TGap | log2 (ms) | 1.60 | 4.12 | 2.96 | 0.66 |
DioFM | log2 (Hz) | −2.17 | 3.29 | 0.68 | 1.43 |
DichFM | log2 (Hz) | −1.89 | 3.96 | 1.48 | 1.37 |
TM | dB | 0.20 | 4.37 | 1.85 | 1.00 |
SM | dB | 0.70 | 5.97 | 1.83 | 1.11 |
STM | dB | 0.20 | 5.67 | 1.46 | 1.28 |
Variable 1 | Variable 2 | Pearson Correlation | Sig. (2-Tailed) |
---|---|---|---|
SEP | SRM | −0.944 | <0.001 |
SEP | Age | 0.471 | 0.002 |
SEP | PTA | 0.467 | 0.002 |
SEP | DioFM | 0.381 | 0.014 |
SEP | SM | 0.318 | 0.043 |
SEP | DichFM | 0.315 | 0.045 |
SRM | Age | −0.497 | 0.001 |
SRM | PTA | −0.476 | 0.002 |
SRM | DioFM | −0.377 | 0.015 |
SRM | SM | −0.358 | 0.022 |
Age | DichFM | 0.500 | 0.001 |
Age | PTA | 0.476 | 0.002 |
PTA | TGap | 0.418 | 0.007 |
TGap | DioFM | 0.592 | <0.001 |
TGap | STM | 0.451 | 0.003 |
TGap | SM | 0.432 | 0.005 |
SM | STM | 0.691 | <0.001 |
Condition | Predictors | Adjusted R2 | p | Error (dB) |
---|---|---|---|---|
CO | - | - | - | - |
SEP | Age, DioFM | 0.288 | 0.022 | 3.07 |
SRM | Age, DioFM | 0.310 | 0.023 | 3.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallun, F.J.; Coco, L.; Koerner, T.K.; Larrea-Mancera, E.S.L.d.; Molis, M.R.; Eddins, D.A.; Seitz, A.R. Relating Suprathreshold Auditory Processing Abilities to Speech Understanding in Competition. Brain Sci. 2022, 12, 695. https://doi.org/10.3390/brainsci12060695
Gallun FJ, Coco L, Koerner TK, Larrea-Mancera ESLd, Molis MR, Eddins DA, Seitz AR. Relating Suprathreshold Auditory Processing Abilities to Speech Understanding in Competition. Brain Sciences. 2022; 12(6):695. https://doi.org/10.3390/brainsci12060695
Chicago/Turabian StyleGallun, Frederick J., Laura Coco, Tess K. Koerner, E. Sebastian Lelo de Larrea-Mancera, Michelle R. Molis, David A. Eddins, and Aaron R. Seitz. 2022. "Relating Suprathreshold Auditory Processing Abilities to Speech Understanding in Competition" Brain Sciences 12, no. 6: 695. https://doi.org/10.3390/brainsci12060695
APA StyleGallun, F. J., Coco, L., Koerner, T. K., Larrea-Mancera, E. S. L. d., Molis, M. R., Eddins, D. A., & Seitz, A. R. (2022). Relating Suprathreshold Auditory Processing Abilities to Speech Understanding in Competition. Brain Sciences, 12(6), 695. https://doi.org/10.3390/brainsci12060695