Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review
Abstract
:1. Introduction
2. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function
2.1. Brain Structure and Brain Function Basis of Long-Term High-Altitude Exposure Affecting Cognitive Function
2.2. Attention
2.3. Executive Function
3. Physiological Mechanism of Long-Term High-Altitude Hypoxia Environment Affecting Cognitive Function
3.1. Stress Mechanism
3.2. Cellular Mechanism
3.3. Molecular Mechanism
4. Retrospect and Outlook
4.1. Research Content
4.2. Research Subjects
4.3. Research Methodology
4.4. Research Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- International Working Group on CMS. Qinghai diagmostic criteria for Chronic Mountain Sickness (CMS). J. Qinghai Med. Coll. 2005, 26, 3–5. [Google Scholar] [CrossRef]
- Zhu, L.; Fan, M. Impact of plateau environment hypoxia on human cognitive function and intervention measures. Chin. J. Pharmacol. Toxicol. 2017, 31, 87–92. [Google Scholar] [CrossRef]
- An, X.; Ma, H.; Han, B.; Liu, B.; Wang, Y. Attention network varied along with the time of residence at high altitude. Chin. J. Clin. Psychol. 2017, 25, 502–506. [Google Scholar] [CrossRef]
- Zubieta-Calleja, G. Human Adaptation to High Altitude and to Sea Level: Acid-Base Equilibrium, Ventilation and Circulation in Chronic Hypoxia; VDM Verlag Dr. Müller, OmniScriptum: Saarbrücken, Germany, 2010. [Google Scholar]
- Jiang, C.; Liu, F.; Cui, J.; Liao, W.; Ma, Y.; Ma, G.; Wang, H.; Gao, Y. Early changes of visual-auditory cognitive functions after rapid ascending to high altitude. J. Prev. Med. Chin. Peoples Lib. Army 2011, 29, 26–29. [Google Scholar] [CrossRef]
- Shi, Q.; Fu, J. Military cognitive function at altitude and drug intervention. J. Prev. Med. Chin. Peoples Lib. Army 2012, 30, 306–308. [Google Scholar] [CrossRef]
- Li, X.; Wu, X.; Han, L.; Wei, Y.; Wang, T. The effects of acute moderate hypoxia on human performance of attention span and attention shift. J. Fourth Mil. Med. Univ. 1999, 1, 71–73. [Google Scholar]
- Hornbein, T.F.; Townes, B.D.; Schoene, R.B.; Sutton, J.R.; Houston, C.S. The Cost to the Central Nervous System of Climbing to Extremely High Altitude. N. Engl. J. Med. 1989, 321, 1714–1719. [Google Scholar] [CrossRef] [Green Version]
- Virues-Ortega, J.; Garrido, E.; Javierre, C.; Kloezeman, K.C. Human behaviour and development under high-altitude conditions. Dev. Sci. 2006, 9, 400–410. [Google Scholar] [CrossRef]
- Pavlicek, V.; Schirlo, C.; Nebel, A.; Regard, M.; Koller, E.A.; Brugger, P. Cognitive and emotional processing at high altitude. Aviat. Space Environ. Med. 2005, 76, 28–33. [Google Scholar]
- Bao, H.; Chen, Z.; Lu, X.; Wang, D. Effects of acute elevation on cognitive function of recruits. J. Third Mil. Med. Univ. 2013, 14, 1498–1500. [Google Scholar] [CrossRef]
- Lemos, V.D.A.; Antunes, H.K.M.; Santos, R.V.T.D.; Prado, J.M.D.S.; Tufik, S.; Mello, M.T.D. Efeitos da exposição à altitude sobre os aspectos neuropsicológicos: Uma revisão da literatura. Rev. Bras. Psiquiatr. 2009, 32, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ma, H.; Fu, S.; Guo, S.; Yang, X.; Luo, P.; Han, B. Long-Term Exposure to High Altitude Affects Voluntary Spatial Attention at Early and Late Processing Stages. Sci. Rep. 2014, 4, 4443. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Wang, Y.; Wu, J.; Wang, B.; Guo, S.; Luo, P.; Han, B. Long-Term Exposure to High Altitude Affects Conflict Control in the Conflict-Resolving Stage. PLoS ONE 2015, 10, e0145246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ma, H.; Huang, J.; Zhang, X.; Ma, H.; Liu, M. Exploring the impact of chronic high-altitude exposure on visual spatial attention using the ERP approach. Brain Behav. 2018, 8, e00944. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Zhang, J.; Shi, J.; Gong, Q.; Weng, X. Cerebral and functional adaptation with chronic hypoxia exposure: A multi-modal MRI study. Brain Res. 2010, 1348, 21–29. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, J.; Gong, Q.; Weng, X. Prolonged high-altitude residence impacts verbal working memory: An fMRI study. Exp. Brain Res. 2010, 208, 437–445. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, J.; Gong, Q.; Weng, X. Adaptive influence of long term high altitude residence on spatial working memory: An fMRI study. Brain Cogn. 2011, 77, 53–59. [Google Scholar] [CrossRef]
- Ma, H.; Mo, T.; Zeng, T.; Wang, Y. Long-term exposure to high altitude affects spatial working memory in migrants—Evidence from time and frequency domain analysis. Acta Physiol. Sin. 2020, 72, 181–189. [Google Scholar] [CrossRef]
- Ma, H.; Mo, T.; Wang, Y. Influence of long-term high altitude exposure on spatial working memory in Tibetan indigenous residents—Evidence from time-frequency analysis. Chin. High Alt. Med. Biol. 2020, 41, 88–93. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, H.; Li, J.; Chen, J.; Han, Q.; Lin, J.; Yang, T.; Fan, M. Adaptive Modulation of Adult Brain Gray and White Matter to High Altitude: Structural MRI Studies. PLoS ONE 2013, 8, e68621. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, X.; Shi, J.; Gong, Q.; Weng, X.; Liu, Y. Structural Modifications of the Brain in Acclimatization to High-Altitude. PLoS ONE 2010, 5, e11449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Lin, J.; Sun, Y.; Huang, Y.; Ye, H.; Wang, X.; Yang, T.; Jiang, X.; Zhang, J. Compromised White Matter Microstructural Integrity after Mountain Climbing: Evidence from Diffusion Tensor Imaging. High Alt. Med. Biol. 2012, 13, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, J.; Han, Q.; Lin, J.; Yang, T.; Chen, Z.; Zhang, J. Long-term acclimatization to high-altitude hypoxia modifies interhemispheric functional and structural connectivity in the adult brain. Brain Behav. 2016, 6, e00512. [Google Scholar] [CrossRef] [PubMed]
- Peng, D. General Psychology (Revised Edition); Beijing Normal University Publishing Group: Beijing, China, 2004. [Google Scholar]
- Zhou, P.; Zhang, H.; Fan, W.; Sun, B.; Hu, R.; Zhou, R. The ERP Research of Drug Addiction on Attentional Control after Abstinence. Chin. J. Clin. Psychol. 2017, 25, 6–11. [Google Scholar] [CrossRef]
- Bao, H.; Chen, Z.; Wang, D. Cognitive function of male recruits exposed to 3700 maltitude for different periods:a comparison between 3 months and 15 months. Acad. J. Second. Mil. Med. Univ. 2015, 36, 455–458. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, X.; Yang, Z. Influence of Long-term High Altitude Exposure on Attention Network in the Immigrants and the Aborigines. Chin. High Alt. Med. Biol. 2017, 38, 267–272. [Google Scholar] [CrossRef]
- Helfrich, R.F.; Knight, R.T. Cognitive neurophysiology: Event-related potentials. Clin. Neurophysiol. Basis Tech. Asp. 2019, 160, 543–558. [Google Scholar] [CrossRef]
- Ghani, U.; Signal, N.; Niazi, I.K.; Taylor, D. ERP based measures of cognitive workload: A review. Neurosci. Biobehav. Rev. 2020, 118, 18–26. [Google Scholar] [CrossRef]
- Funahashi, S. Neuronal mechanisms of executive control by the prefrontal cortex. Neurosci. Res. 2001, 39, 147–165. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The Unity and Diversity of Executive Functions and Their Contributions to Complex “Frontal Lobe” Tasks: A Latent Variable Analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A. Working memory: Looking back and looking forward. Nat. Rev. Neurosci. 2003, 4, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E. Neurophysiological Manifestations of Recollective Experience during Recognition Memory Judgments. J. Cogn. Neurosci. 1993, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kusak, G.; Grune, K.; Hagendorf, H.; Metz, A.M. Updating of working memory in a running memory task: An event-related potential study. Int. J. Psychophysiol. 2000, 39, 51–65. [Google Scholar] [CrossRef]
- Logan, G.D.; Cowan, W.B. On the ability to inhibit thought and action: A theory of an act of control. Psychol. Rev. 1984, 91, 295–327. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Y.; Wu, J.; Liu, H.; Luo, P.; Han, B. Overactive Performance Monitoring Resulting from Chronic Exposure to High Altitude. Aerosp. Med. Hum. Perform. 2015, 86, 860–864. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Y.; Wu, J.; Luo, P.; Han, B. Long-Term Exposure to High Altitude Affects Response Inhibition in the Conflict-monitoring Stage. Sci. Rep. 2015, 5, 13701. [Google Scholar] [CrossRef] [Green Version]
- Zhen, Z.; Qin, S.; Zhu, R.; Feng, C.; Liu, C. Neural mechanism of stress and social decision making under acute stress. J. Beijing Norm. Univ. Nat. Sci. 2017, 53, 372–378. [Google Scholar] [CrossRef]
- Quillinan, N.; Herson, P.S.; Traystman, R.J. Neuropathophysiology of Brain Injury. Anesthesiol. Clin. 2016, 34, 453–464. [Google Scholar] [CrossRef] [Green Version]
- Papandreou, I.; Cairns, R.A.; Fontana, L.; Lim, A.L.; Denko, N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006, 3, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Maiti, P.; Singh, S.B.; Mallick, B.; Muthuraju, S.; Ilavazhagan, G. High altitude memory impairment is due to neuronal apoptosis in hippocampus, cortex and striatum. J. Chem. Neuroanat. 2008, 36, 227–238. [Google Scholar] [CrossRef]
- Dosek, A.; Ohno, H.; Acs, Z.; Taylor, A.W.; Radak, Z. High altitude and oxidative stress. Respir. Physiol. Neurobiol. 2007, 158, 128–131. [Google Scholar] [CrossRef] [PubMed]
- Sohal, R.; Allen, R. Oxidative stress as a causal factor in differentiation and aging: A unifying hypothesis. Exp. Gerontol. 1990, 25, 499–522. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.X.; Gozal, D. Reactive oxygen species and the brain in sleep apnea. Respir. Physiol. Neurobiol. 2010, 174, 307–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavie, L. Obstructive sleep apnoea syndrome—An oxidative stress disorder. Sleep Med. Rev. 2003, 7, 35–51. [Google Scholar] [CrossRef]
- Bailey, D.M.; Brugniaux, J.V.; Filipponi, T.; Marley, C.J.; Stacey, B.; Soria, R.; Rimoldi, S.F.; Cerny, D.; Rexhaj, E.; Pratali, L.; et al. Exaggerated systemic oxidative-inflammatory-nitrosative stress in chronic mountain sickness is associated with cognitive decline and depression. J. Physiol. 2018, 597, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; DeLisi, L.E.; Öngür, D.; Riley, C.; Zuo, C.; Shi, X.; Sung, Y.; Kondo, D.; Kim, T.; Villafuerte, R.; et al. Cerebral bioenergetic differences measured by phosphorus-31 magnetic resonance spectroscopy between bipolar disorder and healthy subjects living in two different regions suggesting possible effects of altitude. Psychiatry Clin. Neurosci. 2019, 73, 581–589. [Google Scholar] [CrossRef]
- Gao, L.; Cui, J.; Ma, G.; Zeng, D.; Kong, P. Effects of soybean isoflavone on oxygen free radical metabolism in patients with polycythemia at altitude above 5000 m. J. Third Mil. Med. Univ. 2012, 24, 2528–2529. [Google Scholar] [CrossRef]
- Liu, C.; Bao, H.; Li, W.; Zhao, X.; Wu, Y.; Zhang, H.; Wang, L. Voxel-based morphometry MRI study of gray matter’s alteration in patients with chronic mountain sickness. Chin. J. Magn. Reson. Imaging 2014, 3, 211–215. [Google Scholar] [CrossRef]
- Liu, C. Study on Brain’s Structure and Function of Chronic Mountain Sickness with 3T DTI and BOLD Magnetic Resonance Imaging. Master’s Thesis, Qinghai University, Qinghai, China, 2014. Available online: https://affhc975c3444c2dc4daasop0vp66k5wbb6ccwfzzz.res.gxlib.org.cn/thesis/D587509 (accessed on 20 May 2022).
- Li, Q. Research about Patient’s Sleep Quality, High-level Nerve Function of High Altitude Polycythemia. Master’s Thesis, Kunming Medical University, Kunming, China, 2008. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?filename=2008117638.nh&dbcode=CMFD&dbname=CMFD2008&v=ZSRdeNifzrPsKPUvkzELIOiNifWtIol69Yze6ioaPA1ZK2qZQ1hUYx__CpM7rsPa (accessed on 20 May 2022).
- Yang, Q.; Li, Q.; Wang, X.; Liu, S. Investigation on sleep quality and cognitive function of soldiers and soldiers with hypererythrocytosis. J. Zhengzhou Univ. Med. Sci. 2011, 46, 476–477. [Google Scholar] [CrossRef]
- Pelamatti, G.; Pascotto, M.; Semenza, C. Verbal Free Recall in High Altitude: Proper Names vs Common Names. Cortex 2003, 39, 97–103. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Liu, L.; Zhao, F.; Kang, L. Research progress on protein factors and genes of high altitude polycythemia. Foreign Med. Sci. Sect. Medgeogr. 2019, 40, 204–208. [Google Scholar] [CrossRef]
- He, M. A Comparative Study of 3T MRI on Brain Structure and Cognitive Function in Patients with Chronic Altitude Sickness. Master’s Thesis, Qinghai University, Qinghai, China, 2013. Available online: https://iffhc975c3444c2dc4daaspbfob6u9fq066uknfzzz.res.gxlib.org.cn/thesis/D503247 (accessed on 20 May 2022).
- Hu, J.; Sun, Y. Research progress of neuroimaging in high altitude polycythemia. J. Med. Theory Pract. 2018, 31, 1128–1130. [Google Scholar] [CrossRef]
- Niu, G.; Zhu, D.; Zhang, X.; Wang, J.; Zhao, Y.; Wang, X. Role of Hypoxia-Inducible Factors 1α (HIF1α) in SH-SY5Y Cell Autophagy Induced by Oxygen-Glucose Deprivation. Med. Sci. Monit. 2018, 24, 2758–2766. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Feng, Z.; Wang, T. Effects of altitude hypoxia on psychological function and its protection. Chin. J. Behav. Med. Sci. 2003, 12, 471–473. [Google Scholar] [CrossRef]
- Lieberman, P.; Protopapas, A.; Kanki, B.G. Speech production and cognitive deficits on Mt. Everest. Aviat. Space Environ. Med. 1995, 66, 857–864. [Google Scholar]
- Zhang, J. Altitude hypoxia and senility. Tibet. J. Med. 1996, 4, 8–9. [Google Scholar]
- Peng, L.; Xu, J.; Zhang, S.; Shen, X. Effect of High Altitude on Individuals’ Cognitive Function and Performance Ability. J. Prev. Med. Chin. Peoples Lib. Army 2017, 35, 857–860. [Google Scholar] [CrossRef]
- Ma, Y.; Jin, X.; Wang, D.; Ma, G.; Li, B.; Zhang, X.; Cui, J.; Ha, Z.; Wang, H. Improvement of sleep hypoxemia and alertness by hyperbaric oxygen pretherapy in high altitude migrants. Chin. J. Behav. Med. Sci. 2007, 16, 644. [Google Scholar] [CrossRef]
- Wang, H.; Cui, J.; Jin, X. Research progress on anti-hypoxic effect of hyperbaric oxygen and prevention and treatment of altitude sickness. J. High Alt. Med. 2009, 19, 58–61. [Google Scholar] [CrossRef]
- Harch, P.G.; Kriedt, C.; van Meter, K.W.; Sutherland, R.J. Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res. 2007, 1174, 120–129. [Google Scholar] [CrossRef]
- Palzur, E.; Zaaroor, M.; Vlodavsky, E.; Milman, F.; Soustiel, J.F. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res. 2008, 1221, 126–133. [Google Scholar] [CrossRef]
- Hachmo, Y.; Hadanny, A.; Abu Hamed, R.; Daniel-Kotovsky, M.; Catalogna, M.; Fishlev, G.; Lang, E.; Polak, N.; Doenyas, K.; Friedman, M.; et al. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: A prospective trial. Aging 2020, 12, 22445. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.; Zhu, W. Advances in microbiota-gut-brain axis. Acta Microbiol. Sin. 2019, 59, 1737–1746. [Google Scholar] [CrossRef]
- Yang, H.; Tang, Q.; Chen, Q. Advances in Gut-brain Axis in Cerebral Ischemia (review). Chin. J. Rehabil. Theory Pract. 2020, 26, 793–796. [Google Scholar] [CrossRef]
- Xu, T. Study on Probiotics Intervention and Mechanism of Cognitive Impairment Induced by Hypoxia at High Altitude. Master’s Thesis, Academy of Military Sciences, Beijing, China, 2021. [Google Scholar] [CrossRef]
- Duan, Y.; Zhang, F. Research in the altitude environment and intestinal micro-environment. Chin. J. Microecol. 2010, 22, 382–384. [Google Scholar] [CrossRef]
- Wan, F.; Li, Q.; Xie, B. Research Progress on the Relationship between Intestinal Flora and Extreme Environment. Sci. Technol. Food Ind. 2021, 43, 420–427. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Y. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sci. 2022, 12, 808. https://doi.org/10.3390/brainsci12060808
Li Y, Wang Y. Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sciences. 2022; 12(6):808. https://doi.org/10.3390/brainsci12060808
Chicago/Turabian StyleLi, Yuan, and Yan Wang. 2022. "Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review" Brain Sciences 12, no. 6: 808. https://doi.org/10.3390/brainsci12060808
APA StyleLi, Y., & Wang, Y. (2022). Effects of Long-Term Exposure to High Altitude Hypoxia on Cognitive Function and Its Mechanism: A Narrative Review. Brain Sciences, 12(6), 808. https://doi.org/10.3390/brainsci12060808