Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials
Abstract
:1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Study Selection
2.3. Quality Assessment
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Study Identification and Selection
3.2. Effects of rTMS
3.3. Effects of tDCS
3.4. Risk of Bias and Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wissel, J.; Schelosky, L.D.; Scott, J.; Christe, W.; Faiss, J.H.; Mueller, J. Early development of spasticity following stroke: A prospective, observational trial. J. Neurol. 2010, 257, 1067–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bavikatte, G.; Subramanian, G.; Ashford, S.; Allison, R.; Hicklin, D. Early Identification, Intervention and Management of Post-stroke Spasticity: Expert Consensus Recommendations. J. Cent. Nerv. Syst. Dis. 2021, 13, 11795735211036576. [Google Scholar] [CrossRef] [PubMed]
- Bethoux, F. Spasticity Management after Stroke. Phys. Med. Rehabil. Clin. N. Am. 2015, 26, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.S.; Koh, S.; Kim, Y.J.; Beom, J.; Lee, W.H.; Lee, S.U.; Kim, S. Biomechanical Reactions of Exoskeleton Neurorehabilitation Robots in Spastic Elbows and Wrists. IEEE Trans. Neural. Syst. Rehabil. Eng. 2017, 25, 2196–2203. [Google Scholar] [CrossRef]
- Chen, Y.T.; Li, S.; DiTommaso, C.; Zhou, P.; Li, S. Possible Contributions of Ipsilateral Pathways From the Contralesional Motor Cortex to the Voluntary Contraction of the Spastic Elbow Flexors in Stroke Survivors: A TMS Study. Am. J. Phys. Med. Rehabil. 2019, 98, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Molero-Chamizo, A.; Salas Sánchez, Á.; Álvarez Batista, B.; Cordero García, C.; Andújar Barroso, R.; Rivera-Urbina, G.N.; Nitsche, M.A.; Alameda Bailén, J.R. Bilateral Motor Cortex tDCS Effects on Post-Stroke Pain and Spasticity: A Three Cases Study. Front Pharmacol. 2021, 12, 624582. [Google Scholar] [CrossRef]
- Li, S. Spasticity, Motor Recovery, and Neural Plasticity after Stroke. Front. Neurol. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Francisco, G.E.; Rymer, W.Z. A New Definition of Poststroke Spasticity and the Interference of Spasticity with Motor Recovery from Acute to Chronic Stages. Neurorehabil. Neural. Repair. 2021, 35, 601–610. [Google Scholar] [CrossRef]
- Hara, T.; Shanmugalingam, A.; McIntyre, A.; Burhan, A.M. The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis. Diagnostics 2021, 11, 227. [Google Scholar] [CrossRef]
- Mori, F.; Koch, G.; Foti, C.; Bernardi, G.; Centonze, D. The use of repetitive transcranial magnetic stimulation (rTMS) for the treatment of spasticity. Prog. Brain Res. 2009, 175, 429–439. [Google Scholar]
- Naghdi, S.; Ansari, N.N.; Rastgoo, M.; Forogh, B.; Jalaie, S.; Olyaei, G. A pilot study on the effects of low frequency repetitive transcranial magnetic stimulation on lower extremity spasticity and motor neuron excitability in patients after stroke. J. Bodyw. Mov. Ther. 2015, 19, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Theilig, S.; Podubecka, J.; Bösl, K.; Wiederer, R.; Nowak, D.A. Functional neuromuscular stimulation to improve severe hand dysfunction after stroke: Does inhibitory rTMS enhance therapeutic efficiency? Exp. Neurol. 2011, 230, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Qian, L.; Zorowitz, R.D.; Zhang, L.; Qu, Y.; Yuan, Y. Effects on Decreasing Upper-Limb Poststroke Muscle Tone Using Transcranial Direct Current Stimulation: A Randomized Sham-Controlled Study. Arch. Phys. Med. Rehabil. 2013, 94, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Huang, Y.; Wang, J.; An, X.; Zhang, T.; Li, Y.; Zhang, J.; Wang, B. Repetitive transcranial magnetic stimulation as an alternative therapy for stroke with spasticity: A systematic review and meta-analysis. J. Neurol. 2021, 268, 4013–4022. [Google Scholar] [CrossRef] [PubMed]
- Alashram, A.R.; Padua, E.; Aburub, A.; Raju, M.; Annino, G. Transcranial direct current stimulation for upper extremity spasticity rehabilitation in stroke survivors: A systematic review of randomized controlled trials. PM&R 2022, 14. [Google Scholar]
- Huang, J.; Qu, Y.; Liu, L.; Zhao, K.; Zhao, Z. Efficacy and safety of transcranial direct current stimulation for post-stroke spasticity: A meta-analysis of randomised controlled trials. Clin. Rehabil. 2022, 36, 158–171. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- da Costa Santos, C.M.; de Mattos Pimenta, C.A.; Nobre, M.R. The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enfermagem. 2007, 15, 508–511. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.; Altman, D.G. Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions; Higgins, J.P., Green, S., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 187–241. [Google Scholar]
- Higgins, J.P.; Altman, D.G.; Gøtzsche, P.C.; Jüni, P.; Moher, D.; Oxman, A.D.; Savovic, J.; Schulz, K.F.; Weeks, L.; Sterne, J.A.; et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011, 343, d5928. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Sutton, A.J.; Ioannidis, J.P.; Terrin, N.; Jones, D.R.; Lau, J.; Carpenter, J.; Rücker, G.; Harbord, R.M.; Schmid, C.H.; et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 2011, 343, d4002. [Google Scholar] [CrossRef] [Green Version]
- Askı, N.A.; Tosun, A.; Demirdal, U.S. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial. Somatosens. Mot. Res. 2017, 34, 102–107. [Google Scholar] [CrossRef]
- Barros Galvão, S.C.; Borba Costa dos Santos, R.; Borba dos Santos, P.; Cabral, M.E.; Monte-Silva, K. Efficacy of Coupling Repetitive Transcranial Magnetic Stimulation and Physical Therapy to Reduce Upper-Limb Spasticity in Patients With Stroke: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2014, 95, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Huang, Y.Z.; Chen, C.Y.; Chen, C.L.; Chen, H.C.; Wu, C.Y.; Lin, K.C.; Chang, T.L. Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: A pilot randomized controlled trial. BMC Neurol. 2019, 19, 69. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Chen, C.L.; Huang, Y.Z.; Chen, H.C.; Chen, C.Y.; Wu, C.Y.; Lin, K.C. Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: A double-blinded, randomized controlled trial. J. Neuroeng. Rehabil. 2021, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Chervyakov, A.V.; Poydasheva, A.G.; Lyukmanov, R.H.; Suponeva, N.A.; Chernikova, L.A.; Piradov, M.A.; Ustinova, K.I. Effects of Navigated Repetitive Transcranial Magnetic Stimulation After Stroke. J. Clin. Neurophysiol. 2018, 35, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, A.; Boltzmann, M.; Schmidt, S.B.; Gutenbrunner, C.; Krauss, J.K.; Stangel, M.; Höglinger, G.U.; Wallesch, C.W.; Rollnik, J.D. Treatment of upper limb spasticity with inhibitory repetitive transcranial magnetic stimulation: A randomized placebo-controlled trial. NeuroRehabilitation 2021, 49, 425–434. [Google Scholar] [CrossRef]
- Kuzu, Ö.; Adiguzel, E.; Kesikburun, S.; Yaşar, E.; Yılmaz, B. The Effect of Sham Controlled Continuous Theta Burst Stimulation and Low Frequency Repetitive Transcranial Magnetic Stimulation on Upper Extremity Spasticity and Functional Recovery in Chronic Ischemic Stroke Patients. J. Stroke Cerebrovasc. Dis. 2021, 30, 105795. [Google Scholar] [CrossRef]
- Xu, D.; Cao, H.; Fan, Y.; Yan, D.; Su, M. Comparative Analysis of the Effect of Low-Frequency Repeated Transcranial Magnetic Stimulation and Extracorporeal Shock Wave on Improving the Spasm of Flexor after Stroke. Evid.-Based Complementary Altern. Med. 2021, 2021, 7769581. [Google Scholar] [CrossRef]
- Andrade, S.M.; Batista, L.M.; Nogueira, L.L.; de Oliveira, E.A.; de Carvalho, A.G.; Lima, S.S.; Santana, J.R.; de Lima, E.C.; Fernández-Calvo, B. Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: A pilot randomized controlled trial. Rehabil. Res. Pract. 2017, 6842549. [Google Scholar] [CrossRef] [Green Version]
- Hesse, S.; Waldner, A.; Mehrholz, J.; Tomelleri, C.; Pohl, M.; Werner, C. Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: An exploratory, randomized multicenter trial. Neurorehabil. Neural. Repair. 2011, 25, 838–846. [Google Scholar] [CrossRef]
- Lee, S.J.; Chun, M.H. Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Arch. Phys. Med. Rehabil. 2014, 95, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Tran, V.D.; Dario, P.; Posteraro, F. Effects of Transcranial Direct Current Stimulation (tDCS) Combined with Wrist Robot-Assisted Rehabilitation on Motor Recovery in Subacute Stroke Patients: A Randomized Controlled Trial. IEEE Trans. Neural. Syst. Rehabil. Eng. 2019, 27, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Viana, R.T.; Laurentino, G.E.; Souza, R.J.; Fonseca, J.B.; Silva Filho, E.M.; Dias, S.N.; Teixeira-Salmela, L.F.; Monte-Silva, K.K. Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: A pilot randomized controlled trial. NeuroRehabilitation 2014, 34, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Lefaucheur, J.P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Iglesias, A.H. Transcranial Magnetic Stimulation as Treatment in Multiple Neurologic Conditions. Curr. Neurol. Neurosci. Rep. 2020, 20, 1. [Google Scholar] [CrossRef]
- Dionísio, A.; Duarte, I.C.; Patrício, M.; Castelo-Branco, M. The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review. J. Stroke Cerebrovasc. Dis. 2018, 27, 1–31. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]
- Leo, A.; Naro, A.; Molonia, F.; Tomasello, P.; Saccà, I.; Bramanti, A.; Russo, M.; Bramanti, P.; Quartarone, A.; Calabrò, R.S. Spasticity Management: The Current State of Transcranial Neuromodulation. PM&R 2017, 9, 1020–1029. [Google Scholar]
- Harrington, A.; Hammond-Tooke, G.D. Theta Burst Stimulation of the Cerebellum Modifies the TMS-Evoked N100 Potential, a Marker of GABA Inhibition. PLoS ONE 2015, 10, e0141284. [Google Scholar] [CrossRef]
- Traversa, R.; Cicinelli, P.; Pasqualetti, P.; Filippi, M.; Rossini, P.M. Follow-up of interhemispheric differences of motor evoked potentials from the ’affected’ and ’unaffected’ hemispheres in human stroke. Brain Res. 1998, 803, 1–8. [Google Scholar] [CrossRef]
- Seitz, R.J.; Höflich, P.; Binkofski, F.; Tellmann, L.; Herzog, H.; Freund, H.J. Role of the premotor cortex in recovery from middle cerebral artery infarction. Arch. Neurol. 1998, 55, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Wang, C.P.; Tsai, P.Y.; Hsieh, C.Y.; Chan, R.C.; Yeh, S.C. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery. Restor. Neurol. Neurosci. 2014, 32, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Cohen, L.G. Recovery of motor function after stroke. Dev. Psychobiol. 2012, 54, 254–262. [Google Scholar] [CrossRef]
- Meseguer-Henarejos, A.B.; Sánchez-Meca, J.; López-Pina, J.A.; Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 576–590. [Google Scholar] [CrossRef]
- Chen, Y.; Wei, Q.C.; Zhang, M.Z.; Xie, Y.J.; Liao, L.Y.; Tan, H.X.; Guo, Q.F.; Gao, Q. Cerebellar Intermittent Theta-Burst Stimulation Reduces Upper Limb Spasticity After Subacute Stroke: A Randomized Controlled Trial. Front Neural. Circuits. 2021, 15, 655502. [Google Scholar] [CrossRef]
- Kakuda, W.; Abo, M.; Kobayashi, K.; Momosaki, R.; Yokoi, A.; Fukuda, A.; Ito, H.; Tominaga, A.; Umemori, T.; Kameda, Y. Anti-spastic effect of low-frequency rTMS applied with occupational therapy in post-stroke patients with upper limb hemiparesis. Brain INJ 2011, 25, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Rastgoo, M.; Naghdi, S.; Nakhostin Ansari, N.; Olyaei, G.; Jalaei, S.; Forogh, B.; Najari, H. Effects of repetitive transcranial magnetic stimulation on lower extremity spasticity and motor function in stroke patients. Disabil. Rehabil. 2016, 38, 1918–1926. [Google Scholar] [CrossRef] [PubMed]
- Málly, J.; Dinya, E. Recovery of motor disability and spasticity in post-stroke after repetitive transcranial magnetic stimulation (rTMS). Brain Res. Bull. 2008, 76, 388–395. [Google Scholar] [CrossRef]
- Li, D.; Cheng, A.; Zhang, Z.; Sun, Y.; Liu, Y. Effects of low-frequency repetitive transcranial magnetic stimulation combined with cerebellar continuous theta burst stimulation on spasticity and limb dyskinesia in patients with stroke. BMC Neurol. 2021, 21, 369. [Google Scholar] [CrossRef]
- Halakoo, S.; Ehsani, F.; Masoudian, N.; Zoghi, M.; Jaberzadeh, S. Does anodal trans-cranial direct current stimulation of the damaged primary motor cortex affects wrist flexor muscle spasticity and also activity of the wrist flexor and extensor muscles in patients with stroke?: A Randomized Clinical Trial. Neurol. Sci. 2021, 42, 2763–2773. [Google Scholar] [CrossRef]
- Ochi, M.; Saeki, S.; Oda, T.; Matsushima, Y.; Hachisuka, K. Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. J. Rehabil. Med. 2013, 45, 137–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehsani, F.; Mortezanejad, M.; Yosephi, M.H.; Daniali, S.; Jaberzadeh, S. The effects of concurrent M1 anodal tDCS and physical therapy interventions on function of ankle muscles in patients with stroke: A randomized, double-blinded sham-controlled trial study. Neurol. Sci. 2022, 43, 1893–1901. [Google Scholar] [CrossRef] [PubMed]
- Del Felice, A.; Daloli, V.; Masiero, S.; Manganotti, P. Contralesional Cathodal versus Dual Transcranial Direct Current Stimulation for Decreasing Upper Limb Spasticity in Chronic Stroke Individuals: A Clinical and Neurophysiological Study. J. Stroke Cerebrovasc. Dis. 2016, 25, 2932–2941. [Google Scholar] [CrossRef] [PubMed]
Study | Participant | Mean Severity (SD) | Intervention | Control | Outcomes | Muscle | ||||
---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | Intervention | Control | |||||||
Mean Age (SD) | N (Male/Female) | Mean Age (SD) | N (Male/Female) | MAS | ||||||
Askı et al. (2017) | 56.75 (11.46) | 20 (14/6) | 58.80 (12.02) | 20 (15/5) | 3.2 (0.75) | 2.8 (0.75) | LF-rTMS + PT 1200 pulses, 1 Hz, 90% RMT | Sham rTMS + PT | MAS | upper limb |
Barros Galvao et al. (2014) | 57.4 (12.0) | 10 (6/4) | 64.6 (6.8) | 10 (7/3) | 2.5 (0.5) | 2.4 (0.5) | LF-rTMS + PT 1500 pulses, 1 Hz; 90% RMT | Sham rTMS +PT | MAS | wrist |
Chen et al. (2019) | 52.9 (11.1) | 11 (7/4) | 52.6 (8.3) | 11 (7/4) | 3.90 (2.10) | 4.05 (1.56) | iTBS 50 Hz 80% AMT | Sham iTBS | MAS | upper limb |
Chen et al. (2021) | 54.36 (10.56) | 12 (8/4) | 48.95 (9.63) | 11 (10/1) | 0.87 (0.54) | 0.94 (0.69) | iTBS + VCT 50 Hz 80% AMT | Sham iTBS + VCT | MAS | upper limb |
Chervyakov et al. (2018a) | 54.2 (11.1) | 11 (5/6) | 61.4 (11.4) | 10 (5/5) | 1.2 (0.9) | 1.4 (1.0) | LF-rTMS 1200 pulses, 1 Hz, 100% RMT | Sham rTMS | MAS | arm |
Chervyakov et al. (2018b) | 58.6 (10.4) | 13 (10/3) | 61.4 (11.4) | 10 (5/5) | 1.84 (0.8) | 1.4 (1.0) | HF-rTMS 200 pulses, 10-Hz, 80% RMT | Sham rTMS | MAS | arm |
Chervyakov et al. (2018c) | 60.7 (9.6) | 8 (6/2) | 61.4 (11.4) | 10 (5/5) | 1.5 (0.9) | 1.4 (1.0) | LF-rTMS 1 Hz 100% RMT HF-rTMS 10 Hz 80% RMT | Sham rTMS | MAS | arm |
Gottlieb et al. (2021)] | 63.93 (10.91) | 14 (9/5) | 62.43 (11.46) | 14 (3/11) | 1.86 (1.35) | 1.71 (1.27) | LF-rTMS 1200 pulses, 1 Hz | Sham-rTMS | MAS | upper limb |
Kuzu et al. (2021a) | 56.3 (11.5) | 7 (4/3) | 65.0 (4.6) | 6 (2/4) | 1.8 (0.4) | 2.3 (0.6) | LF-rTMS 1200 pulses, 1 Hz | Sham rTMS | MAS | upper limb |
Kuzu et al. (2021b) | 61.3 (9.8) | 7 (6/1) | 65.0 (4.6) | 6 (2/4) | 2.1 (0.6) | 2.3 (0.6) | cTBS 50 Hz | Sham cTBS | MAS | upper limb |
Xu et al. (2021) | 79.50 (1.49) | 22 (17/5) | 68.86 (3.09) | 22 (15/7) | 2.32 (0.48) | 2.41 (0.50) | LF-rTMS + CRT 550 pulses, 1 Hz 90% RMT | Sham rTMS + CRT | MAS | upper limb |
Study | Participant | Mean Severity (SD) | Intervention | Control | Outcomes | Muscle | ||||
---|---|---|---|---|---|---|---|---|---|---|
Intervention | Control | Intervention | Control | |||||||
Mean Age (SD) | N (Male/Female) | Mean Age (SD) | N (Male/Female) | MAS | ||||||
Andrade et al. (2017) | 54.08 (3.72) | 40 (22/18) | 54.76 (4.28) | 20 (12/8) | 3.3 (0.36) | 3.6 (0.5) | tDCS (Anodal) + CIMT 0.7 mA, 10 sessions | Sham-tDCS + CIMT | MAS | upper limb |
Hesse et al. (2012a) | 63.9 (10.5) | 32 (20/12) | 65.6 (10.3) | 32 (21/11) | 1.6 (2.9) | 1.4 (2.7) | tDCS (Anodal) 2.0 mA, 30 sessions | Sham-tDCS | MAS | upper limb |
Hesse et al. (2012b) | 65.4 (8.6) | 32 (18/14) | 65.6 (10.3) | 32 (21/11) | 1.0 (1.8) | 1.4 (2.7) | tDCS (Cathodal) 2.0 mA, 30 sessions | Sham-tDCS | MAS | upper limb |
Lee and Chun (2014) | 63.1 (10.3) | 20 (12/8) | 60.6 (14.1) | 20 (9/11) | 0.4 (0.5) | 0.5 (0.4) | tDCS (Cathodal) + VRT 2.0 mA, 15 sessions | Sham-tDCS + VRT | MAS | upper limb |
Mazzoleni et al. (2019) | 67.50 (16.30) | 20 (8/12) | 68.74 (15.83) | 19 (7/12) | 1.1 (1.86) | 1.58 (2.34) | tDCS (Anodal) + wrist robot-assisted rehabilitation 2.0 mA, 30 sessions | Sham-tDCS + wrist robot-assisted rehabilitation | MAS | wrist |
Viana et al. (2014) | 56.0 (10.2) | 10 (9/1) | 55.0 (12.2) | 10 (7/3) | 1.5 (0.7) | 1.5 (0.52) | tDCS (Anodal) + VRT 2.0 mA, 15 sessions | Sham-tDCS + VRT | MAS | upper limb |
Wu et al. (2013) | 45.9 (11.2) | 45 (34/11) | 49.3 (12.6) | 45 (35/10) | 2.0 (0.75) | 2.0 (0.5) | tDCS (Cathodal) + PT 1.2 mA, 20 sessions | Sham-tDCS + PT | MAS | elbow, wrist |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Ge, L.; Hu, H.; Yan, L.; Li, L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sci. 2022, 12, 836. https://doi.org/10.3390/brainsci12070836
Wang X, Ge L, Hu H, Yan L, Li L. Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sciences. 2022; 12(7):836. https://doi.org/10.3390/brainsci12070836
Chicago/Turabian StyleWang, Xiaohan, Le Ge, Huijing Hu, Li Yan, and Le Li. 2022. "Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials" Brain Sciences 12, no. 7: 836. https://doi.org/10.3390/brainsci12070836
APA StyleWang, X., Ge, L., Hu, H., Yan, L., & Li, L. (2022). Effects of Non-Invasive Brain Stimulation on Post-Stroke Spasticity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Brain Sciences, 12(7), 836. https://doi.org/10.3390/brainsci12070836