Energy Metabolic Disorder of Astrocytes May Be an Inducer of Migraine Attack
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Behavior Testing
2.2. Primary Astrocytes Isolation and Culture
2.3. ROS Assay and Mitochondrial Membrane Potential Test
2.4. Mitochondrial Function Assay
2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Assay
2.6. Western Blot (WB)
2.7. Statistical Analysis
3. Results
3.1. Headache Caused by NTG Is more Serious in Fasting Group Mice
3.2. More ROS Is Induced by NTG in Low-Glucose Condition in Astrocytes
3.3. More Inflammatory Factors Are Produced in Low-Glucose Group
3.4. NTG Reduces ATP Production in Low-Glucose Conditions by Inhibiting AMPK Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dodick, D.W. Migraine. Lancet 2018, 391, 1315–1330. [Google Scholar] [CrossRef]
- Disease, G.B.D.; Injury, I.; Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar]
- Collaborators, G.B.D.H. Global, regional, and national burden of migraine and tension-type headache, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 954–976. [Google Scholar]
- Dalkara, T.; Kilic, K. How does fasting trigger migraine? A hypothesis. Curr. Pain Headache Rep. 2013, 17, 368. [Google Scholar] [CrossRef]
- Al-Hashel, J.Y.; Abokalawa, F.; Toma, R.; Algubari, A.; Ahmed, S.F. Worsening of migraine headache with fasting Ramadan. Clin. Neurol. Neurosurg. 2021, 209, 106899. [Google Scholar] [CrossRef]
- Ragab, A.H.; Kishk, N.A.; Hassan, A.; Yacoub, O.; El Ghoneimy, L.; Elmazny, A.; Elsawy, E.H.; Mekkawy, D.; Othman, A.S.; Rizk, H.I.; et al. Changes in migraine characteristics over 30 days of Ramadan fasting: A prospective study. Headache 2021, 61, 1493–1498. [Google Scholar] [CrossRef]
- Cevoli, S.; Favoni, V.; Cortelli, P. Energy Metabolism Impairment in Migraine. Curr. Med. Chem. 2019, 26, 6253–6260. [Google Scholar] [CrossRef]
- Chinnery, P.F. Mitochondrial Disorders Overview. In GeneReviews ((R)); Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Jiang, L.; Ma, D.; Grubb, B.D.; Wang, M. ROS/TRPA1/CGRP signaling mediates cortical spreading depression. J. Headache Pain 2019, 20, 25. [Google Scholar] [CrossRef] [Green Version]
- Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative Stress and Inflammation: What Polyphenols Can Do for Us? Oxidative Med. Cell. Longev. 2016, 2016, 7432797. [Google Scholar] [CrossRef] [Green Version]
- Yamanaka, G.; Suzuki, S.; Morishita, N.; Takeshita, M.; Kanou, K.; Takamatsu, T.; Suzuki, S.; Morichi, S.; Watanabe, Y.; Ishida, Y.; et al. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine. Int. J. Mol. Sci. 2021, 22, 8929. [Google Scholar] [CrossRef]
- Lukacs, M.; Tajti, J.; Fulop, F.; Toldi, J.; Edvinsson, L.; Vecsei, L. Migraine, Neurogenic Inflammation, Drug Development—Pharmacochemical Aspects. Curr. Med. Chem. 2017, 24, 3649–3665. [Google Scholar] [CrossRef] [PubMed]
- Belanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab. 2011, 14, 724–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, B.; Barros, L.F. The Astrocyte: Powerhouse and Recycling Center. Cold Spring Harb. Perspect. Biol. 2015, 7, a020396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, D.G.; Almeida, R.F.; Souza, D.O.; Zimmer, E.R. The astrocyte biochemistry. Semin. Cell Dev. Biol. 2019, 95, 142–150. [Google Scholar] [CrossRef]
- Burda, J.E.; Bernstein, A.M.; Sofroniew, M.V. Astrocyte roles in traumatic brain injury. Exp. Neurol. 2016, 275 Pt 3, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Guillamon-Vivancos, T.; Gomez-Pinedo, U.; Matias-Guiu, J. Astrocytes in neurodegenerative diseases (I): Function and molecular description. Neurologia 2015, 30, 119–129. [Google Scholar] [CrossRef]
- Boison, D.; Steinhauser, C. Epilepsy and astrocyte energy metabolism. Glia 2018, 66, 1235–1243. [Google Scholar] [CrossRef]
- Qin, X.; Xu, Y.; Peng, S.; Qian, S.; Zhang, X.; Shen, S.; Yang, J.; Ye, J. Sodium butyrate opens mitochondrial permeability transition pore (MPTP) to induce a proton leak in induction of cell apoptosis. Biochem. Biophys. Res. Commun. 2020, 527, 611–617. [Google Scholar] [CrossRef]
- Xu, Y.; Peng, S.; Cao, X.; Qian, S.; Shen, S.; Luo, J.; Zhang, X.; Sun, H.; Shen, W.L.; Jia, W.; et al. High doses of butyrate induce a reversible body temperature drop through transient proton leak in mitochondria of brain neurons. Life Sci. 2021, 278, 119614. [Google Scholar] [CrossRef]
- Dong, X.; Guan, X.; Chen, K.; Jin, S.; Wang, C.; Yan, L.; Shi, Z.; Zhang, X.; Chen, L.; Wan, Q. Abnormal mitochondrial dynamics and impaired mitochondrial biogenesis in trigeminal ganglion neurons in a rat model of migraine. Neurosci. Lett. 2017, 636, 127–133. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, L.; Li, B.; Jiang, H.; Duan, Y.; Xie, Z.; Shuai, L.; Li, J.; Li, J. AMP-Activated Protein Kinase (AMPK) Regulates Energy Metabolism through Modulating Thermogenesis in Adipose Tissue. Front. Physiol. 2018, 9, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casucci, G.; Villani, V.; Cologno, D.; D’Onofrio, F. Migraine and metabolism. Neurol. Sci. 2012, 33 (Suppl. 1), S81–S85. [Google Scholar] [CrossRef] [PubMed]
- Yorns, W.R., Jr.; Hardison, H.H. Mitochondrial dysfunction in migraine. Semin. Pediatr. Neurol. 2013, 20, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Gross, E.C.; Putananickal, N.; Orsini, A.L.; Vogt, D.R.; Sandor, P.S.; Schoenen, J.; Fischer, D. Mitochondrial function and oxidative stress markers in higher-frequency episodic migraine. Sci. Rep. 2021, 11, 4543. [Google Scholar] [CrossRef] [PubMed]
- Oie, L.R.; Kurth, T.; Gulati, S.; Dodick, D.W. Migraine and risk of stroke. J. Neurol. Neurosurg. Psychiatry 2020, 91, 593–604. [Google Scholar] [CrossRef]
- Sacco, S.; Kurth, T. Migraine and the risk for stroke and cardiovascular disease. Curr. Cardiol. Rep. 2014, 16, 524. [Google Scholar] [CrossRef]
- Hoogeveen, E.S.; Arkink, E.B.; van der Grond, J.; van Buchem, M.A.; Ferrari, M.D.; Terwindt, G.M.; Kruit, M.C.; Group, P.S. MRI evaluation of the relationship between carotid artery endothelial shear stress and brain white matter lesions in migraine. J. Cereb. Blood Flow Metab. 2020, 40, 1040–1047. [Google Scholar] [CrossRef] [Green Version]
- Meilan, A.; Larrosa, D.; Ramon, C.; Cernuda-Morollon, E.; Martinez-Camblor, P.; Saiz, A.; Santamarta, E.; Perez-Pereda, S.; Pascual, J. No association between migraine frequency, white matter lesions and silent brain infarctions: A study in a series of women with chronic migraine. Eur. J. Neurol. 2020, 27, 1689–1696. [Google Scholar] [CrossRef]
- Younis, S.; Hougaard, A.; Vestergaard, M.B.; Larsson, H.B.W.; Ashina, M. Migraine and magnetic resonance spectroscopy: A systematic review. Curr. Opin. Neurol. 2017, 30, 246–262. [Google Scholar] [CrossRef]
- Gu, T.; Ma, X.X.; Xu, Y.H.; Xiu, J.J.; Li, C.F. Metabolite concentration ratios in thalami of patients with migraine and trigeminal neuralgia measured with 1H-MRS. Neurol. Res. 2008, 30, 229–233. [Google Scholar] [CrossRef]
- El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Fagherazzi, G.; El Fatouhi, D.; Fournier, A.; Gusto, G.; Mancini, F.R.; Balkau, B.; Boutron-Ruault, M.C.; Kurth, T.; Bonnet, F. Associations Between Migraine and Type 2 Diabetes in Women: Findings From the E3N Cohort Study. JAMA Neurol. 2019, 76, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Borkum, J.M. Migraine Triggers and Oxidative Stress: A Narrative Review and Synthesis. Headache 2016, 56, 12–35. [Google Scholar] [CrossRef] [PubMed]
- Tardiolo, G.; Bramanti, P.; Mazzon, E. Migraine: Experimental Models and Novel Therapeutic Approaches. Int. J. Mol. Sci. 2019, 20, 2932. [Google Scholar]
- Leung, D.T.H.; Chu, S. Measurement of Oxidative Stress: Mitochondrial Function Using the Seahorse System. Methods Mol. Biol. 2018, 1710, 285–293. [Google Scholar]
- Hardie, D.G.; Ross, F.A.; Hawley, S.A. AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Edvinsson, L.; Haanes, K.A.; Warfvinge, K. Does inflammation have a role in migraine? Nat. Rev. Neurol. 2019, 15, 483–490. [Google Scholar] [CrossRef]
- Ghaemi, A.; Alizadeh, L.; Babaei, S.; Jafarian, M.; Khaleghi Ghadiri, M.; Meuth, S.G.; Kovac, S.; Gorji, A. Astrocyte-mediated inflammation in cortical spreading depression. Cephalalgia 2018, 38, 626–638. [Google Scholar] [CrossRef]
- Close, L.N.; Eftekhari, S.; Wang, M.; Charles, A.C.; Russo, A.F. Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia 2019, 39, 428–434. [Google Scholar] [CrossRef]
- Bastany, Z.J.R.; Askari, S.; Dumont, G.A.; Kellinghaus, C.; Kazemi, A.; Gorji, A. Association of cortical spreading depression and seizures in patients with medically intractable epilepsy. Clin. Neurophysiol. 2020, 131, 2861–2874. [Google Scholar] [CrossRef]
- Wainsztein, N.; Rodriguez Lucci, F. Cortical Spreading Depression and Ischemia in Neurocritical Patients. Neurosurg. Clin. N. Am. 2018, 29, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Dahri, M.; Tarighat-Esfanjani, A.; Asghari-Jafarabadi, M.; Hashemilar, M. Oral coenzyme Q10 supplementation in patients with migraine: Effects on clinical features and inflammatory markers. Nutr. Neurosci. 2019, 22, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Andrabi, S.S.; Parvez, S.; Tabassum, H. Ischemic stroke and mitochondria: Mechanisms and targets. Protoplasma 2020, 257, 335–343. [Google Scholar] [CrossRef] [PubMed]
- A, N.K.; Sharma, R.P.; Colangelo, A.M.; Ignatenko, A.; Martorana, F.; Jennen, D.; Briede, J.J.; Brady, N.; Barberis, M.; Mondeel, T.; et al. ROS networks: Designs, aging, Parkinson’s disease and precision therapies. NPJ Syst. Biol. Appl. 2020, 6, 34. [Google Scholar]
- Tonnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2017, 57, 1105–1121. [Google Scholar] [CrossRef] [Green Version]
Name | Forward (5′-3′) | Reverse (5′-3′) |
---|---|---|
IL-1β | GGACAAGCTGAGGAAGATGC | TGGAGAACACCACTTGTTGC |
IL-6 | CTCCCAACAGACCTGTCTATAC | CCATTGCACAACTCTTTTCTCA |
IL-1Ra | TTGTGCCAAGTCTGGAGATG | CTCAGAGCGGATGAAGGTAAAG |
18s | GCCGCTAGAGGTGAAATTCT | TCGGAACTACGACGGTATCT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Ye, X.; Zhou, Y.; Peng, S.; Zheng, P.; Zhang, X.; Yang, J.; Xu, Y. Energy Metabolic Disorder of Astrocytes May Be an Inducer of Migraine Attack. Brain Sci. 2022, 12, 844. https://doi.org/10.3390/brainsci12070844
Li J, Ye X, Zhou Y, Peng S, Zheng P, Zhang X, Yang J, Xu Y. Energy Metabolic Disorder of Astrocytes May Be an Inducer of Migraine Attack. Brain Sciences. 2022; 12(7):844. https://doi.org/10.3390/brainsci12070844
Chicago/Turabian StyleLi, Junhua, Xiaotong Ye, Yang Zhou, Shiqiao Peng, Peibing Zheng, Xiaoxiao Zhang, Jiajun Yang, and Yanhong Xu. 2022. "Energy Metabolic Disorder of Astrocytes May Be an Inducer of Migraine Attack" Brain Sciences 12, no. 7: 844. https://doi.org/10.3390/brainsci12070844
APA StyleLi, J., Ye, X., Zhou, Y., Peng, S., Zheng, P., Zhang, X., Yang, J., & Xu, Y. (2022). Energy Metabolic Disorder of Astrocytes May Be an Inducer of Migraine Attack. Brain Sciences, 12(7), 844. https://doi.org/10.3390/brainsci12070844