The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review
Abstract
:1. Introduction
2. Anatomical Overview
2.1. Cholinergic System
2.1.1. Sources
2.1.2. Inputs
2.1.3. Outputs
2.2. Noradrenergic System
2.2.1. Sources
2.2.2. Inputs
2.2.3. Outputs
2.3. Direct Communication between the Cholinergic and Noradrenergic Systems
2.4. Indirect Communication of Cholinergic and Noradrenergic Systems
3. Role of Acetylcholine in the Brain
3.1. Major Cholinergic Receptor Subtypes and Function
3.2. Cholinergic Involvement in Learning and Decision Making
3.3. Cholinergic Involvement in Attention
4. Role of Norepinephrine in the Brain
4.1. Major Noradrenergic Receptor Subtypes
4.2. Noradrenergic Involvement in Learning and Decision Making
4.3. Noradrenergic Involvement in Attention
5. Functional Interplay between the Cholinergic and Noradrenergic Systems
5.1. ACh and NE in Attention
5.2. ACh and NE in Learning and Decision Making
6. Future Directions
7. Conclusions
Funding
Disclaimer
References
- Bianconi, E.; Piovesan, A.; Facchin, F.; Beraudi, A.; Casadei, R.; Frabetti, F.; Vitale, L.; Pelleri, M.C.; Tassani, S.; Piva, F.; et al. An estimation of the number of cells in the human body. Ann. Hum. Biol. 2013, 40, 463–471. [Google Scholar] [CrossRef]
- Newman, E.A. New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci. 2003, 26, 536–542. [Google Scholar] [CrossRef]
- Marinelli, S.; Basilico, B.; Marrone, M.C.; Ragozzino, D. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin. Cell Dev. Biol. 2019, 94, 138–151. [Google Scholar] [CrossRef]
- Hyman, S.E. Neurotransmitters. Curr. Biol. 2005, 15, R154–R158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedergaard, M.; Takano, T.; Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 2002, 3, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.F.; Kriegstein, A.R. Is there more to GABA than synaptic inhibition? Nat. Rev. Neurosci. 2002, 3, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Kurcyus, K.; Annac, E.; Hanning, N.M.; Harris, A.D.; Oeltzschner, G.; Edden, R.; Riedl, V. Opposite Dynamics of GABA and Glutamate Levels in the Occipital Cortex during Visual Processing. J. Neurosci. 2018, 38, 9967–9976. [Google Scholar] [CrossRef]
- Carlsson, A.; Waters, N.; Holm-Waters, S.; Tedroff, J.; Nilsson, M.; Carlsson, M.L. Interactions Between Monoamines, Glutamate, and GABA in Schizophrenia: New Evidence. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 237–260. [Google Scholar] [CrossRef]
- Marmigere, F.; Rage, F.; Tapia-Arancibia, L. GABA-glutamate interaction in the control of BDNF expression in hypothalamic neurons. Neurochem. Int. 2003, 42, 353–358. [Google Scholar] [CrossRef]
- Katz, P.; Edwards, D. Beyond Neurotransmission; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Agnati, L.F.; Leo, G.; Zanardi, A.; Genedani, S.; Rivera, A.; Fuxe, K.; Guidolin, D. Volume transmission and wiring transmission from cellular to molecular networks: History and perspectives. Acta Physiol. 2006, 187, 329–344. [Google Scholar] [CrossRef]
- Zaborszky, L. The modular organization of brain systems. Basal forebrain: The last frontier. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2002; Volume 136, pp. 359–372. [Google Scholar]
- Golmayo, L.; Nunez, A.; Zaborszky, L. Electrophysiological evidence for the existence of a posterior cortical-prefrontal-basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience 2003, 119, 597–609. [Google Scholar] [CrossRef]
- Briand, L.A.; Gritton, H.; Howe, W.M.; Young, D.A.; Sarter, M. Modulators in concert for cognition: Modulator interactions in the prefrontal cortex. Prog. Neurobiol. 2007, 83, 69–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blokland, A. Acetylcholine: A neurotransmitter for learning and memory? Brain Res. Rev. 1995, 21, 285–300. [Google Scholar] [CrossRef]
- Sarter, M.; Bruno, J.P. Cognitive functions of cortical acetylcholine: Toward a unifying hypothesis. Brain Res. Brain Res. Rev. 1997, 23, 28–46. [Google Scholar] [CrossRef]
- Parikh, V.; Kozak, R.; Martinez, V.; Sarter, M. Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 2007, 56, 141–154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goard, M.; Dan, Y. Basal forebrain activation enhances cortical coding of natural scenes. Nat. Neurosci. 2009, 12, 1444–1449. [Google Scholar] [CrossRef]
- Rodenkirch, C.; Wang, Q. Rapid and transient enhancement of thalamic information transmission induced by vagus nerve stimulation. J. Neural. Eng. 2020, 17, 026027. [Google Scholar] [CrossRef]
- Rodenkirch, C.; Liu, Y.; Schriver, B.J.; Wang, Q. Locus coeruleus activation enhances thalamic feature selectivity via norepinephrine regulation of intrathalamic circuit dynamics. Nat. Neurosci. 2019, 22, 120–133. [Google Scholar] [CrossRef]
- Schwarz, L.A.; Luo, L. Organization of the locus coeruleus-norepinephrine system. Curr. Biol. 2015, 25, R1051–R1056. [Google Scholar] [CrossRef] [Green Version]
- Devilbiss, D.M.; Page, M.E.; Waterhouse, B.D. Locus Ceruleus Regulates Sensory Encoding by Neurons and Networks in Waking Animals. J. Neurosci. 2006, 26, 9860–9872. [Google Scholar] [CrossRef]
- Vazey, E.M.; Moorman, D.E.; Aston-Jones, G. Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc. Natl. Acad. Sci. USA 2018, 115, E9439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Bari, B.A.; Cohen, J.Y.; O’Connor, D.H. Locus coeruleus spiking differently correlates with S1 cortex activity and pupil diameter in a tactile detection task. eLife 2021, 10, e64327. [Google Scholar] [CrossRef]
- Liu, Y.; Narasimhan, S.; Schriver, B.J.; Wang, Q. Perceptual Behavior Depends Differently on Pupil-Linked Arousal and Heartbeat Dynamics-Linked Arousal in Rats Performing Tactile Discrimination Tasks. Front. Syst. Neurosci. 2021, 14, 614248. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, T.J.; Connor, S.A.; Guglietta, R.; Nguyen, P.V. beta-Adrenergic receptor signaling and modulation of long-term potentiation in the mammalian hippocampus. Learn Mem. 2015, 22, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.C.; Berridge, C.W. Receptor and circuit mechanisms underlying differential procognitive actions of psychostimulants. Neuropsychopharmacology 2019, 44, 1820–1827. [Google Scholar] [CrossRef]
- Usher, M.; Cohen, J.D.; Servan-Schreiber, D.; Rajkowski, J.; Aston-Jones, G. The Role of Locus Coeruleus in the Regulation of Cognitive Performance. Science 1999, 283, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Janitzky, K.; Lippert, M.T.; Engelhorn, A.; Tegtmeier, J.; Goldschmidt, J.; Heinze, H.-J.; Ohl, F.W. Optogenetic silencing of locus coeruleus activity in mice impairs cognitive flexibility in an attentional set-shifting task. Front. Behav. Neurosci. 2015, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Aston-Jones, G.; Rajkowski, J.; Cohen, J. Locus coeruleus and regulation of behavioral flexibility and attention. In Progress in Brain Research; Uylings, H.B.M., Eden, G.G.V., Bruin, J.P.C.D., Feenstra, M.G.P., Pennartz, C.M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 126, pp. 165–182. [Google Scholar]
- Kalwani, R.M.; Joshi, S.; Gold, J.I. Phasic Activation of Individual Neurons in the Locus Ceruleus/Subceruleus Complex of Monkeys Reflects Rewarded Decisions to Go But Not Stop. J. Neurosci. 2014, 34, 13656–13669. [Google Scholar] [CrossRef] [Green Version]
- Schriver, B.; Bagdasarov, S.; Wang, Q. Pupil-linked arousal modulates behavior in rats performing a whisker deflection direction discrimination task. J. Neurophysiol. 2018, 120, 1655–1670. [Google Scholar] [CrossRef] [Green Version]
- Schriver, B.J.; Perkins, S.M.; Sajda, P.; Wang, Q. Interplay between components of pupil-linked phasic arousal and its role in driving behavioral choice in Go/No-Go perceptual decision-making. Psychophysiology 2020, 57, e13565. [Google Scholar] [CrossRef]
- Slater, C.; Wang, Q. Alzheimer’s disease: An evolving understanding of noradrenergic involvement and the promising future of electroceutical therapies. Clin. Transl. Med. 2021, 11, e397. [Google Scholar] [CrossRef] [PubMed]
- Furey, M.L. The prominent role of stimulus processing: Cholinergic function and dysfunction in cognition. Curr. Opin. Neurol. 2011, 24, 364–370. [Google Scholar] [CrossRef] [Green Version]
- Bohnen, N.I.; Albin, R.L. The cholinergic system and Parkinson disease. Behav. Brain Res. 2011, 221, 564–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, K.-i.; Shinba, T.; Yoshii, M. Psychiatric symptoms of noradrenergic dysfunction: A pathophysiological view. Psychiatry Clin. Neurosci. 2014, 68, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Marien, M.R.; Colpaert, F.C.; Rosenquist, A.C. Noradrenergic mechanisms in neurodegenerative diseases: A theory. Brain Res. Rev. 2004, 45, 38–78. [Google Scholar] [CrossRef]
- Doppler, C.E.J.; Smit, J.A.M.; Hommelsen, M.; Seger, A.; Horsager, J.; Kinnerup, M.B.; Hansen, A.K.; Fedorova, T.D.; Knudsen, K.; Otto, M.; et al. Microsleep disturbances are associated with noradrenergic dysfunction in Parkinson’s disease. Sleep 2021, 44, zsab040. [Google Scholar] [CrossRef]
- Weinshenker, D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci. 2018, 41, 211–223. [Google Scholar] [CrossRef]
- Gannon, M.; Che, P.; Chen, Y.; Jiao, K.; Roberson, E.D.; Wang, Q. Noradrenergic dysfunction in Alzheimer’s disease. Front. Neurosci. 2015, 9, 220. [Google Scholar] [CrossRef] [Green Version]
- Sarter, M.; Bruno, J.P. Cortical cholinergic inputs mediating arousal, attentional processing and dreaming: Differential afferent regulation of the basal forebrain by telencephalic and brainstem afferents. Neuroscience 1999, 95, 933–952. [Google Scholar] [CrossRef]
- Lehmann, J.; Nagy, J.I.; Atmadia, S.; Fibiger, H.C. The nucleus basalis magnocellularis: The origin of a cholinergic projection to the neocortex of the rat. Neuroscience 1980, 5, 1161–1174. [Google Scholar] [CrossRef]
- Levey, A.I.; Hallanger, A.E.; Wainer, B.H. Cholinergic nucleus basalis neurons may influence the cortex via the thalamus. Neurosci. Lett. 1987, 74, 7–13. [Google Scholar] [CrossRef]
- Bergado, J.A.; Frey, S.; Lopez, J.; Almaguer-Melian, W.; Frey, J.U. Cholinergic afferents to the locus coeruleus and noradrenergic afferents to the medial septum mediate LTP-reinforcement in the dentate gyrus by stimulation of the amygdala. Neurobiol. Learn Mem 2007, 88, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Satoh, K.; Fibiger, H.C. Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections. J. Comp. Neurol. 1986, 253, 277–302. [Google Scholar] [CrossRef] [PubMed]
- Mesulam, M.M. Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 2013, 521, 4124–4144. [Google Scholar] [CrossRef] [Green Version]
- Higo, S.; Matsuyama, T.; Kawamura, S. Direct projections from the pedunculopontine and laterodorsal tegmental nuclei to area 17 of the visual cortex in the cat. Neurosci. Res. 1996, 26, 109–118. [Google Scholar] [CrossRef]
- Bloem, B.; Schoppink, L.; Rotaru, D.C.; Faiz, A.; Hendriks, P.; Mansvelder, H.D.; van de Berg, W.D.; Wouterlood, F.G. Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. J. Neurosci. 2014, 34, 16234–16246. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yu, B.; Sun, Q.; Zhang, Y.; Ren, M.; Zhang, X.; Li, A.; Yuan, J.; Madisen, L.; Luo, Q.; et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons. Proc. Natl. Acad. Sci. USA 2018, 115, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Woolf, N.J. Cholinergic systems in mammalian brain and spinal cord. Prog. Neurobiol. 1991, 37, 475–524. [Google Scholar] [CrossRef]
- Rye, D.B.; Wainer, B.H.; Mesulam, M.M.; Mufson, E.J.; Saper, C.B. Cortical projections arising from the basal forebrain: A study of cholinergic and noncholinergic components employing combined retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 1984, 13, 627–643. [Google Scholar] [CrossRef]
- Kaneko, S.; Hikida, T.; Watanabe, D.; Ichinose, H.; Nagatsu, T.; Kreitman, R.J.; Pastan, I.; Nakanishi, S. Synaptic integration mediated by striatal cholinergic interneurons in basal ganglia function. Science 2000, 289, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Bickford, M.E.; Gunluk, A.E.; Van Horn, S.C.; Sherman, S.M. GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat. J. Comp. Neurol. 1994, 348, 481–510. [Google Scholar] [CrossRef] [PubMed]
- van der Zee, E.A.; Luiten, P.G. Muscarinic acetylcholine receptors in the hippocampus, neocortex and amygdala: A review of immunocytochemical localization in relation to learning and memory. Prog. Neurobiol. 1999, 58, 409–471. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jung, A.-H.; Jeong, D.; Choi, I.; Kim, K.; Shin, S.; Kim, S.J.; Lee, S.-H. Selectivity of Neuromodulatory Projections from the Basal Forebrain and Locus Ceruleus to Primary Sensory Cortices. J. Neurosci. 2016, 36, 5314–5327. [Google Scholar] [CrossRef] [PubMed]
- Chavez, C.; Zaborszky, L. Basal Forebrain Cholinergic-Auditory Cortical Network: Primary Versus Nonprimary Auditory Cortical Areas. Cereb Cortex 2017, 27, 2335–2347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, G.N.; Semba, K.; Rasmusson, D.D. Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience 2004, 126, 257–262. [Google Scholar] [CrossRef]
- Liu, A.K.L.; Gentleman, S.M. The diagonal band of Broca in health and disease. In Handbook of Clinical Neurology; Swaab, D.F., Kreier, F., Lucassen, P.J., Salehi, A., Buijs, R.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; Volume 179, pp. 175–187. [Google Scholar]
- Mechawar, N.; Cozzari, C.; Descarries, L. Cholinergic innervation in adult rat cerebral cortex: A quantitative immunocytochemical description. J. Comp. Neurol. 2000, 428, 305–318. [Google Scholar] [CrossRef]
- Smiley, J.F.; Mesulam, M.M. Cholinergic neurons of the nucleus basalis of Meynert receive cholinergic, catecholaminergic and GABAergic synapses: An electron microscopic investigation in the monkey. Neuroscience 1999, 88, 241–255. [Google Scholar] [CrossRef]
- Mesulam, M.M. The cholinergic innervation of the human cerebral cortex. Prog. Brain Res. 2004, 145, 67–78. [Google Scholar] [CrossRef]
- Samuels, E.R.; Szabadi, E. Functional neuroanatomy of the noradrenergic locus coeruleus: Its roles in the regulation of arousal and autonomic function part II: Physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans. Curr. Neuropharmacol. 2008, 6, 254–285. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.E.; Cuello, A.C. Afferents to the basal forebrain cholinergic cell area from pontomesencephalic--catecholamine, serotonin, and acetylcholine--neurons. Neuroscience 1989, 31, 37–61. [Google Scholar] [CrossRef]
- Khateb, A.; Fort, P.; Williams, S.; Serafin, M.; Muhlethaler, M.; Jones, B.E. GABAergic input to cholinergic nucleus basalis neurons. Neuroscience 1998, 86, 937–947. [Google Scholar] [CrossRef]
- Rodriguez-Garcia, G.; Miranda, M.I. Opposing Roles of Cholinergic and GABAergic Activity in the Insular Cortex and Nucleus Basalis Magnocellularis during Novel Recognition and Familiar Taste Memory Retrieval. J. Neurosci. 2016, 36, 1879–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casamenti, F.; Deffenu, G.; Abbamondi, A.L.; Pepeu, G. Changes in cortical acetylcholine output induced by modulation of the nucleus basalis. Brain Res. Bull 1986, 16, 689–695. [Google Scholar] [CrossRef]
- Semba, K.; Reiner, P.B.; McGeer, E.G.; Fibiger, H.C. Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J. Comp. Neurol. 1988, 267, 433–453. [Google Scholar] [CrossRef]
- Semba, K.; Fibiger, H.C. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro- and antero-grade transport and immunohistochemical study. J. Comp. Neurol. 1992, 323, 387–410. [Google Scholar] [CrossRef]
- Brudzynski, S.M.; Kadishevitz, L.; Fu, X.W. Mesolimbic component of the ascending cholinergic pathways: Electrophysiological-pharmacological study. J. Neurophysiol. 1998, 79, 1675–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Gonzalez, C.; Bolam, J.P.; Mena-Segovia, J. Topographical organization of the pedunculopontine nucleus. Front. Neuroanat. 2011, 5, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumura, M.; Nambu, A.; Yamaji, Y.; Watanabe, K.; Imai, H.; Inase, M.; Tokuno, H.; Takada, M. Organization of somatic motor inputs from the frontal lobe to the pedunculopontine tegmental nucleus in the macaque monkey. Neuroscience 2000, 98, 97–110. [Google Scholar] [CrossRef]
- Schofield, B.R.; Motts, S.D. Projections from auditory cortex to cholinergic cells in the midbrain tegmentum of guinea pigs. Brain Res. Bull 2009, 80, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Florio, T.; Scarnati, E.; Confalone, G.; Minchella, D.; Galati, S.; Stanzione, P.; Stefani, A.; Mazzone, P. High-frequency stimulation of the subthalamic nucleus modulates the activity of pedunculopontine neurons through direct activation of excitatory fibres as well as through indirect activation of inhibitory pallidal fibres in the rat. Eur. J. Neurosci. 2007, 25, 1174–1186. [Google Scholar] [CrossRef]
- Granata, A.R.; Kitai, S.T. Intracellular analysis of excitatory subthalamic inputs to the pedunculopontine neurons. Brain Res 1989, 488, 57–72. [Google Scholar] [CrossRef]
- Granata, A.R.; Kitai, S.T. Inhibitory substantia nigra inputs to the pedunculopontine neurons. Exp. Brain Res. 1991, 86, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Hammond, C.; Rouzaire-Dubois, B.; Feger, J.; Jackson, A.; Crossman, A.R. Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and nucleus tegmenti pedunculopontinus in the rat. Neuroscience 1983, 9, 41–52. [Google Scholar] [CrossRef]
- Smith, Y.; Bolam, J.P.; Von Krosigk, M. Topographical and Synaptic Organization of the GABA-Containing Pallidosubthalamic Projection in the Rat. Eur. J. Neurosci. 1990, 2, 500–511. [Google Scholar] [CrossRef]
- Moriizumi, T.; Hattori, T. Separate neuronal populations of the rat globus pallidus projecting to the subthalamic nucleus, auditory cortex and pedunculopontine tegmental area. Neuroscience 1992, 46, 701–710. [Google Scholar] [CrossRef]
- Haber, S.N.; Lynd, E.; Klein, C.; Groenewegen, H.J. Topographic organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study. J. Comp. Neurol. 1990, 293, 282–298. [Google Scholar] [CrossRef]
- Noda, T.; Oka, H. Nigral inputs to the pedunculopontine region: Intracellular analysis. Brain Res 1984, 322, 332–336. [Google Scholar] [CrossRef]
- Jones, B.E.; Yang, T.Z. The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 1985, 242, 56–92. [Google Scholar] [CrossRef]
- Steininger, T.L.; Rye, D.B.; Wainer, B.H. Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J. Comp. Neurol. 1992, 321, 515–543. [Google Scholar] [CrossRef]
- Segal, M. Brain stem afferents to the rat medial septum. J. Physiol. 1976, 261, 617–631. [Google Scholar] [CrossRef] [Green Version]
- Vertes, R.P. Brainstem afferents to the basal forebrain in the rat. Neuroscience 1988, 24, 907–935. [Google Scholar] [CrossRef]
- Borhegyi, Z.; Magloczky, Z.; Acsady, L.; Freund, T.F. The supramammillary nucleus innervates cholinergic and GABAergic neurons in the medial septum-diagonal band of Broca complex. Neuroscience 1998, 82, 1053–1065. [Google Scholar] [CrossRef]
- Steriade, M.; Datta, S.; Pare, D.; Oakson, G.; Curro Dossi, R.C. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 1990, 10, 2541–2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steriade, M.; Parent, A.; Pare, D.; Smith, Y. Cholinergic and non-cholinergic neurons of cat basal forebrain project to reticular and mediodorsal thalamic nuclei. Brain Res. 1987, 408, 372–376. [Google Scholar] [CrossRef]
- Mesulam, M.M.; Mufson, E.J.; Levey, A.I.; Wainer, B.H. Cholinergic innervation of cortex by the basal forebrain: Cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 1983, 214, 170–197. [Google Scholar] [CrossRef]
- Steckler, T.; Inglis, W.; Winn, P.; Sahgal, A. The pedunculopontine tegmental nucleus: A role in cognitive processes? Brain Res. Brain Res. Rev. 1994, 19, 298–318. [Google Scholar] [CrossRef]
- Mena-Segovia, J.; Bolam, J.P. Rethinking the Pedunculopontine Nucleus: From Cellular Organization to Function. Neuron 2017, 94, 7–18. [Google Scholar] [CrossRef] [Green Version]
- Kami, K.; Tajima, F.; Senba, E. Activation of mesolimbic reward system via laterodorsal tegmental nucleus and hypothalamus in exercise-induced hypoalgesia. Sci. Rep. 2018, 8, 11540. [Google Scholar] [CrossRef] [Green Version]
- Grzanna, R.; Molliver, M.E. The locus coeruleus in the rat: An immunohistochemical delineation. Neuroscience 1980, 5, 21–40. [Google Scholar] [CrossRef]
- Swanson, L.W.; Hartman, B.K. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J. Comp. Neurol. 1975, 163, 467–505. [Google Scholar] [CrossRef]
- Sara, S.J.; Bouret, S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 2012, 76, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Foote, S.L.; Bloom, F.E.; Aston-Jones, G. Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiol. Rev. 1983, 63, 844–914. [Google Scholar] [CrossRef] [PubMed]
- Dahlström, A.; Fuxe, K. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons; Almqvist & Wiksell: Uppsala, Sweden, 1964. [Google Scholar]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; et al. Locus coeruleus: A new look at the blue spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef] [PubMed]
- Fallon, J.H.; Koziell, D.A.; Moore, R.Y. Catecholamine innervation of the basal forebrain. II. Amygdala, suprarhinal cortex and entorhinal cortex. J. Comp. Neurol. 1978, 180, 509–532. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.H.; Molliver, M.E.; Grzanna, R.; Coyle, J.T. Noradrenergic innervation patterns in three regions of medial cortex: An immunofluorescence characterization. Brain Res Bull 1979, 4, 849–857. [Google Scholar] [CrossRef]
- Berridge, C.W.; Waterhouse, B.D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. Brain Res. Brain Res. Rev. 2003, 42, 33–84. [Google Scholar] [CrossRef]
- Agster, K.L.; Mejias-Aponte, C.A.; Clark, B.D.; Waterhouse, B.D. Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. J. Comp. Neurol. 2013, 521, 2195–2207. [Google Scholar] [CrossRef] [Green Version]
- Giustino, T.F.; Maren, S. Noradrenergic Modulation of Fear Conditioning and Extinction. Front. Behav. Neurosci. 2018, 12, 43. [Google Scholar] [CrossRef]
- Jänig, W. Integrative Action of the Autonomic Nervous System: Neurobiology of Homeostasis; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Farmer, D.G.S.; Pracejus, N.; Dempsey, B.; Turner, A.; Bokiniec, P.; Paton, J.F.R.; Pickering, A.E.; Burguet, J.; Andrey, P.; Goodchild, A.K.; et al. On the presence and functional significance of sympathetic premotor neurons with collateralized spinal axons in the rat. J. Physiol. 2019, 597, 3407–3423. [Google Scholar] [CrossRef]
- Totah, N.K.B.; Logothetis, N.K.; Eschenko, O. Noradrenergic ensemble-based modulation of cognition over multiple timescales. Brain Res. 2019, 1709, 50–66. [Google Scholar] [CrossRef]
- Shipley, M.T.; Fu, L.; Ennis, M.; Liu, W.-L.; Aston-Jones, G. Dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. J. Comp. Neurol. 1996, 365, 56–68. [Google Scholar] [CrossRef]
- Schwarz, L.A.; Miyamichi, K.; Gao, X.J.; Beier, K.T.; Weissbourd, B.; DeLoach, K.E.; Ren, J.; Ibanes, S.; Malenka, R.C.; Kremer, E.J.; et al. Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 2015, 524, 88–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totah, N.K.; Neves, R.M.; Panzeri, S.; Logothetis, N.K.; Eschenko, O. The Locus Coeruleus Is a Complex and Differentiated Neuromodulatory System. Neuron 2018, 99, 1055–1068.e1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aston-Jones, G.; Ennis, M.; Pieribone, V.A.; Nickell, W.T.; Shipley, M.T. The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network. Science 1986, 234, 734–737. [Google Scholar] [CrossRef] [PubMed]
- Cedarbaum, J.M.; Aghajanian, G.K. Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J. Comp. Neurol. 1978, 178, 1–15. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Shipley, M.T.; Chouvet, G.; Ennis, M.; van Bockstaele, E.; Pieribone, V.; Shiekhattar, R.; Akaoka, H.; Drolet, G.; Astier, B.; et al. Afferent regulation of locus coeruleus neurons: Anatomy, physiology and pharmacology. In Progress in Brain Research; Barnes, C.D., Pompeiano, O., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 88, pp. 47–75. [Google Scholar]
- De Cicco, V.; Tramonti Fantozzi, M.P.; Cataldo, E.; Barresi, M.; Bruschini, L.; Faraguna, U.; Manzoni, D. Trigeminal, Visceral and Vestibular Inputs May Improve Cognitive Functions by Acting through the Locus Coeruleus and the Ascending Reticular Activating System: A New Hypothesis. Front. Neuroanat. 2018, 11, 130. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; De Cicco, V.; Argento, S.; De Cicco, D.; Barresi, M.; Cataldo, E.; Bruschini, L.; d’Ascanio, P.; Faraguna, U.; Manzoni, D. Trigeminal input, pupil size and cognitive performance: From oral to brain matter. Brain Res. 2021, 1751, 147194. [Google Scholar] [CrossRef]
- Rodenkirch, C.; Carmel, J.; Wang, Q. Rapid Effects of Vagus Nerve Stimulation on Sensory Processing Through Activation of Neuromodulatory Systems. Front. Neurosci. 2022, 16. [Google Scholar] [CrossRef]
- Tramonti Fantozzi, M.P.; De Cicco, V.; De Cicco, D.; d’Ascanio, P.; Cataldo, E.; Bruschini, L.; Faraguna, U.; Manzoni, D. Chewing and Cognitive Improvement: The Side Matters. Front. Syst. Neurosci. 2021, 15, 158. [Google Scholar] [CrossRef]
- Luppi, P.H.; Aston-Jones, G.; Akaoka, H.; Chouvet, G.; Jouvet, M. Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and Phaseolus vulgaris leucoagglutinin. Neuroscience 1995, 65, 119–160. [Google Scholar] [CrossRef]
- Abrams, P.; Andersson, K.E.; Buccafusco, J.J.; Chapple, C.; de Groat, W.C.; Fryer, A.D.; Kay, G.; Laties, A.; Nathanson, N.M.; Pasricha, P.J.; et al. Muscarinic receptors: Their distribution and function in body systems, and the implications for treating overactive bladder. Br. J. Pharm. 2006, 148, 565–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breton-Provencher, V.; Sur, M. Active control of arousal by a locus coeruleus GABAergic circuit. Nat. Neurosci. 2019, 22, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.A.; Morrison, J.H. Noradrenergic innervation of monkey prefrontal cortex: A dopamine-beta-hydroxylase immunohistochemical study. J. Comp. Neurol. 1989, 282, 317–330. [Google Scholar] [CrossRef] [PubMed]
- Morrison, J.H.; Foote, S.L. Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in Old and New World monkeys. J. Comp. Neurol. 1986, 243, 117–138. [Google Scholar] [CrossRef] [PubMed]
- Kebschull, J.M.; Garcia da Silva, P.; Reid, A.P.; Peikon, I.D.; Albeanu, D.F.; Zador, A.M. High-Throughput Mapping of Single-Neuron Projections by Sequencing of Barcoded RNA. Neuron 2016, 91, 975–987. [Google Scholar] [CrossRef]
- Hirschberg, S.; Li, Y.; Randall, A.; Kremer, E.J.; Pickering, A.E. Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife 2017, 6, e29808. [Google Scholar] [CrossRef]
- Chandler, D.J.; Gao, W.J.; Waterhouse, B.D. Heterogeneous organization of the locus coeruleus projections to prefrontal and motor cortices. Proc. Natl. Acad. Sci. USA 2014, 111, 6816–6821. [Google Scholar] [CrossRef] [Green Version]
- Zerbi, V.; Floriou-Servou, A.; Markicevic, M.; Vermeiren, Y.; Sturman, O.; Privitera, M.; von Ziegler, L.; Ferrari, K.D.; Weber, B.; De Deyn, P.P.; et al. Rapid Reconfiguration of the Functional Connectome after Chemogenetic Locus Coeruleus Activation. Neuron 2019, 103, 702–718.e705. [Google Scholar] [CrossRef]
- Liu, Y.; Rodenkirch, C.; Moskowitz, N.; Schriver, B.; Wang, Q. Dynamic Lateralization of Pupil Dilation Evoked by Locus Coeruleus Activation Results from Sympathetic, Not Parasympathetic, Contributions. Cell Rep. 2017, 20, 3099–3112. [Google Scholar] [CrossRef]
- Robertson, S.D.; Plummer, N.W.; de Marchena, J.; Jensen, P. Developmental origins of central norepinephrine neuron diversity. Nat. Neurosci. 2013, 16, 1016–1023. [Google Scholar] [CrossRef] [Green Version]
- Jones, B.E. Noradrenergic locus coeruleus neurons: Their distant connections and their relationship to neighboring (including cholinergic and GABAergic) neurons of the central gray and reticular formation. In Progress in Brain Research; Barnes, C.D., Pompeiano, O., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 88, pp. 15–30. [Google Scholar]
- Williams, J.A.; Reiner, P.B. Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J. Neurosci. 1993, 13, 3878–3883. [Google Scholar] [CrossRef] [PubMed]
- Pisani, A.; Bonsi, P.; Centonze, D.; Martorana, A.; Fusco, F.; Sancesario, G.; De Persis, C.; Bernardi, G.; Calabresi, P. Activation of β1-Adrenoceptors Excites Striatal Cholinergic Interneurons through a cAMP-Dependent, Protein Kinase-Independent Pathway. J. Neurosci. 2003, 23, 5272–5282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manns, I.D.; Lee, M.G.; Modirrousta, M.; Hou, Y.P.; Jones, B.E. Alpha 2 adrenergic receptors on GABAergic, putative sleep-promoting basal forebrain neurons. Eur. J. Neurosci. 2003, 18, 723–727. [Google Scholar] [CrossRef]
- Szabadi, E. Functional neuroanatomy of the central noradrenergic system. J. Psychopharmacol. 2013, 27, 659–693. [Google Scholar] [CrossRef]
- Carter, M.E.; Yizhar, O.; Chikahisa, S.; Nguyen, H.; Adamantidis, A.; Nishino, S.; Deisseroth, K.; de Lecea, L. Tuning arousal with optogenetic modulation of locus coeruleus neurons. Nat. Neurosci. 2010, 13, 1526–1533. [Google Scholar] [CrossRef]
- Xu, M.; Chung, S.; Zhang, S.; Zhong, P.; Ma, C.; Chang, W.-C.; Weissbourd, B.; Sakai, N.; Luo, L.; Nishino, S.; et al. Basal forebrain circuit for sleep-wake control. Nat. Neurosci. 2015, 18, 1641–1647. [Google Scholar] [CrossRef]
- Rho, H.-J.; Kim, J.-H.; Lee, S.-H. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front. Neural. Circuits 2018, 12, 47. [Google Scholar] [CrossRef]
- Lena, C.; de Kerchove D’Exaerde, A.; Cordero-Erausquin, M.; Le Novere, N.; del Mar Arroyo-Jimenez, M.; Changeux, J.P. Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc. Natl. Acad. Sci. USA 1999, 96, 12126–12131. [Google Scholar] [CrossRef] [Green Version]
- Woo, R.S.; Park, E.Y.; Shin, M.S.; Jeong, M.S.; Zhao, R.J.; Shin, B.S.; Kim, C.J.; Park, J.W.; Kim, K.W. Mechanism of nicotine-evoked release of 3H-noradrenaline in human cerebral cortex slices. Br J. Pharm. 2002, 137, 1063–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Etri, M.M.; Ennis, M.; Griff, E.R.; Shipley, M.T. Evidence for cholinergic regulation of basal norepinephrine release in the rat olfactory bulb. Neuroscience 1999, 93, 611–617. [Google Scholar] [CrossRef]
- Lomax, P.; Foster, R.S.; Kirkpatrick, W.E. Cholinergic and adrenergic interactions in the thermoregulatory centers of the rat. Brain Res. 1969, 15, 431–438. [Google Scholar] [CrossRef]
- Brown, V.J.; Bowman, E.M. Rodent models of prefrontal cortical function. Trends Neurosci. 2002, 25, 340–343. [Google Scholar] [CrossRef]
- Dalley, J.W.; Cardinal, R.N.; Robbins, T.W. Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neurosci. Biobehav. Rev. 2004, 28, 771–784. [Google Scholar] [CrossRef] [PubMed]
- Furuyashiki, T.; Gallagher, M. Neural encoding in the orbitofrontal cortex related to goal-directed behavior. Ann. N. Y. Acad. Sci. 2007, 1121, 193–215. [Google Scholar] [CrossRef]
- Robbins, T.W. Chemical neuromodulation of frontal-executive functions in humans and other animals. Exp. Brain Res. 2000, 133, 130–138. [Google Scholar] [CrossRef]
- Chandler, D.J.; Lamperski, C.S.; Waterhouse, B.D. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Res. 2013, 1522, 38–58. [Google Scholar] [CrossRef] [Green Version]
- Eisenach, J.C.; Detweiler, D.J.; Tong, C.; D’Angelo, R.; Hood, D.D. Cerebrospinal Fluid Norepinephrine and Acetylcholine Concentrations During Acute Pain. Anesth. Analg. 1996, 82, 621–626. [Google Scholar] [CrossRef]
- Decker, M.W.; McGaugh, J.L. The role of interactions between the cholinergic system and other neuromodulatory systems in learing and memory. Synapse 1991, 7, 151–168. [Google Scholar] [CrossRef]
- Mason, S.T.; Fibiger, H.C. Interaction between noradrenergic and cholinergic systems in the rat brain: Behavioural function in locomotor activity. Neuroscience 1979, 4, 517–525. [Google Scholar] [CrossRef]
- Beane, M.; Marrocco, R.T. Norepinephrine and acetylcholine mediation of the components of reflexive attention: Implications for attention deficit disorders. Prog. Neurobiol. 2004, 74, 167–181. [Google Scholar] [CrossRef]
- Wotton, C.A.; Cross, C.D.; Bekar, L.K. Serotonin, norepinephrine, and acetylcholine differentially affect astrocytic potassium clearance to modulate somatosensory signaling in male mice. J. Neurosci. Res. 2020, 98, 964–977. [Google Scholar] [CrossRef] [PubMed]
- Barik, J.; Wonnacott, S. Indirect Modulation by α7 Nicotinic Acetylcholine Receptors of Noradrenaline Release in Rat Hippocampal Slices: Interaction with Glutamate and GABA Systems and Effect of Nicotine Withdrawal. Mol. Pharmacol. 2006, 69, 618–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, K.L.; Giacobini, E. Effects of local and repeated systemic administration of (−)nicotine on extracellular levels of acetylcholine, norepinephrine, dopamine, and serotonin in rat cortex. Neurochem. Res. 1995, 20, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Dani, J.A. Overview of nicotinic receptors and their roles in the central nervous system. Biol. Psychiatry 2001, 49, 166–174. [Google Scholar] [CrossRef]
- Colquhoun, L.M.; Patrick, J.W. Pharmacology of neuronal nicotinic acetylcholine receptor subtypes. Adv Pharm. 1997, 39, 191–220. [Google Scholar] [CrossRef]
- Le Novere, N.; Changeux, J.P. Molecular evolution of the nicotinic acetylcholine receptor: An example of multigene family in excitable cells. J. Mol. Evol. 1995, 40, 155–172. [Google Scholar] [CrossRef]
- McGehee, D.S.; Role, L.W. Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu. Rev. Physiol. 1995, 57, 521–546. [Google Scholar] [CrossRef]
- Charpantier, E.; Barneoud, P.; Moser, P.; Besnard, F.; Sgard, F. Nicotinic acetylcholine subunit mRNA expression in dopaminergic neurons of the rat substantia nigra and ventral tegmental area. Neuroreport 1998, 9, 3097–3101. [Google Scholar] [CrossRef]
- Tribollet, E.; Bertrand, D.; Marguerat, A.; Raggenbass, M. Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: An autoradiographic study in the rat brain. Neuroscience 2004, 124, 405–420. [Google Scholar] [CrossRef]
- Alkondon, M.; Pereira, E.F.; Eisenberg, H.M.; Albuquerque, E.X. Nicotinic receptor activation in human cerebral cortical interneurons: A mechanism for inhibition and disinhibition of neuronal networks. J. Neurosci. 2000, 20, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Frazier, C.J.; Buhler, A.V.; Weiner, J.L.; Dunwiddie, T.V. Synaptic potentials mediated via alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors in rat hippocampal interneurons. J. Neurosci. 1998, 18, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porter, J.T.; Cauli, B.; Tsuzuki, K.; Lambolez, B.; Rossier, J.; Audinat, E. Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J. Neurosci. 1999, 19, 5228–5235. [Google Scholar] [CrossRef]
- Levy, R.B.; Aoki, C. Alpha7 nicotinic acetylcholine receptors occur at postsynaptic densities of AMPA receptor-positive and -negative excitatory synapses in rat sensory cortex. J. Neurosci. 2002, 22, 5001–5015. [Google Scholar] [CrossRef] [PubMed]
- Sihver, W.; Gillberg, P.G.; Nordberg, A. Laminar distribution of nicotinic receptor subtypes in human cerebral cortex as determined by [3H](-)nicotine, [3H]cytisine and [3H]epibatidine in vitro autoradiography. Neuroscience 1998, 85, 1121–1133. [Google Scholar] [CrossRef]
- Albuquerque, E.X.; Alkondon, M.; Pereira, E.F.; Castro, N.G.; Schrattenholz, A.; Barbosa, C.T.; Bonfante-Cabarcas, R.; Aracava, Y.; Eisenberg, H.M.; Maelicke, A. Properties of neuronal nicotinic acetylcholine receptors: Pharmacological characterization and modulation of synaptic function. J. Pharm. Exp. 1997, 280, 1117–1136. [Google Scholar]
- Smythies, J. The Neuromodulators; Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- Adem, A.; Jolkkonen, M.; Bogdanovic, N.; Islam, A.; Karlsson, E. Localization of M1 muscarinic receptors in rat brain using selective muscarinic toxin-1. Brain Res. Bull 1997, 44, 597–601. [Google Scholar] [CrossRef]
- Mrzljak, L.; Levey, A.I.; Belcher, S.; Goldman-Rakic, P.S. Localization of the m2 muscarinic acetylcholine receptor protein and mRNA in cortical neurons of the normal and cholinergically deafferented rhesus monkey. J. Comp. Neurol. 1998, 390, 112–132. [Google Scholar] [CrossRef]
- Wei, J.; Walton, E.A.; Milici, A.; Buccafusco, J.J. m1–m5 muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J. Neurochem. 1994, 63, 815–821. [Google Scholar] [CrossRef]
- Marino, M.J.; Rouse, S.T.; Levey, A.I.; Potter, L.T.; Conn, P.J. Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc. Natl. Acad. Sci. USA 1998, 95, 11465–11470. [Google Scholar] [CrossRef] [Green Version]
- Fisahn, A.; Yamada, M.; Duttaroy, A.; Gan, J.W.; Deng, C.X.; McBain, C.J.; Wess, J. Muscarinic induction of hippocampal gamma oscillations requires coupling of the M1 receptor to two mixed cation currents. Neuron 2002, 33, 615–624. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, S.E.; Nathanson, N.M. The M1 receptor is required for muscarinic activation of mitogen-activated protein (MAP) kinase in murine cerebral cortical neurons. J. Biol. Chem. 2001, 276, 15850–15853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berkeley, J.L.; Gomeza, J.; Wess, J.; Hamilton, S.E.; Nathanson, N.M.; Levey, A.I. M1 muscarinic acetylcholine receptors activate extracellular signal-regulated kinase in CA1 pyramidal neurons in mouse hippocampal slices. Mol. Cell Neurosci. 2001, 18, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Berkeley, J.L.; Levey, A.I. Muscarinic activation of mitogen-activated protein kinase in PC12 cells. J. Neurochem. 2000, 75, 487–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naude, J.; Dongelmans, M.; Faure, P. Nicotinic alteration of decision-making. Neuropharmacology 2015, 96, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Kolokotroni, K.Z.; Rodgers, R.J.; Harrison, A.A. Acute nicotine increases both impulsive choice and behavioural disinhibition in rats. Psychopharmacology 2011, 217, 455–473. [Google Scholar] [CrossRef] [PubMed]
- Pittaras, E.C.; Faure, A.; Leray, X.; Moraitopoulou, E.; Cressant, A.; Rabat, A.A.; Meunier, C.; Fossier, P.; Granon, S. Neuronal Nicotinic Receptors Are Crucial for Tuning of E/I Balance in Prelimbic Cortex and for Decision-Making Processes. Front. Psychiatry 2016, 7, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomsen, M.S.; Hansen, H.H.; Timmerman, D.B.; Mikkelsen, J.D. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Curr. Pharm. Des. 2010, 16, 323–343. [Google Scholar] [CrossRef]
- Mendez, I.A.; Gilbert, R.J.; Bizon, J.L.; Setlow, B. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost-benefit decision making tasks in rats. Psychopharmacology 2012, 224, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, J.A.; Ding, J.B.; Surmeier, D.J. Muscarinic modulation of striatal function and circuitry. Handb. Exp. Pharm. 2012, 223–241. [Google Scholar] [CrossRef]
- Silveira, M.M.; Malcolm, E.; Shoaib, M.; Winstanley, C.A. Scopolamine and amphetamine produce similar decision-making deficits on a rat gambling task via independent pathways. Behav. Brain Res. 2015, 281, 86–95. [Google Scholar] [CrossRef]
- Howe, W.M.; Gritton, H.J.; Lusk, N.A.; Roberts, E.A.; Hetrick, V.L.; Berke, J.D.; Sarter, M. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection. J. Neurosci. 2017, 37, 3215–3230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tort, A.B.; Komorowski, R.W.; Manns, J.R.; Kopell, N.J.; Eichenbaum, H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 2009, 106, 20942–20947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ridley, R.M.; Baker, H.F.; Drewett, B.; Johnson, J.A. Effects of ibotenic acid lesions of the basal forebrain on serial reversal learning in marmosets. Psychopharmacology 1985, 86, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Groman, S.M. The Neurobiology of Impulsive Decision-Making and Reinforcement Learning in Nonhuman Animals. Curr. Top Behav. Neurosci. 2020, 47, 23–52. [Google Scholar] [CrossRef]
- Hasselmo, M.E.; Bower, J.M. Acetylcholine and memory. Trends Neurosci. 1993, 16, 218–222. [Google Scholar] [CrossRef]
- Doya, K. Metalearning and neuromodulation. Neural. Netw. 2002, 15, 495–506. [Google Scholar] [CrossRef]
- Gold, P.E. Acetylcholine modulation of neural systems involved in learning and memory. NeuroBiol. Learn Mem. 2003, 80, 194–210. [Google Scholar] [CrossRef]
- Passetti, F.; Dalley, J.W.; O’Connell, M.T.; Everitt, B.J.; Robbins, T.W. Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur. J. Neurosci. 2000, 12, 3051–3058. [Google Scholar] [CrossRef]
- Mirza, N.R.; Stolerman, I.P. The role of nicotinic and muscarinic acetylcholine receptors in attention. Psychopharmacology 2000, 148, 243–250. [Google Scholar] [CrossRef]
- Robbins, T.W. The 5-choice serial reaction time task: Behavioural pharmacology and functional neurochemistry. Psychopharmacology 2002, 163, 362–380. [Google Scholar] [CrossRef]
- Howe, W.M.; Ji, J.; Parikh, V.; Williams, S.; Mocaer, E.; Trocme-Thibierge, C.; Sarter, M. Enhancement of attentional performance by selective stimulation of alpha4beta2(*) nAChRs: Underlying cholinergic mechanisms. Neuropsychopharmacology 2010, 35, 1391–1401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guillem, K.; Bloem, B.; Poorthuis, R.B.; Loos, M.; Smit, A.B.; Maskos, U.; Spijker, S.; Mansvelder, H.D. Nicotinic acetylcholine receptor beta2 subunits in the medial prefrontal cortex control attention. Science 2011, 333, 888–891. [Google Scholar] [CrossRef] [PubMed]
- Furey, M.L.; Pietrini, P.; Haxby, J.V.; Drevets, W.C. Selective effects of cholinergic modulation on task performance during selective attention. Neuropsychopharmacology 2008, 33, 913–923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erskine, F.F.; Ellis, J.R.; Ellis, K.A.; Stuber, E.; Hogan, K.; Miller, V.; Moore, E.; Bartholomeusz, C.; Harrison, B.J.; Lee, B.; et al. Evidence for synergistic modulation of early information processing by nicotinic and muscarinic receptors in humans. Hum. Psychopharmacol. 2004, 19, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Mentis, M.J.; Sunderland, T.; Lai, J.; Connolly, C.; Krasuski, J.; Levine, B.; Friz, J.; Sobti, S.; Schapiro, M.; Rapoport, S.I. Muscarinic versus nicotinic modulation of a visual task. a pet study using drug probes. Neuropsychopharmacology 2001, 25, 555–564. [Google Scholar] [CrossRef] [Green Version]
- Herrero, J.L.; Roberts, M.J.; Delicato, L.S.; Gieselmann, M.A.; Dayan, P.; Thiele, A. Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 2008, 454, 1110–1114. [Google Scholar] [CrossRef]
- Zink, N.; Bensmann, W.; Arning, L.; Stock, A.K.; Beste, C. CHRM2 Genotype Affects Inhibitory Control Mechanisms During Cognitive Flexibility. Mol. Neurobiol. 2019, 56, 6134–6141. [Google Scholar] [CrossRef]
- Ahlquist, R.P. A study of the adrenotropic receptors. Am. J. Physiol. 1948, 153, 586–600. [Google Scholar] [CrossRef]
- Blendy, J.A.; Grimm, L.J.; Perry, D.C.; West-Johnsrud, L.; Kellar, K.J. Electroconvulsive shock differentially increases binding to alpha-1 adrenergic receptor subtypes in discrete regions of rat brain. J. Neurosci. 1990, 10, 2580–2586. [Google Scholar] [CrossRef]
- Papay, R.; Gaivin, R.; Jha, A.; McCune, D.F.; McGrath, J.C.; Rodrigo, M.C.; Simpson, P.C.; Doze, V.A.; Perez, D.M. Localization of the mouse alpha1A-adrenergic receptor (AR) in the brain: alpha1AAR is expressed in neurons, GABAergic interneurons, and NG2 oligodendrocyte progenitors. J. Comp. Neurol. 2006, 497, 209–222. [Google Scholar] [CrossRef]
- Tanoue, A.; Nasa, Y.; Koshimizu, T.; Shinoura, H.; Oshikawa, S.; Kawai, T.; Sunada, S.; Takeo, S.; Tsujimoto, G. The α1D-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J. Clin. Investig. 2002, 109, 765–775. [Google Scholar] [CrossRef]
- Cavalli, A.; Lattion, A.-L.; Hummler, E.; Nenniger, M.; Pedrazzini, T.; Aubert, J.-F.; Michel, M.C.; Yang, M.; Lembo, G.; Vecchione, C.; et al. Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 11589–11594. [Google Scholar] [CrossRef] [Green Version]
- Rokosh, D.G.; Simpson, P.C. Knockout of the α1A/C-adrenergic receptor subtype: The α1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc. Natl. Acad. Sci. USA 2002, 99, 9474–9479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, M.; Kojima, M.; Koyanagi, Y.; Adachi, K.; Imamura, K.; Koshikawa, N. Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of α1- and β-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex. Synapse 2009, 63, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Mouradian, R.D.; Sessler, F.M.; Waterhouse, B.D. Noradrenergic potentiation of excitatory transmitter action in cerebrocortical slices: Evidence for mediation by an α1 receptor-linked second messenger pathway. Brain Res. 1991, 546, 83–95. [Google Scholar] [CrossRef]
- Gordon, G.R.J.; Bains, J.S. Priming of Excitatory Synapses by α1 Adrenoceptor-Mediated Inhibition of Group III Metabotropic Glutamate Receptors. J. Neurosci. 2003, 23, 6223–6231. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Tang, H.; Li, B.-m.; Li, S.-h. Activation of α1-adrenoceptors enhances excitatory synaptic transmission via a pre- and postsynaptic protein kinase C-dependent mechanism in the medial prefrontal cortex of rats. Eur. J. Neurosci. 2014, 39, 1281–1293. [Google Scholar] [CrossRef]
- Velásquez-Martinez, M.C.; Vázquez-Torres, R.; Jiménez-Rivera, C.A. Activation of alpha1-adrenoceptors enhances glutamate release onto ventral tegmental area dopamine cells. Neuroscience 2012, 216, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, D.-P.; Pan, H.-L. Presynaptic α1 Adrenergic Receptors Differentially Regulate Synaptic Glutamate and GABA Release to Hypothalamic Presympathetic Neurons. J. Pharmacol. Exp. Ther. 2006, 316, 733–742. [Google Scholar] [CrossRef]
- Marek, G.J.; Aghajanian, G.K. 5-HT2A receptor or α1-adrenoceptor activation induces excitatory postsynaptic currents in layer V pyramidal cells of the medial prefrontal cortex. Eur. J. Pharmacol. 1999, 367, 197–206. [Google Scholar] [CrossRef]
- Shao, Y.; Sutin, J. Expression of adrenergic receptors in individual astrocytes and motor neurons isolated from the adult rat brain. Glia 1992, 6, 108–117. [Google Scholar] [CrossRef]
- Bekar, L.K.; He, W.; Nedergaard, M. Locus Coeruleus α-Adrenergic–Mediated Activation of Cortical Astrocytes In Vivo. Cereb. Cortex 2008, 18, 2789–2795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulik, A.; Haentzsch, A.; Lückermann, M.; Reichelt, W.; Ballanyi, K. Neuron–Glia Signaling via α1 Adrenoceptor-Mediated Ca2+ Release in Bergmann Glial Cells In Situ. J. Neurosci. 1999, 19, 8401–8408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, D.M. alpha1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front. Pharm. 2020, 11, 581098. [Google Scholar] [CrossRef]
- Trendelenburg, A.U.; Limberger, N.; Rump, L.C. Alpha 2-adrenergic receptors of the alpha 2c subtype mediate inhibition of norepinephrine release in human kidney cortex. Mol. Pharmacol. 1994, 45, 1168–1176. [Google Scholar] [PubMed]
- Giovannitti, J.A., Jr.; Thoms, S.M.; Crawford, J.J. Alpha-2 adrenergic receptor agonists: A review of current clinical applications. Anesth. Prog. 2015, 62, 31–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bylund, D.B. Alpha-2 Adrenoceptors. In xPharm: The Comprehensive Pharmacology Reference; Enna, S.J., Bylund, D.B., Eds.; Elsevier: New York, NY, USA, 2007; pp. 1–9. [Google Scholar]
- Philipp, M.; Brede, M.; Hein, L. Physiological significance of alpha(2)-adrenergic receptor subtype diversity: One receptor is not enough. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 283, R287–R295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagena, H.; Hansen, N.; Manahan-Vaughan, D. β-Adrenergic Control of Hippocampal Function: Subserving the Choreography of Synaptic Information Storage and Memory. Cereb. Cortex 2016, 26, 1349–1364. [Google Scholar] [CrossRef] [Green Version]
- Dayan, P.; Yu, A.J. Phasic norepinephrine: A neural interrupt signal for unexpected events. Network 2006, 17, 335–350. [Google Scholar] [CrossRef] [Green Version]
- Ego-Stengel, V.; Bringuier, V.; Shulz, D.E. Noradrenergic modulation of functional selectivity in the cat visual cortex: An in vivo extracellular and intracellular study. Neuroscience 2002, 111, 275–289. [Google Scholar] [CrossRef]
- Bouret, S.; Sara, S.J. Network reset: A simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci. 2005, 28, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Gold, J.I. Context-dependent relationships between locus coeruleus firing patterns and coordinated neural activity in the anterior cingulate cortex. eLife 2022, 11, e63490. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q. Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity. Neuroscience 2002, 111, 815–835. [Google Scholar] [CrossRef]
- Montes, D.R.; Stopper, C.M.; Floresco, S.B. Noradrenergic modulation of risk/reward decision making. Psychopharmacology 2015, 232, 2681–2696. [Google Scholar] [CrossRef]
- Kim, S.; Bobeica, I.; Gamo, N.J.; Arnsten, A.F.; Lee, D. Effects of alpha-2A adrenergic receptor agonist on time and risk preference in primates. Psychopharmacology 2012, 219, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Steere, J.C.; Arnsten, A.F. The alpha-2A noradrenergic receptor agonist guanfacine improves visual object discrimination reversal performance in aged rhesus monkeys. Behav. Neurosci. 1997, 111, 883–891. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Chiang, C.; Alexinsky, T. Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Prog. Brain Res. 1991, 88, 501–520. [Google Scholar]
- Foote, S.L.; Berridge, C.W.; Adams, L.M.; Pineda, J.A. Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting, and attending. Prog. Brain Res. 1991, 88, 521–532. [Google Scholar] [CrossRef]
- Aston-Jones, G.; Bloom, F.E. Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1981, 1, 876–886. [Google Scholar] [CrossRef]
- Livingstone, M.S.; Hubel, D.H. Effects of sleep and arousal on the processing of visual information in the cat. Nature 1981, 291, 554–561. [Google Scholar] [CrossRef]
- McCormick, D.A.; Pape, H.C.; Williamson, A. Actions of norepinephrine in the cerebral cortex and thalamus: Implications for function of the central noradrenergic system. In Progress in Brain Research; Barnes, C.D., Pompeiano, O., Eds.; Elsevier: Amsterdam, The Netherlands, 1991; Volume 88, pp. 293–305. [Google Scholar]
- Mountcastle, V.B.; Andersen, R.A.; Motter, B.C. The influence of attentive fixation upon the excitability of the light- sensitive neurons of the posterior parietal cortex. J. Neurosci. 1981, 1, 1218. [Google Scholar] [CrossRef] [Green Version]
- Hyvarinen, J.; Poranen, A.; Jokinen, Y. Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. J. Neurophysiol. 1980, 43, 870–882. [Google Scholar] [CrossRef]
- Coull, J.T.; Nobre, A.C.; Frith, C.D. The Noradrenergic α2 Agonist Clonidine Modulates Behavioural and Neuroanatomical Correlates of Human Attentional Orienting and Alerting. Cereb. Cortex 2001, 11, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spencer, T.; Biederman, J.; Heiligenstein, J.; Wilens, T.; Faries, D.; Prince, J.; Faraone, S.V.; Rea, J.; Witcher, J.; Zervas, S. An open-label, dose-ranging study of atomoxetine in children with attention deficit hyperactivity disorder. J. Child Adolesc. Psychopharmacol. 2001, 11, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Sigurdardottir, H.L.; Kranz, G.S.; Rami-Mark, C.; James, G.M.; Vanicek, T.; Gryglewski, G.; Berroterán-Infante, N.; Kautzky, A.; Hienert, M.; Traub-Weidinger, T.; et al. Association of norepinephrine transporter methylation with in vivo NET expression and hyperactivity-impulsivity symptoms in ADHD measured with PET. Mol. Psychiatry 2021, 26, 1009–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dippel, G.; Mückschel, M.; Ziemssen, T.; Beste, C. Demands on response inhibition processes determine modulations of theta band activity in superior frontal areas and correlations with pupillometry—Implications for the norepinephrine system during inhibitory control. NeuroImage 2017, 157, 575–585. [Google Scholar] [CrossRef]
- Eggermann, E.; Kremer, Y.; Crochet, S.; Petersen, C.C.H. Cholinergic Signals in Mouse Barrel Cortex during Active Whisker Sensing. Cell Rep. 2014, 9, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Aston-Jones, G.; Cohen, J.D. An integrative theory of locus coeruleus-norepinephrine function: Adaptive gain and optimal performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [Green Version]
- Steriade, M.; McCarley, R.W. Brain Control of Wakefulness and Sleep; Springer: Boston, MA, USA, 2005. [Google Scholar]
- Reimer, J.; McGinley, M.J.; Liu, Y.; Rodenkirch, C.; Wang, Q.; McCormick, D.A.; Tolias, A.S. Pupil fluctuations track rapid changes in adrenergic and cholinergic activity in cortex. Nat. Commun. 2016, 7, 13289. [Google Scholar] [CrossRef]
- Hirata, A.; Aguilar, J.; Castro-Alamancos, M.A. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus. J. Neurosci. 2006, 26, 4426–4436. [Google Scholar] [CrossRef]
- Koger, S.M.; Mair, R.G. Depletion of cortical norepinephrine in rats by 6-hydroxydopamine does not impair performance of a delayed-nonmatching-to-sample task. Behav. Neurosci. 1992, 106, 718–721. [Google Scholar] [CrossRef] [PubMed]
- McGaughy, J.; Sandstrom, M.; Ruland, S.; Bruno, J.P.; Sarter, M. Lack of effects of lesions of the dorsal noradrenergic bundle on behavioral vigilance. Behav. Neurosci. 1997, 111, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Chandler, D.; Waterhouse, B.D. Evidence for broad versus segregated projections from cholinergic and noradrenergic nuclei to functionally and anatomically discrete subregions of prefrontal cortex. Front. Behav. Neurosci. 2012, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalley, J.W.; McGaughy, J.; Connell, M.T.; Cardinal, R.N.; Levita, L.; Robbins, T.W. Distinct Changes in Cortical Acetylcholine and Noradrenaline Efflux during Contingent and Noncontingent Performance of a Visual Attentional Task. J. Neurosci. 2001, 21, 4908. [Google Scholar] [CrossRef] [Green Version]
- McGaughy, J.; Ross, R.S.; Eichenbaum, H. Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. Neuroscience 2008, 153, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Disney, A.A. Neuromodulatory Control of Early Visual Processing in Macaque. Annu. Rev. Vis. Sci. 2021, 7, 181–199. [Google Scholar] [CrossRef]
- Doya, K. Modulators of decision making. Nat. Neurosci. 2008, 11, 410–416. [Google Scholar] [CrossRef]
- Sethuramanujam, S.; Matsumoto, A.; deRosenroll, G.; Murphy-Baum, B.; Grosman, C.; McIntosh, J.M.; Jing, M.; Li, Y.; Berson, D.; Yonehara, K.; et al. Rapid multi-directed cholinergic transmission in the central nervous system. Nat. Commun. 2021, 12, 1374. [Google Scholar] [CrossRef]
- Yu, A.J.; Dayan, P. Uncertainty, neuromodulation, and attention. Neuron 2005, 46, 681–692. [Google Scholar] [CrossRef] [Green Version]
- Deppe, M.; Schwindt, W.; Kugel, H.; Plaßmann, H.; Kenning, P. Nonlinear Responses Within the Medial Prefrontal Cortex Reveal When Specific Implicit Information Influences Economic Decision Making. J. Neuroimaging 2005, 15, 171–182. [Google Scholar] [CrossRef]
- Euston, D.R.; Gruber, A.J.; McNaughton, B.L. The Role of Medial Prefrontal Cortex in Memory and Decision Making. Neuron 2012, 76, 1057–1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orsini, C.A.; Heshmati, S.C.; Garman, T.S.; Wall, S.C.; Bizon, J.L.; Setlow, B. Contributions of medial prefrontal cortex to decision making involving risk of punishment. Neuropharmacology 2018, 139, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.H.; Kim, H.; Huh, N.; Lee, D.; Jung, M.W. Distinct Roles of Rodent Orbitofrontal and Medial Prefrontal Cortex in Decision Making. Neuron 2010, 66, 449–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodenkirch, C.; Schriver, B.; Wang, Q. Brain-Machine Interfaces: Restoring and Establishing Communication Channels. In Neural Engineering: From Advanced Biomaterials to 3D Fabrication Techniques; Zhang, L., Kaplan, D., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slater, C.; Liu, Y.; Weiss, E.; Yu, K.; Wang, Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sci. 2022, 12, 890. https://doi.org/10.3390/brainsci12070890
Slater C, Liu Y, Weiss E, Yu K, Wang Q. The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sciences. 2022; 12(7):890. https://doi.org/10.3390/brainsci12070890
Chicago/Turabian StyleSlater, Cody, Yuxiang Liu, Evan Weiss, Kunpeng Yu, and Qi Wang. 2022. "The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review" Brain Sciences 12, no. 7: 890. https://doi.org/10.3390/brainsci12070890
APA StyleSlater, C., Liu, Y., Weiss, E., Yu, K., & Wang, Q. (2022). The Neuromodulatory Role of the Noradrenergic and Cholinergic Systems and Their Interplay in Cognitive Functions: A Focused Review. Brain Sciences, 12(7), 890. https://doi.org/10.3390/brainsci12070890