Prediction of Higher Ki-67 Index in Pituitary Adenomas by Pre- and Intra-Operative Clinical Characteristics
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Data Collection
2.3. Statistical Analyses
3. Results
3.1. Patients
3.2. Prediction of Risk Factors Associated with KI-67 Index
3.3. Development and Validation of the Nomogram
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aflorei, E.D.; Korbonits, M. Epidemiology and etiopathogenesis of pituitary adenomas. J. Neurooncol. 2014, 117, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Asa, S.L.; Casar-Borota, O.; Chanson, P.; Delgrange, E.; Earls, P.; Ezzat, S.; Grossman, A.; Ikeda, H.; Inoshita, N.; Karavitaki, N.; et al. From pituitary adenoma to pituitary neuroendocrine tumor (PitNET): An International Pituitary Pathology Club proposal. Endocr. Relat. Cancer 2017, 24, C5–C8. [Google Scholar] [CrossRef] [PubMed]
- Lopes, M.B.S. World Health Ozganization 2017 Classification of Pituitary Tumors. Endocrinol. Metab. Clin. N. Am. 2020, 49, 375–386. [Google Scholar] [CrossRef]
- Dai, C.; Liu, X.; Ma, W.; Wang, R. The Treatment of Refractory Pituitary Adenomas. Front. Endocrinol. 2019, 10, 334. [Google Scholar] [CrossRef] [PubMed]
- Gerges, M.M.; Rumalla, K.; Godil, S.S.; Younus, I.; Elshamy, W.; Dobri, G.A.; Kacker, A.; Tabaee, A.; Anand, V.K.; Schwartz, T.H. Long-term outcomes after endoscopic endonasal surgery for nonfunctioning pituitary macroadenomas. J. Neurosurg. 2020, 31, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Sadeghipour, A.; Mahouzi, L.; Salem, M.M.; Ebrahimnejad, S.; Asadi-Lari, M.; Radfar, A.; Filip, I.; Babaheidarian, P. Ki67 Labeling Correlated with Invasion but Not with Recurrence. Appl. Immunohistochem. Mol. Morphol. 2017, 25, 341–345. [Google Scholar] [CrossRef]
- Šteňo, A.; Bocko, J.; Rychlý, B.; Chorvath, M.; Celec, P.; Fabián, M.; Belan, V.; Šteňo, J. Nonfunctioning pituitary adenomas: Association of Ki-67 and HMGA-1 labeling indices with residual tumor growth. Acta Neurochir. 2014, 156, 451–461; discussion 461. [Google Scholar] [CrossRef]
- Ugga, L.; Cuocolo, R.; Solari, D.; Guadagno, E.; D’Amico, A.; Somma, T.; Cappabianca, P.; del Basso de Caro, M.L.D.; Cavallo, L.M.; Brunetti, A. Prediction of high proliferative index in pituitary macroadenomas using MRI-based radiomics and machine learning. Neuroradiology 2019, 61, 1365–1373. [Google Scholar] [CrossRef]
- Conficoni, A.; Feraco, P.; Mazzatenta, D.; Zoli, M.; Asioli, S.; Zenesini, C.; Fabbri, V.P.; Cellerini, M.; Bacci, A. Biomarkers of pituitary macroadenomas aggressive behaviour: A conventional MRI and DWI 3T study. Br. J. Radiol. 2020, 93, 20200321. [Google Scholar] [CrossRef]
- Melmed, S. Pituitary-Tumor Endocrinopathies. N. Engl. J. Med. 2020, 382, 937–950. [Google Scholar] [CrossRef]
- Mercado, M.; Melgar, V.; Salame, L.; Cuenca, D. Clinically non-functioning pituitary adenomas: Pathogenic, diagnostic and therapeutic aspects. Endocrinol. Diabetes Nutr. 2017, 64, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Das, C.; Mondal, P.; Mukhopadhyay, M.; Mukhopadhyay, S.; Ghosh, I.; Handral, A. Evaluation of prognostic utility of Ki-67, P53, and O-6-methylguanine-DNA methyltransferase expression in pituitary tumors. J. Lab. Physicians 2019, 11, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Glebauskiene, B.; Liutkeviciene, R.; Vilkeviciute, A.; Gudinaviciene, I.; Rocyte, A.; Simonaviciute, D.; Mazetyte, R.; Kriauciuniene, L.; Zaliuniene, D. Association of Ki-67 Labelling Index and IL-17A with Pituitary Adenoma. Biomed. Res. Int. 2018, 31, 7490585. [Google Scholar] [CrossRef]
- Trouillas, J.; Jaffrain-Rea, M.L.; Vasiljevic, A.; Raverot, G.; Roncaroli, F.; Villa, C. How to Classify the Pituitary Neuroendocrine Tumors (PitNET)s in 2020. Cancers 2020, 12, 514. [Google Scholar] [CrossRef]
- Raverot, G.; Vasiljevic, A.; Jouanneau, E.; Trouillas, J. A prognostic clinicopathologic classification of pituitary endocrine tumors. Endocrinol. Metab. Clin. N. Am. 2015, 44, 11–18. [Google Scholar] [CrossRef]
- Trott, G.; Ongaratti, B.R.; de Oliveira Silva, C.B.; Abech, G.D.; Haag, T.; Rech, C.G.S.L.; Ferreira, N.P.; Oliveira, M.D.C.; Pereira-Lima, J.F.S. PTTG overexpression in non-functioning pituitary adenomas: Correlation with invasiveness, female gender and younger age. Ann. Diagn. Pathol. 2019, 41, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Hongo, K.; Tada, T.; Sakai, K.; Kakizawa, Y.; Kobayashi, S. Growth pattern and rate in residual nonfunctioning pituitary adenomas: Correlations among tumor volume doubling time, patient age, and MIB-1 index. J. Neurosurg. 2003, 98, 359–365. [Google Scholar] [CrossRef]
- Lyu, W.; Fei, X.; Chen, C.; Tang, Y. Nomogram predictive model of post-operative recurrence in non-functioning pituitary adenoma. Gland. Surg. 2021, 10, 807–815. [Google Scholar] [CrossRef]
- Mohseni, S.; Aboeerad, M.; Sharifi, F.; Tavangar, S.M.; Mohajeri-Tehrani, M. Associations of Ki-67 Labeling Index with Clinical and Paraclinical Features of Growth Hormone-Secreting Pituitary Adenomas: A Single Center Report from Iran. Int. J. Endocrinol. Metab. 2019, 17, e81983. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, J.; Yang, J.; Tang, C.; Yuan, F.; Cong, Z.; Ma, C. A Nomogram for Preoperatively Predicting the Ki-67 Index of a Pituitary Tumor: A Retrospective Cohort Study. Front. Oncol. 2021, 11, 687333. [Google Scholar] [CrossRef]
- Khasraw, M.; Ameratunga, M.S.; Grant, R.; Wheeler, H.; Pavlakis, N. Antiangiogenic therapy for high-grade glioma. Cochrane Database Syst. Rev. 2014, 22, CD008218. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, Z.; Tian, J.; Pan, R. Ki-67 labeling index and Knosp classification of pituitary adenomas. Br. J. Neurosurg. 2021, 27, 1–5. [Google Scholar] [CrossRef]
- Ito, M.; Kuge, A.; Matsuda, K.I.; Sato, S.; Kayama, T.; Sonoda, Y. The Likelihood of Remnant Nonfunctioning Pituitary Adenomas Shrinking Is Associated with the Lesion’s Blood Supply Pattern. World Neurosurg. 2017, 107, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Matano, F.; Yoshida, D.; Ishii, Y.; Tahara, S.; Teramoto, A.; Morita, A. Endocan, a new invasion and angiogenesis marker of pituitary adenomas. J. Neurooncol. 2014, 117, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, S.; Hayase, M.; Imamura, H.; Oda, Y.; Kikuchi, H.; Katayama, M.; Ishihara, T. A case of intrasellar meningioma mimicking pituitary adenoma. No Shinkei Geka 2001, 29, 551–557. [Google Scholar] [PubMed]
- Takasugi, N.; Doi, A. Pituitary hemorrhage extending into the third ventricle. Neurol. Med. Chir. 1989, 29, 908–911. [Google Scholar] [CrossRef][Green Version]
Variables | Ki-67 < 3% (n = 72) | Ki-67 ≥ 3% (n = 106) | t/χ2 | p-Value |
---|---|---|---|---|
Age (year) | 56.94 ± 9.80 | 50.46 ± 12.99 | 3.594 | 0.0004 |
Sex | ||||
Male | 37 (51.39%) | 49 (46.23%) | 0.458 | 0.499 |
Female | 35 (48.61%) | 57 (53.77%) | ||
FSH | ||||
Yes | 34 (47.22%) | 35 (33.02%) | 3.644 | 0.056 |
No | 38 (52.78%) | 71 (66.98%) | ||
LH | ||||
Yes | 13 (18.06%) | 35 (33.02%) | 0.034 | 0.853 |
No | 59 (81.94%) | 88 (83.02%) | ||
PRL | ||||
Yes | 19 (26.39%) | 35 (33.02%) | 0.892 | 0.345 |
No | 53 (73.61%) | 71 (66.98%) | ||
GH | ||||
Yes | 14 (19.44%) | 23 (21.70%) | 0.132 | 0.716 |
No | 58 (80.56%) | 83 (78.30%) | ||
TSH | ||||
Yes | 5 (6.94%) | 4 (3.77%) | 0.898 | 0.343 |
No | 67 (93.06%) | 102 (96.23%) | ||
ATCH | ||||
Yes | 6 (8.33%) | 12 (11.32%) | 0.421 | 0.516 |
No | 66 (91.67%) | 94 (88.68%) | ||
Knosp grade | ||||
<3 | 53 (73.61%) | 81 (76.42%) | 0.181 | 0.670 |
≥3 | 19 (26.39%) | 25 (23.58%) | ||
Tumor breaking through sellar floor | ||||
Yes | 6 (8.33%) | 14 (13.21%) | 1.021 | 0.312 |
No | 66 (91.67%) | 92 (86.79%) | ||
Rich blood supply to the tumor | ||||
Yes | 27 (37.50%) | 84 (79.25%) | 31.830 | <0.0001 |
No | 45 (62.50%) | 22 (20.75%) | ||
Tumor located inside the sella | ||||
Yes | 26 (36.11%) | 33 (31.13%) | 0.480 | 0.489 |
No | 46 (63.89%) | 73 (68.87%) | ||
Erosion of the dorsum sellae bone | ||||
Yes | 30 (41.67%) | 82 (77.36%) | 23.41 | <0.0001 |
No | 42 (58.33%) | 24 (22.64%) | ||
Positive of transcription factor | ||||
Yes | 56 (77.78%) | 88 (83.02%) | 0.762 | 0.383 |
No | 16 (22.22%) | 18 (16.98%) |
Factors | OR | 95% CI | p-Value |
---|---|---|---|
Age | 0.294 | 0.078–1.612 | 0.228 |
Rich blood supply to the tumor | 0.124 | 0.044–0.355 | 0.000 |
Erosion of the dorsum sellae bone | 0.162 | 0.057–0.469 | 0.001 |
Factors | AUC | SE | 95% CI |
---|---|---|---|
Age | 0.648 | 0.041 | 0.568–0.728 |
Rich blood supply to the tumor | 0.709 | 0.041 | 0.629–0.789 |
Erosion of the dorsum sellae bone | 0.678 | 0.042 | 0.596–0.761 |
Combined | 0.817 | 0.031 | 0.756–0.879 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, M.; Jiang, X.; Wang, F.; Ling, S.; Niu, C. Prediction of Higher Ki-67 Index in Pituitary Adenomas by Pre- and Intra-Operative Clinical Characteristics. Brain Sci. 2022, 12, 1002. https://doi.org/10.3390/brainsci12081002
Wang X, Li M, Jiang X, Wang F, Ling S, Niu C. Prediction of Higher Ki-67 Index in Pituitary Adenomas by Pre- and Intra-Operative Clinical Characteristics. Brain Sciences. 2022; 12(8):1002. https://doi.org/10.3390/brainsci12081002
Chicago/Turabian StyleWang, Xuanzhi, Mingwu Li, Xiaofeng Jiang, Fei Wang, Shiying Ling, and Chaoshi Niu. 2022. "Prediction of Higher Ki-67 Index in Pituitary Adenomas by Pre- and Intra-Operative Clinical Characteristics" Brain Sciences 12, no. 8: 1002. https://doi.org/10.3390/brainsci12081002
APA StyleWang, X., Li, M., Jiang, X., Wang, F., Ling, S., & Niu, C. (2022). Prediction of Higher Ki-67 Index in Pituitary Adenomas by Pre- and Intra-Operative Clinical Characteristics. Brain Sciences, 12(8), 1002. https://doi.org/10.3390/brainsci12081002