Retinal Thickness Correlates with Cerebral Hemodynamic Changes in Patients with Carotid Artery Stenosis
Abstract
:1. Introduction
2. Methods
2.1. Computed Tomography Perfusion Imaging and Post-Processing
2.2. Postprocessing of CTP Imaging
2.3. SS-OCT/SS-OCTA Imaging
2.4. Statistical Analysis
3. Results
3.1. Comparison of SS-OCT/SS-OCTA Parameters between Ipsilateral and Contralateral Eyes
3.2. Correlation between SS-OCTA Parameters and CTP Parameters
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, A.A.; Patel, J.; Desikan, S.; Chrencik, M.; Martinez-Delcid, J.; Caraballo, B.; Yokemick, J.; Gray, V.L.; Sorkin, J.D.; Cebral, J.; et al. Asymptomatic carotid artery stenosis is associated with cerebral hypoperfusion. J. Vasc. Surg. 2021, 73, 1611–1621.e2. [Google Scholar] [CrossRef] [PubMed]
- Jolink, W.M.; Heinen, R.; Persoon, S.; van der Zwan, A.; Kappelle, L.J.; Klijn, C.J. Transcranial Doppler ultrasonography CO2 reactivity does not predict recurrent ischaemic stroke in patients with symptomatic carotid artery occlusion. Cerebrovasc. Dis. 2014, 37, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Yaghi, S.; de Havenon, A.; Rostanski, S.; Kvernland, A.; Mac Grory, B.; Furie, K.L.; Kim, A.S.; Easton, J.D.; Johnston, S.C.; Henninger, N. Carotid Stenosis and Recurrent Ischemic Stroke: A Post-Hoc Analysis of the POINT Trial. Stroke 2021, 52, 2414–2417. [Google Scholar] [CrossRef] [PubMed]
- Barnett, H.J.; Gunton, R.W.; Eliasziw, M.; Fleming, L.; Sharpe, B.; Gates, P.; Meldrum, H. Causes and severity of ischemic stroke in patients with internal carotid artery stenosis. JAMA 2000, 283, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Flaherty, M.L.; Kissela, B.; Khoury, J.C.; Alwell, K.; Moomaw, C.J.; Woo, D.; Khatri, P.; Ferioli, S.; Adeoye, O.; Broderick, J.P.; et al. Carotid artery stenosis as a cause of stroke. Neuroepidemiology 2013, 40, 36–41. [Google Scholar] [CrossRef] [Green Version]
- Soinne, L.; Helenius, J.; Tatlisumak, T.; Saimanen, E.; Salonen, O.; Lindsberg, P.J.; Kaste, M. Cerebral hemodynamics in asymptomatic and symptomatic patients with high-grade carotid stenosis undergoing carotid endarterectomy. Stroke 2003, 34, 1655–1661. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, H.; Higashi, T.; Kagawa, S.; Kishibe, Y.; Takahashi, M. Impaired perfusion modifies the relationship between blood pressure and stroke risk in major cerebral artery disease. J. Neurol. Neurosurg. Psychiatry 2013, 84, 1226–1232. [Google Scholar] [CrossRef] [Green Version]
- Bisdas, S.; Donnerstag, F.; Berding, G.; Vogl, T.J.; Thng, C.H.; Koh, T.S. Computed tomography assessment of cerebral perfusion using a distributed parameter tracer kinetics model: Validation with H(2)((15))O positron emission tomography measurements and initial clinical experience in patients with acute stroke. J. Cereb. Blood Flow Metab. 2008, 28, 402–411. [Google Scholar] [CrossRef] [Green Version]
- Waaijer, A.; van Leeuwen, M.S.; van Osch, M.J.; van der Worp, B.H.; Moll, F.L.; Lo, R.T.; Mali, W.P.; Prokop, M. Changes in cerebral perfusion after revascularization of symptomatic carotid artery stenosis: CT measurement. Radiology 2007, 245, 541–548. [Google Scholar] [CrossRef]
- Cohen, R.; Padilla, J.; Light, D.; Diller, R. Carotid artery occlusive disease and ocular manifestations: Importance of identifying patients at risk. Optometry 2010, 81, 359–363. [Google Scholar] [CrossRef]
- Costa, V.P.; Kuzniec, S.; Molnar, L.J.; Cerri, G.G.; Puech-Leao, P.; Carvalho, C.A. The effects of carotid endarterectomy on the retrobulbar circulation of patients with severe occlusive carotid artery disease. An investigation by color Doppler imaging. Ophthalmology 1999, 106, 306–310. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Sakaki, T.; Uranishi, R.; Ida, Y. Effect of carotid endarterectomy on the ophthalmic artery. Acta Neurochir. 2002, 144, 427–432. [Google Scholar] [CrossRef]
- Terelak-Borys, B.; Skonieczna, K.; Grabska-Liberek, I. Ocular ischemic syndrome—A systematic review. Med. Sci. Monit. 2012, 18, RA138–RA144. [Google Scholar] [CrossRef] [Green Version]
- Saito, K.; Akiyama, H.; Mukai, R. Alteration of Optical Coherence Tomography Angiography in a Patient with Ocular Ischemic Syndrome. Retin. Cases Brief Rep. 2021, 15, 588–592. [Google Scholar] [CrossRef]
- Istvan, L.; Czako, C.; Benyo, F.; Elo, A.; Mihaly, Z.; Sotonyi, P.; Varga, A.; Nagy, Z.Z.; Kovács, I. The effect of systemic factors on retinal blood flow in patients with carotid stenosis: An optical coherence tomography angiography study. Geroscience 2022, 44, 389–401. [Google Scholar] [CrossRef]
- Li, X.; Zhu, S.; Zhou, S.; Zhang, Y.; Ding, Y.; Zheng, B.; Wu, P.; Shi, Y.; Zhang, H.; Shi, H. Optical Coherence Tomography Angiography as a Noninvasive Assessment of Cerebral Microcirculatory Disorders Caused by Carotid Artery Stenosis. Dis. Markers 2021, 2021, 2662031. [Google Scholar] [CrossRef]
- Kwapong, W.R.; Jiang, S.; Yan, Y.; Wan, J.; Wu, B. Macular Microvasculature Is Associated with Total Cerebral Small Vessel Disease Burden in Recent Single Subcortical Infarction. Front. Aging Neurosci. 2022, 13, 787775. [Google Scholar] [CrossRef]
- Yamamoto, T.; Mori, K.; Yasuhara, T.; Tei, M.; Yokoi, N.; Kinoshita, S.; Kamei, M. Ophthalmic artery blood flow in patients with internal carotid artery occlusion. Br. J. Ophthalmol. 2004, 88, 505–508. [Google Scholar] [CrossRef] [Green Version]
- Klijn, C.J.; Kappelle, L.J.; van Schooneveld, M.J.; Hoppenreijs, V.P.; Algra, A.; Tulleken, C.A.; Van Gijn, J. Venous stasis retinopathy in symptomatic carotid artery occlusion: Prevalence, cause, and outcome. Stroke 2002, 33, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Hessler, H.; Zimmermann, H.; Oberwahrenbrock, T.; Kadas, E.M.; Mikolajczak, J.; Brandt, A.U.; Kauert, A.; Paul, F.; Schreiber, S.J. No Evidence for Retinal Damage Evolving from Reduced Retinal Blood Flow in Carotid Artery Disease. Biomed. Res. Int. 2015, 2015, 604028. [Google Scholar] [CrossRef] [Green Version]
- Sayin, N.; Kara, N.; Uzun, F.; Akturk, I.F. A quantitative evaluation of the posterior segment of the eye using spectral-domain optical coherence tomography in carotid artery stenosis: A pilot study. Ophthalmic Surg. Lasers Imaging Retin. 2015, 46, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Li, Y.; Zhou, Y.; Jin, C.; Zhao, Q.; Wang, A.; Wu, S.; Wei, W.B.; Zhao, X.; Jonas, J.B. Asymptomatic carotid artery stenosis and retinal nerve fiber layer thickness. A community-based, observational study. PLoS ONE 2017, 12, e0177277. [Google Scholar] [CrossRef] [Green Version]
- Cakir, A.; Duzgun, E.; Demir, S.; Cakir, Y.; Unal, M.H. Spectral Domain Optical Coherence Tomography Findings in Carotid Artery Disease. Turk. J. Ophthalmol. 2017, 47, 326–330. [Google Scholar] [CrossRef]
- Lahme, L.; Marchiori, E.; Panuccio, G.; Nelis, P.; Schubert, F.; Mihailovic, N.; Torsello, G.; Eter, N.; Alnawaiseh, M. Changes in retinal flow density measured by optical coherence tomography angiography in patients with carotid artery stenosis after carotid endarterectomy. Sci. Rep. 2018, 8, 17161. [Google Scholar] [CrossRef]
- Lee, C.W.; Cheng, H.C.; Chang, F.C.; Wang, A.G. Optical Coherence Tomography Angiography Evaluation of Retinal Microvasculature Before and After Carotid Angioplasty and Stenting. Sci. Rep. 2019, 9, 14755. [Google Scholar] [CrossRef]
- Wan, J.; Kwapong, W.R.; Tao, W.; Lu, K.; Jiang, S.; Zheng, H.; Hu, F.; Wu, B. Choroidal changes in carotid stenosis patients after stenting detected by swept-source optical coherence tomography angiography. Curr. Neurovasc. Res. 2022. [Google Scholar] [CrossRef]
- Schmidl, D.; Boltz, A.; Kaya, S.; Werkmeister, R.; Dragostinoff, N.; Lasta, M.; Jiang, S.; Zheng, H.; Hu, F.; Wu, B. Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4337–4346. [Google Scholar] [CrossRef]
- Kim, J.T.; Lee, D.H.; Joe, S.G.; Kim, J.G.; Yoon, Y.H. Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 3378–3384. [Google Scholar] [CrossRef] [Green Version]
- Wong, I.Y.; Wong, R.L.; Zhao, P.; Lai, W.W. Choroidal thickness in relation to hypercholesterolemia on enhanced depth imaging optical coherence tomography. Retina 2013, 33, 423–428. [Google Scholar] [CrossRef]
- Nickla, D.L.; Wallman, J. The multifunctional choroid. Prog. Retin. Eye Res. 2010, 29, 144–168. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wang, E.; Yuan, M.; Chen, Y. Three-dimensional choroidal vascularity index in acute central serous chorioretinopathy using swept-source optical coherence tomography. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.; Humphries, P. The blood-retina barrier: Tight junctions and barrier modulation. Adv. Exp. Med. Biol. 2012, 763, 70–84. [Google Scholar] [PubMed]
- Campbell, J.P.; Zhang, M.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Jia, Y.; Huang, D. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci. Rep. 2017, 7, 42201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erskine, L.; Herrera, E. Connecting the retina to the brain. ASN Neuro 2014, 6, 1759091414562107. [Google Scholar] [CrossRef] [Green Version]
- Liebeskind, D.S.; Hurst, R.W. Infarction of the choroid plexus. AJNR Am. J. Neuroradiol. 2004, 25, 289–290. [Google Scholar]
- Schurr, P.H. Angiography of the normal ophthalmic artery and choroidal plexus of the eye. Br. J. Ophthalmol. 1951, 35, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Narayana Patro, S.; Hassan Haroon, K.; Tamboli, K.; Zafar, A.; Hussain, S.; Muhammad, A. A Case of Anterior Choroidal Artery Occlusion and Stroke Secondary to External Compression. Case Rep. Neurol. 2021, 13, 369–374. [Google Scholar] [CrossRef]
- Gonzalez-Marrero, I.; Hernandez-Abad, L.G.; Castaneyra-Ruiz, L.; Carmona-Calero, E.M.; Castaneyra-Perdomo, A. Changes in the choroid plexuses and brain barriers associated with high blood pressure and ageing. Neurologia 2018, 37, 371–382. [Google Scholar] [CrossRef]
n = 37 | |
---|---|
Age, years | 63.95 ± 11.05 |
Gender, males | 32 |
Location of stenosis | |
Right | 23 |
Left | 14 |
Systolic blood pressure, mmHg | 133.76 ± 15.47 |
Diastolic blood pressure, mmHg | 83.68 ± 11.35 |
Hypertension, n | 22 |
Diabetes, n | 9 |
Dyslipidemia, n | 6 |
Coronary heart disease, n | 3 |
Smokers, n | 24 |
Drinkers, n | 18 |
Ophthalmic parameters | |
RNFL, µm | 30.46 ± 3.28 |
GCIPL, µm | 68.58 ± 5.23 |
CVI | 0.29 ± 0.06 |
CVV | 0.23 ± 0.09 |
VA, logMAR | 0.17 ± 0.20 |
Z-RNFL, µm | −0.006 (−0.613–0.774) |
Z-GCIPL, µm | 0.037 (−0.812–0.907) |
Z-CVI | −0.005 (−0.558–0.636) |
Z-CVV | −0.047 (−0.527–0.672) |
CT perfusion parameters | |
rCBV | 1.0 (0.94–1.03) |
rCBF | 1.11 (0.97–1.31) |
rMTT | 0.88 (0.75–1.01) |
rTTP | 0.97 (0.92–1.0) |
rPS | 1.01 (0.90–1.05) |
Ipsilateral | Contralateral | p-Value | |
---|---|---|---|
RNFL, µm | 30.19 ± 3.43 | 30.72 ± 3.16 | <0.001 |
GCIPL, µm | 68.14 ± 5.02 | 68.99 ± 5.45 | 0.013 |
CVI | 0.29 ± 0.06 | 0.29 ± 0.06 | 0.969 |
CVV | 0.23 ± 0.10 | 0.24 ± 0.10 | 0.001 |
VA, logMAR Ψ | 0.22 ± 0.23 | 0.13 ± 0.15 | 0.062 |
RNFL, µm | GCIPL, µm | CVI | CVV | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | SE | p | B | SE | p | B | SE | p | B | SE | p | |
rCBV | 24.58 | 5.80 | <0.001 | 41.83 | 8.95 | <0.001 | 0.11 | 0.50 | 0.027 | 0.14 | 0.07 | 0.061 |
rCBF | 6.45 | 4.51 | 0.150 | 4.76 | 7.31 | 0.516 | 0.001 | 0.03 | 0.966 | 0.113 | 0.04 | 0.009 |
rMTT | −2.87 | 7.03 | 0.683 | −1.31 | 10.04 | 0.896 | 0.021 | 0.03 | 0.500 | −0.17 | 0.03 | <0.001 |
rTTP | −7.80 | 31.19 | 0.802 | 31.233 | 46.46 | 0.501 | 0.133 | 0.18 | 0.467 | −0.61 | 0.20 | 0.002 |
rPS | 14.51 | 3.18 | <0.001 | 31.08 | 3.25 | <0.001 | 0.046 | 0.04 | 0.196 | 0.064 | 0.05 | 0.159 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwapong, W.R.; Liu, J.; Wan, J.; Tao, W.; Ye, C.; Wu, B. Retinal Thickness Correlates with Cerebral Hemodynamic Changes in Patients with Carotid Artery Stenosis. Brain Sci. 2022, 12, 979. https://doi.org/10.3390/brainsci12080979
Kwapong WR, Liu J, Wan J, Tao W, Ye C, Wu B. Retinal Thickness Correlates with Cerebral Hemodynamic Changes in Patients with Carotid Artery Stenosis. Brain Sciences. 2022; 12(8):979. https://doi.org/10.3390/brainsci12080979
Chicago/Turabian StyleKwapong, William Robert, Junfeng Liu, Jincheng Wan, Wendan Tao, Chen Ye, and Bo Wu. 2022. "Retinal Thickness Correlates with Cerebral Hemodynamic Changes in Patients with Carotid Artery Stenosis" Brain Sciences 12, no. 8: 979. https://doi.org/10.3390/brainsci12080979
APA StyleKwapong, W. R., Liu, J., Wan, J., Tao, W., Ye, C., & Wu, B. (2022). Retinal Thickness Correlates with Cerebral Hemodynamic Changes in Patients with Carotid Artery Stenosis. Brain Sciences, 12(8), 979. https://doi.org/10.3390/brainsci12080979