Age-Specific Effects of Visual Feature Binding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Task and Design
2.3. EEG Recording
2.4. Data Analysis
3. Results
3.1. Behavioral Data
3.2. ERP Data
3.3. Relation between ERP and Behavioral Data
4. Discussion
4.1. ERP Effects of the Binding Process
4.2. Age-Related Modulations on the Binding Process
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahneman, D.; Treisman, A.; Gibbs, B.J. The reviewing of object files: Object-specific integration of information. Cogn. Psychol. 1992, 24, 175–219. [Google Scholar] [CrossRef]
- Luck, S.J.; Vogel, E.K. The capacity of visual working memory for features and conjunctions. Nature 1997, 390, 279–281. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.E.; Treisman, A.M. Binding in short-term visual memory. J. Exp. Psychol. Gen. 2002, 131, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Sander, M.C.; Lindenberger, U.; Werkle-Bergner, M. Lifespan age differences in working memory: A two-component framework. Neurosci. Biobehav. Rev. 2012, 36, 2007–2033. [Google Scholar] [CrossRef] [PubMed]
- Schneegans, S.; Bays, P.M. New perspectives on binding in visual working memory. Br. J. Psychol. 2019, 110, 207–244. [Google Scholar] [CrossRef] [PubMed]
- Pietto, M.; Parra, M.A.; Trujillo, N.; Flores, F.; Garcia, A.M.; Bustin, J.; Richly, P.; Manes, F.; Lopera, F.; Ibanez, A.; et al. Behavioral and Electrophysiological Correlates of Memory Binding Deficits in Patients at Different Risk Levels for Alzheimer’s Disease. J. Alzheimers Dis. 2016, 53, 1325–1340. [Google Scholar] [CrossRef]
- Gazzaley, A.; Clapp, W.; Kelley, J.; McEvoy, K.; Knight, R.T.; D’Esposito, M. Age-related top-down suppression deficit in the early stages of cortical visual memory processing. Proc. Natl. Acad. Sci. USA 2008, 105, 13122–13126. [Google Scholar] [CrossRef]
- Mazza, V.; Caramazza, A. Multiple object individuation and subitizing in enumeration: A view from electrophysiology. Front. Hum. Neurosci. 2015, 9, 162. [Google Scholar] [CrossRef]
- Berry, A.S.; Zanto, T.P.; Clapp, W.C.; Hardy, J.L.; Delahunt, P.B.; Mahncke, H.W.; Gazzaley, A. The influence of perceptual training on working memory in older adults. PLoS ONE 2010, 5, e11537. [Google Scholar] [CrossRef]
- Key, A.P.; Dove, G.O.; Maguire, M.J. Linking brainwaves to the brain: An ERP primer. Dev. Neuropsychol. 2005, 27, 183–215. [Google Scholar] [CrossRef]
- Potts, G.F. An ERP index of task relevance evaluation of visual stimuli. Brain Cogn. 2004, 56, 5–13. [Google Scholar] [CrossRef]
- Missonier, P.; Gold, G.; Leonards, U.; Costa-Fazio, L.; Michel, J.; Ibanez, V.; Giannakoloulos, P. Aging and working memory. Early deficits in EEG activation of posterior cortical areas. J. Am. Geriatr. Soc. 2004, 52, S57. [Google Scholar] [CrossRef]
- Friedman, D.; Trott, C. An event-related potential study of encoding in young and older adults. Neuropsychologia 2000, 38, 542–557. [Google Scholar] [CrossRef]
- Fortin, J.; Grondin, S.; Blanchet, S. Event-related potentials of episodic encoding after traumatic brain injury in older adults. Brain Res. 2021, 1766, 147504. [Google Scholar] [CrossRef]
- He, X.; Zhang, W.; Li, C.; Guo, C. Precision requirements do not affect the allocation of visual working memory capacity. Brain Res. 2015, 1602, 136–143. [Google Scholar] [CrossRef]
- Parra, M.A.; Della Sala, S.; Logie, R.H.; Morcom, A.M. Neural correlates of shape-color binding in visual working memory. Neuropsychologia 2014, 52, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Jiang, Y.H. Visual working memory for simple and complex features: An fMRI study. Neuroimage 2006, 30, 963–972. [Google Scholar] [CrossRef]
- Fisk, J.E.; Warr, P. Age and working memory: The role of perceptual speed, the central executive, and the phonological loop. Psychol. Aging 1996, 11, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Parra, M.A.; Abrahams, S.; Logie, R.H.; Sala, S.D. Age and binding within-dimension features in visual short-term memory. Neurosci. Lett. 2009, 449, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Parra, M.A.; Sala, S.D.; Logie, R.H.; Abrahams, S. Selective impairment in visual short-term memory binding. Cogn. Neuropsychol. 2009, 26, 583–605. [Google Scholar] [CrossRef] [PubMed]
- Isella, V.; Molteni, F.; Mapelli, C.; Ferrarese, C. Short term memory for single surface features and bindings in ageing: A replication study. Brain Cogn. 2015, 96, 38–42. [Google Scholar] [CrossRef]
- Brockmole, J.R.; Parra, M.A.; Della Sala, S.; Logie, R.H. Do binding deficits account for age-related decline in visual working memory? Psychon. Bull. Rev. 2008, 15, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, S.; Parra, M.A.; Cowan, N.; Logie, R.H. Healthy aging and visual working memory: The effect of mixing feature and conjunction changes. Psychol. Aging 2017, 32, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Pertzov, Y.; Heider, M.; Liang, Y.; Husain, M. Effects of healthy ageing on precision and binding of object location in visual short term memory. Psychol. Aging 2015, 30, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Cowan, N.; Naveh-Benjamin, M.; Kilb, A.; Saults, J.S. Life-span development of visual working memory: When is feature binding difficult? Dev. Psychol. 2006, 42, 1089–1102. [Google Scholar] [CrossRef] [PubMed]
- Chalfonte, B.L.; Johnson, M.K. Feature memory and binding in young and older adults. Mem. Cognit. 1996, 24, 403–416. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.A.; Brockmole, J.R. The role of attention in binding visual features in working memory: Evidence from cognitive ageing. Q. J. Exp. Psychol. 2010, 63, 2067–2079. [Google Scholar] [CrossRef]
- Mitchell, K.J.; Johnson, M.K.; Raye, C.L.; Mather, M.; D’Esposito, M. Aging and reflective processes of working memory: Binding and test load deficits. Psychol. Aging 2000, 15, 527–541. [Google Scholar] [CrossRef]
- Logie, R.H.; Parra, M.A.; Della Sala, S. From Cognitive Science to Dementia Assessment. Policy Insights Behav. Brain Sci. 2015, 2, 81–91. [Google Scholar] [CrossRef]
- Parra, M.A.; Abrahams, S.; Logie, R.H.; Della Sala, S. Visual short-term memory binding in Alzheimer’s disease and depression. J. Neurol. 2010, 257, 1160–1169. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive aging and the compensation hypothesis. Curr. Dir. Psychol. Sci. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Lubitz, A.F.; Niedeggen, M.; Feser, M. Aging and working memory performance: Electrophysiological correlates of high and low performing elderly. Neuropsychologia 2017, 106, 42–51. [Google Scholar] [CrossRef]
- van Dinteren, R.; Arns, M.; Jongsma, M.L.; Kessels, R.P. Combined frontal and parietal P300 amplitudes indicate compensated cognitive processing across the lifespan. Front. Aging Neurosci. 2014, 6, 294. [Google Scholar] [CrossRef]
- Erdfelder, E.; Faul, F.; Buchner, A. Gpower: A general power analysis program. Behav. Res. Methods Instrum. Comput. 1996, 28, 1–11. [Google Scholar] [CrossRef]
- Bowman, C.R.; Dennis, N.A. Age differences in the neural correlates of novelty processing: The effects of item-relatedness. Brain Res. 2015, 1612, 2–15. [Google Scholar] [CrossRef] [PubMed]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Peirce, J.W. PsychoPy-Psychophysics software in Python. J. Neurosci. Methods 2007, 162, 8–13. [Google Scholar] [CrossRef]
- Parra, M.A.; Abrahams, S.; Logie, R.H.; Mendez, L.G.; Lopera, F.; Della Sala, S. Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain 2010, 133, 2702–2713. [Google Scholar] [CrossRef]
- Saiki, J. Location-Unbound Color-Shape Binding Representations in Visual Working Memory. Psychol. Sci. 2016, 27, 178–190. [Google Scholar] [CrossRef]
- Johnson, N.S. A note on the use of A′ as a measure of sensitivity. J. Exp. Child Psychol. 1976, 22, 530–531. [Google Scholar] [CrossRef]
- Piekema, C.; Rijpkema, M.; Fernandez, G.; Kessels, R.P. Dissociating the neural correlates of intra-item and inter-item working-memory binding. PLoS ONE 2010, 5, e10214. [Google Scholar] [CrossRef] [PubMed]
- Quak, M.; Langford, Z.D.; London, R.E.; Talsma, D. Contralateral delay activity does not reflect behavioral feature load in visual working memory. Biol. Psychol. 2018, 137, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Smart, C.M.; Segalowitz, S.J.; Mulligan, B.P.; MacDonald, S.W. Attention capacity and self-report of subjective cognitive decline: A P3 ERP study. Biol. Psychol. 2014, 103, 144–151. [Google Scholar] [CrossRef] [PubMed]
- McCabe, D.P.; Roediger, H.L., 3rd; McDaniel, M.A.; Balota, D.A. Aging reduces veridical remembering but increases false remembering: Neuropsychological test correlates of remember-know judgments. Neuropsychologia 2009, 47, 2164–2173. [Google Scholar] [CrossRef] [PubMed]
- Paller, K.A.; Wagner, A.D. Observing the transformation of experience into memory. Trends Cogn. Sci. 2002, 6, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Lustig, C.; May, C.P.; Hasher, L. Working memory span and the role of proactive interference. J. Exp. Psychol.-Gen. 2001, 130, 199–207. [Google Scholar] [CrossRef]
- Henrich, J.; Heine, S.J.; Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 2010, 33, 61–83. [Google Scholar] [CrossRef]
- Schneegans, S.; Bays, P.M. Neural Architecture for Feature Binding in Visual Working Memory. J. Neurosci. 2017, 37, 3913–3925. [Google Scholar] [CrossRef]
- Parra, M.A.; Calia, C.; Garcia, A.F.; Olazaran-Rodriguez, J.; Hernandez-Tamames, J.A.; Alvarez-Linera, J.; Della Sala, S.; Fernandez Guinea, S. Refining memory assessment of elderly people with cognitive impairment: Insights from the short-term memory binding test. Arch. Gerontol. Geriatr. 2019, 83, 114–120. [Google Scholar] [CrossRef]
OLDER | YOUNGER | ||||||
---|---|---|---|---|---|---|---|
Color | Shape | Binding | Color | Shape | Binding | ||
A’ | M | 0.98 | 0.91 | 0.8 | 0.99 | 0.97 | 0.94 |
CI | [0.96, 0.99] | [0.89, 0.93] | (0.76, 0.83] | [0.97, 1] | [0.95, 0.99] | [0.90, 0.97] | |
N1 | M | −2.63 | −3.38 | −2.53 | −2.26 | −2.56 | −1.83 |
CI | [−3.65, −1.61] | [−4.40, −2.36] | [−3.47, −1.60] | [−3.20, −1.32] | [−3.49, −1.62] | [−2.69, −0.97] | |
P2 | M | 1.2 | 1 | 1.46 | 5.01 | 3.38 | 3.98 |
CI | [0.15, 2.25] | [−0.14, 2.13] | [0.36, 2.55] | [4.04, 5.97] | [2.33, 4.43] | [2.97, 4.98] | |
LPC | M | 1.67 | 1 | 2.44 | 2.6 | 2.99 | 3.3 |
CI | [0.79, 2.56] | [0.106, 1.89] | [1.58, 3.30] | [1.79, 3.41] | [2.17, 3.81] | [2.51, 4.09] |
Variable/Contrast | Factor Condition | Factor Condition x Age |
---|---|---|
A’ | F(2,92) = 73.49, p < 0.001, ηp2 = 0.615 | F(2,92) = 24.48, p < 0.001, ηp2 = 0.347 |
Binding vs. Color | F(1,46) = 110.52, p < 0.001, ηp2 = 0.706 | older: F(1,21) = 72.19, p < 0.001, ηp2 = 0.775 younger: F(1,25) = 29.66, p < 0.001, ηp2 = 0.543 |
Binding vs. Shape | F(1,46) = 41.48, p < 0.001, ηp2 = 0.474 | older: F(1,21) = 24.77, p < 0.001, ηp2 = 0.541 younger: F(1,25) = 17.08, p < 0.001, ηp2 = 0.406 |
Color vs. Shape | F(1,46) = 59.17, p < 0.001, ηp2 = 0.563 | older: F(1,21) = 47.02, p < 0.001, ηp2 = 0.691 |
younger F(1,25) = 8.68, p = 0.007, ηp2 = 0.258 | ||
N1 | F(2,92) = 8.22, p = 0.001, ηp2 = 0.152 | F(2,92) = 0.71, p = 0.496, ηp2 = 0.015 |
Binding vs. Color | F(1,46) = 2.15, p = 0.150, ηp2 = 0.045 | n.i. |
Binding vs Shape | F(1,46) = 12.06, p = 0.001, ηp2 = 0.208 | n.i. |
Color vs. Shape | F(1,46) = 8.16, p = 0.006, ηp2 = 0.151 | n.i. |
P2 | F(2,92) = 6.43, p = 0.002, ηp2 = 0.123 | F(2,92) = 4.66, p = 0.012, ηp2 = 0.092 |
Binding vs. Color | F(1,46) = 2.48, p = 0.122, ηp2 = 0.051 | older: F(1,21) = 0.43, p = 0.517, ηp2 = 0.020 |
younger: F(1,25) = 10.65, p = 0.003, ηp2 = 0.299 | ||
Binding vs. Shape | F(1,46) = 3.57, p = 0.065, ηp2 = 0.072 | older: F(1,21) = 1.71, p = 0.205, ηp2 = 0.075 |
younger: F(1,25) = 2.02, p = 0.167, ηp2 = 0.075 | ||
Color vs. Shape | F(1,46) = 14.35, p < 0.001, ηp2 = 0.238 | older: F(1,21) = 0.47, p = 0.500, ηp2 = 0.022 |
younger: F(1,25) = 19.85, p < 0.001, ηp2 = 0.443 | ||
LPC | F(2,92) = 9.25, p < 0.001, ηp2 = 0.167 | F(2,92) = 4.23, p = 0.017, ηp2 = 0.084 |
Binding vs. Color | F(1,46) = 11.13, p = 0.002, ηp2 = 0.195 | older: F(1,21) = 5.20, p = 0.033, ηp2 = 0.198 |
younger: F(1,25) = 5.93, p = 0.022, ηp2 = 0.192 | ||
Binding vs. Shape | F(1,46) = 14.08, p < 0.001, ηp2 = 0.234 | older: F(1,21) = 15.16, p = 0.001, ηp2 = 419 |
younger: F(1,25) = 1.11, p = 0.302, ηp2 = 0.043 | ||
Color vs. Shape | F(1,46) = 0.49, p = 0.487, ηp2 = 0.011 | older: F(1,21) = 4.26, p = 0.052, ηp2 = 169 |
younger: F(1,25) = 2.57, p = 0.121, ηp2 = 0.093 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werrmann, M.; Niedeggen, M. Age-Specific Effects of Visual Feature Binding. Brain Sci. 2023, 13, 1389. https://doi.org/10.3390/brainsci13101389
Werrmann M, Niedeggen M. Age-Specific Effects of Visual Feature Binding. Brain Sciences. 2023; 13(10):1389. https://doi.org/10.3390/brainsci13101389
Chicago/Turabian StyleWerrmann, Michelle, and Michael Niedeggen. 2023. "Age-Specific Effects of Visual Feature Binding" Brain Sciences 13, no. 10: 1389. https://doi.org/10.3390/brainsci13101389
APA StyleWerrmann, M., & Niedeggen, M. (2023). Age-Specific Effects of Visual Feature Binding. Brain Sciences, 13(10), 1389. https://doi.org/10.3390/brainsci13101389