Frequency and Correlates of Mild Cognitive Impairment in Myasthenia Gravis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Collection
2.2. Neuropsychological Assessment and Mild Cognitive Impairment Definition
- The Digit Span test ((DS), verbal short-term memory);
- The immediate and delayed recall of short prose ((SP), verbal/auditory episodic memory);
- The Memory Interference Test after 10 and 30 s ((MI), working memory);
- The Trail-Making test, part A ((TMT-A), selective attention);
- The Trail-Making test, part B ((TMT-B), divided attention);
- The Token test ((TT), verbal comprehension);
- The Phonemic Fluency test ((PF]), lexical access);
- The Cognitive Estimation test ((CE), executive functioning);
- The Verbal Abstraction test ((VA), logical reasoning and abstraction);
- The Superimposed Silhouettes Test ((SS), visuoperceptual ability);
- The Clock Drawing test ((CDT), visuoconstructional ability);
- The House Figure copy ((FC), visuospatial and constructional abilities);
- The Daisy Drawing test ((DD), constructional apraxia);
- The Praxis test ((PT), ideomotor apraxia).
- − Memory (DS, SP, and MI);
- − Attention (TMT-A and TMT-B);
- − Language (TT and PF);
- − Executive functioning (CE and VA);
- − Visuoconstructive/visuospatial functioning (SS, CDT, FC, and DD).
2.3. Behavioral Assessment
2.4. Statistical Analysis
3. Results
3.1. Frequency of Mild Cognitive Impairment
3.2. Factors Associated with Mild Cognitive Impairment
3.3. Differences between Ocular and Generalized Myasthenia Gravis Patients
3.4. Correlation between Myasthenia Gravis Outcomes, Drugs Dosing, and Psychometric Testing
4. Discussion
5. Strength and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meriggioli, M.N.; Sanders, D.B. Autoimmune Myasthenia Gravis: Emerging Clinical and Biological Heterogeneity. Lancet Neurol. 2009, 8, 475–490. [Google Scholar] [CrossRef] [Green Version]
- Zisimopoulou, P.; Evangelakou, P.; Tzartos, J.; Lazaridis, K.; Zouvelou, V.; Mantegazza, R.; Antozzi, C.; Andreetta, F.; Evoli, A.; Deymeer, F.; et al. A Comprehensive Analysis of the Epidemiology and Clinical Characteristics of Anti-LRP4 in Myasthenia Gravis. J. Autoimmun. 2014, 52, 139–145. [Google Scholar] [CrossRef]
- Neumann, B.; Angstwurm, K.; Mergenthaler, P.; Kohler, S.; Schönenberger, S.; Bösel, J.; Neumann, U.; Vidal, A.; Huttner, H.B.; Gerner, S.T.; et al. Myasthenic Crisis Demanding Mechanical Ventilation: A Multicenter Analysis of 250 Cases. Neurology 2020, 94, e299–e313. [Google Scholar] [CrossRef]
- Melzer, N.; Ruck, T.; Fuhr, P.; Gold, R.; Hohlfeld, R.; Marx, A.; Melms, A.; Tackenberg, B.; Schalke, B.; Schneider-Gold, C.; et al. Clinical Features, Pathogenesis, and Treatment of Myasthenia Gravis: A Supplement to the Guidelines of the German Neurological Society. J. Neurol. 2016, 263, 1473–1494. [Google Scholar] [CrossRef] [Green Version]
- Dani, J.A. Overview of Nicotinic Receptors and Their Roles in the Central Nervous System. Biol. Psychiatry 2001, 49, 166–174. [Google Scholar] [CrossRef]
- Russo, M.; Carrarini, C.; Dono, F.; Rispoli, M.G.; di Pietro, M.; di Stefano, V.; Ferri, L.; Bonanni, L.; Sensi, S.L.; Onofrj, M. The Pharmacology of Visual Hallucinations in Synucleinopathies. Front. Pharmacol. 2019, 10, 1379. [Google Scholar] [CrossRef]
- Kaltsatou, A.; Fotiou, D.; Tsiptsios, D.; Orologas, A. Cognitive Impairment as a Central Cholinergic Deficit in Patients with Myasthenia Gravis. BBA Clin. 2015, 3, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Tucker, D.M.; Roeltgen, D.P.; Wann, P.D.; Wertheimer, R.I. Memory Dysfunction in Myasthenia Gravis: Evidence for Central Cholinergic Effects. Neurology 1988, 38, 1173–1177. [Google Scholar] [CrossRef]
- Zhou, X.; Cao, S.; Hou, J.; Gui, T.; Zhu, F.; Xue, Q. Association between Myasthenia Gravis and Cognitive Disorders: A PRISMA-Compliant Meta-Analysis. Int. J. Neurosci. 2022, 14, 1–12. [Google Scholar] [CrossRef]
- Ayres, A.; Winckler, P.B.; Jacinto-Scudeiro, L.A.; Rech, R.S.; Jotz, G.P.; Olchik, M.R. Cognitive Performance in Patients with Myasthenia Gravis: An Association with Glucocorticosteroid Use and Depression. Dement. Neuropsychol. 2020, 14, 315–323. [Google Scholar] [CrossRef]
- Klaus, B.; Müller, P.; van Wickeren, N.; Dordevic, M.; Schmicker, M.; Zdunczyk, Y.; Brigadski, T.; Leßmann, V.; Vielhaber, S.; Schreiber, S.; et al. Structural and Functional Brain Alterations in Patients with Myasthenia Gravis. Brain Commun. 2022, 4, fcac018. [Google Scholar] [CrossRef]
- Sitek, E.J.; Bilińska, M.M.; Wieczorek, D.; Nyka, W.M. Neuropsychological Assessment in Myasthenia Gravis. Neurol. Sci. 2009, 30, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Marra, C.; Marsili, F.; Quaranta, D.; Evoli, A. Determinants of Cognitive Impairment in Elderly Myasthenia Gravis Patients. Muscle Nerve 2009, 40, 952–959. [Google Scholar] [CrossRef]
- Aarli, J.A. Myasthenia Gravis in the Elderly: Is It Different? Ann. N. Y. Acad. Sci. 2008, 1132, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hear. 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Vitturi, B.K.; Nascimento, B.A.C.; Alves, B.R.; de Campos, F.S.C.; Torigoe, D.Y. Cognitive Impairment in Patients with Rheumatoid Arthritis. J. Clin. Neurosci. 2019, 69, 81–87. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Amato, M.P.; DeLuca, J.; Geurts, J.J.G. Cognitive Impairment in Multiple Sclerosis: Clinical Management, MRI, and Therapeutic Avenues. Lancet Neurol. 2020, 19, 860–871. [Google Scholar] [CrossRef] [PubMed]
- Shaban, A.; Leira, E.C. Neurological Complications in Patients with Systemic Lupus Erythematosus. Curr. Neurol. Neurosci. Rep. 2019, 19, 97. [Google Scholar] [CrossRef]
- Misra, U.K.; Kalita, J.; Singh, V.K.; Kumar, S. A Study of Comorbidities in Myasthenia Gravis. Acta Neurol. 2020, 120, 59–64. [Google Scholar] [CrossRef]
- Alekseeva, T.M.; Kreis, O.A.; Gavrilov, Y.V.; Valko, P.O.; Weber, K.P.; Valko, Y. Impact of Autoimmune Comorbidity on Fatigue, Sleepiness and Mood in Myasthenia Gravis. J. Neurol. 2019, 266, 2027–2034. [Google Scholar] [CrossRef]
- Chu, H.T.; Tseng, C.C.; Liang, C.S.; Yeh, T.C.; Hu, L.Y.; Yang, A.C.; Tsai, S.J.; Shen, C.C. Risk of Depressive Disorders Following Myasthenia Gravis: A Nationwide Population-Based Retrospective Cohort Study. Front. Psychiatry 2019, 10, 481. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild Cognitive Impairment: Clinical Characterization and Outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Mariani, E.; Monastero, R.; Mecocci, P. Mild Cognitive Impairment: A Systematic Review. J. Alzheimers Dis. 2007, 12, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Monastero, R.; Cicero, C.E.; Baschi, R.; Davì, M.; Luca, A.; Restivo, V.; Zangara, C.; Fierro, B.; Zappia, M.; Nicoletti, A. Mild Cognitive Impairment in Parkinson’s Disease: The Parkinson’s Disease Cognitive Study (PACOS). J. Neurol. 2018, 265, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- de Marchi, F.; Carrarini, C.; de Martino, A.; Diamanti, L.; Fasano, A.; Lupica, A.; Russo, M.; Salemme, S.; Spinelli, E.G.; Bombaci, A. Cognitive Dysfunction in Amyotrophic Lateral Sclerosis: Can We Predict It? Neurol. Sci. 2021, 42, 2211–2222. [Google Scholar] [CrossRef]
- Punga, A.R.; Maddison, P.; Heckmann, J.M.; Guptill, J.T.; Evoli, A. Epidemiology, Diagnostics, and Biomarkers of Autoimmune Neuromuscular Junction Disorders. Lancet Neurol. 2022, 21, 176–188. [Google Scholar] [CrossRef]
- Sanders, D.B.; Wolfe, G.I.; Benatar, M.; Evoli, A.; Gilhus, N.E.; Illa, I.; Kuntz, N.; Massey, J.M.; Melms, A.; Murai, H.; et al. International Consensus Guidance for Management of Myasthenia Gravis: Executive Summary. Neurology 2016, 87, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Jaretzki, A.; Barohn, R.J.; Ernstoff, R.M.; Kaminski, H.J.; Keesey, J.C.; Penn, A.S.; Sanders, D.B. Myasthenia Gravis: Recommendations for Clinical Research Standards. Task Force of the Medical Scientific Advisory Board of the Myasthenia Gravis Foundation of America. Neurology 2000, 55, 16–23. [Google Scholar] [CrossRef]
- Muppidi, S.; Wolfe, G.I.; Conaway, M.; Burns, T.M. MG-ADL: Still a Relevant Outcome Measure. Muscle Nerve 2011, 44, 727–731. [Google Scholar] [CrossRef]
- Appollonio, I.; Leone, M.; Isella, V.; Piamarta, F.; Consoli, T.; Villa, M.L.; Forapani, E.; Russo, A.; Nichelli, P. The Frontal Assessment Battery (FAB): Normative Values in an Italian Population Sample. Neurol. Sci. 2005, 26, 108–116. [Google Scholar] [CrossRef]
- Mondini, S.; Mapelli, D.; Vestri, A.; Arcara, G.; Bisiacchi, P.S. Esame Neuropsicologico Breve 2; Raffaelo Cortina Editore: Milan, Italy, 2011. [Google Scholar]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild Cognitive Impairment--beyond Controversies, towards a Consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Mild Cognitive Impairment as a Diagnostic Entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Philadelphia, PA, USA, 2013. [Google Scholar] [CrossRef]
- Bastien, C.H.; Vallières, A.; Morin, C.M. Validation of the Insomnia Severity Index as an Outcome Measure for Insomnia Research. Sleep Med. 2001, 2, 297–307. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Carbin, M.G. Psychometric Properties of the Beck Depression Inventory: Twenty-Five Years of Evaluation. Clin. Psychol. Rev. 1988, 8, 77–100. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, Y.; Hua, J.; Xue, Q. Association between Myasthenia Gravis and Memory: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 680141. [Google Scholar] [CrossRef] [PubMed]
- Sabre, L.; Evoli, A.; Punga, A.R. Cognitive Dysfunction in Mice with Passively Induced MuSK Antibody Seropositive Myasthenia Gravis. J. Neurol. Sci. 2019, 399, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Zhu, M.; Jiao, H.; Song, Y.; et al. Prevalence, Risk Factors, and Management of Dementia and Mild Cognitive Impairment in Adults Aged 60 Years or Older in China: A Cross-Sectional Study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef]
- Prado, C.E.; Crowe, S.F. Corticosteroids and Cognition: A Meta-Analysis. Neuropsychol. Rev. 2019, 29, 288–312. [Google Scholar] [CrossRef] [PubMed]
- Molloy, D.W.; Cape, R.D.T. Acute Effects of Oral Pyridostigmine on Memory and Cognitive Function in SDAT. Neurobiol. Aging 1989, 10, 199–204. [Google Scholar] [CrossRef]
- Craighero, L. The Role of the Sensorimotor System in Cognitive Functions. Brain Sci. 2022, 12, 604. [Google Scholar] [CrossRef]
- Goldman, J.G.; Holden, S.; Bernard, B.; Ouyang, B.; Goetz, C.G.; Stebbins, G.T. Defining Optimal Cutoff Scores for Cognitive Impairment Using Movement Disorder Society Task Force Criteria for Mild Cognitive Impairment in Parkinson’s Disease. Mov. Disord. 2013, 28, 1972–1979. [Google Scholar] [CrossRef] [PubMed]
CN n = 24 | MCI n = 28 | p | |
---|---|---|---|
Demographic and clinical features | |||
Male, n (%) | 14 (58.3) | 16 (57.1) | 0.93 |
Age, years, mean ± SD | 57 ± 15 | 56.9 ± 15.4 | 0.97 |
Education, years, median [IQR] | 13 [8–15] | 13 [8–15] | 0.37 |
Disease duration, months, median [IQR] | 42 [17–86] | 51 [24–138] | 0.27 |
Clinical features, n (%) | |||
MG-ADL, median [IQR] | 3 [1–6] | 3 [1–6] | 0.56 |
Early onset (<50 years) | 7 (29.2) | 14 (50) | 0.13 |
Generalized MG | 18 (75) | 23 (82.1) | 0.53 |
AChRs antibody | 24 (100) | 21 (75) | 0.01 |
AChRs antibody titer, nmol/L, median [IQR] | 1.5 [0.97–16] | 1.3 [0.75–12.5] | 0.39 |
MuSK antibody | 3 (12.5) | 8 (26.5) | 0.16 |
AChRs and MuSk antibodies | 2 (8.3) | 2 (7.1) | 1 |
MGFA Class III-IV | 3 (12.5) | 11 (39.3) | 0.03 |
Thymic alterations | 8 (33.3) | 9 (32.1) | 0.93 |
Prevalent symptoms, n (%) | |||
Dysphagia | 6, (25) | 13 (46.4) | 0.11 |
Diplopia | 17 (70.8) | 18 (64.3) | 0.62 |
Hypophonia | 5 (20.8) | 10 (35.7) | 0.24 |
Ptosis | 13 (54.2) | 15 (53.6) | 0.97 |
Dropped Head | 2 (8.3) | 2 (7.1) | 1 |
Dyspnea | 1 (4.2) | 3 (10.7) | 0.62 |
Arms/legs hyposthenia | 11 (45.8) | 21 (75) | 0.03 |
Treatment | |||
Pyridostigmine, n (%) | 23 (95.8) | 20 (71,4) | 0.03 |
Pyridostigmine, mg/daily, median [IQR] | 240 [120–360] | 195 [120–263] | 0.07 |
Prednisone, n (%) | 18 (75) | 19 (67.9) | 0.57 |
Prednisone, mg/daily, median [IQR] | 12.5 [9–19] | 12.5 [8–13] | 0.36 |
Azathioprine, n (%) | 12 (50) | 9 (32.1) | 0.2 |
Azathioprine, mg/daily, median [IQR] | 100 [50–100] | 100 [75–100] | 0.7 |
Mycophenolate, n (%) | 1 (4.2) | 4 (14.3) | 0.36 |
Intravenous Ig or PEX, n (%) | 12 (50) | 15 (53.6) | 0.8 |
Cognitive and behavioral variables | |||
BDI, median [IQR] | 10 [4–16] | 7 [3–19] | 0.94 |
ISI, median [IQR] | 6 [1–9] | 4.5 [1–11] | 0.66 |
FAB, mean ± SD | 15.6 ± 1.4 | 15 ± 1.5 | 0.14 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | AdjORs | 95% CI | p-Value | |
Demographic and clinical features | ||||||
Male vs. Female (ref) | 0.95 | 0.3–2.9 | 0.93 | 0.4 | 0.1–2 | 0.27 |
Age | 1 | 0.9–1.04 | 0.97 | 1.02 | 0.97–1.1 | 0.41 |
Education | 0.94 | 0.82–1.07 | 0.35 | 0.95 | 0.79–1.13 | 0.54 |
Disease duration | 1 | 0.99–1.01 | 0.44 | 1 | 0.99–1 | 0.57 |
MG-ADL | 1.1 | 0.9–1.28 | 0.42 | - | - | - |
Early onset vs. Late onset (ref) | 2.4 | 0.8–7.7 | 0.13 | - | - | - |
Generalized vs. ocular MG (ref) | 1.5 | 0.4–5.8 | 0.53 | - | - | - |
MuSK antibody vs. AChRs (ref) | 7 | 0.83–60 | 0.07 | 2.7 | 0.4–18.3 | 0.3 |
MGFA Class III and IV vs. I–II (ref) | 4.5 | 1.1–18.9 | 0.04 | 4 | 0.8–21.6 | 0.10 |
Thymic alterations vs. normal (ref) | 0.95 | 0.3–3 | 0.93 | - | - | - |
Symptoms at MG onset | ||||||
Dysphagia | 2.6 | 0.8–8.5 | 0.11 | - | - | - |
Diplopia | 0.74 | 0.2–2.4 | 0.62 | - | - | - |
Hypophonia | 2.1 | 0.6–7.4 | 0.24 | |||
Ptosis | 0.98 | 0.3–2.9 | 0.97 | - | - | - |
Arm/leg hyposthenia | 3.5 | 1.1–11.5 | 0.03 | 2.7 | 0.7–11.6 | 0.17 |
Treatment | ||||||
Pyridostigmine use | 0.11 | 0.01–0.9 | 0.04 | 0.1 | 0.01–0.93 | 0.04 |
Prednisone use | 0.7 | 0.2–2.4 | 0.57 | - | - | - |
Immunosuppressant use | 0.64 | 0.2–1.9 | 0.42 | - | - | - |
Intravenous Ig or PEX use | 1.16 | 0.4–3.4 | 0.8 | - | - | - |
Cognitive and behavioral variables | ||||||
FAB score | 0.75 | 0.51–1.1 | 0.14 | |||
BDI score | 1.01 | 0.96–1.01 | 0.55 | - | - | - |
ISI score | 1.03 | 0.94–1.13 | 0.51 | - | - | - |
Presence of depression | 0.65 | 0.2–1.9 | 0.44 | - | - | - |
Presence of sleep disturbances | 0.93 | 0.3–2.8 | 0.93 | - | - | - |
Ocular MG n = 11 | Generalized MG n = 41 | p-Value | |
---|---|---|---|
Demographic and clinical features | |||
Male, n (%) | 8 (72.7) | 22 (53.7) | 0.32 |
Age, mean ± SD | 62.1 ± 10.4 | 55.6 ± 15.9 | 0.25 |
Disease duration, median [IQR] | 44 [16–256] | 46 [19–103] | 0.87 |
Early onset, n (%) | 3 (27.3) | 19 (46.3) | 0.32 |
Education, median [IQR] | 13 [13–16] | 13 [8–15] | 0.18 |
AChRs antibody, n (%) | 10 (90.9) | 35 (85.4) | 1 |
MuSK antibody, n (%) | 1 (9.1) | 10 (24.4) | 0.42 |
MG-ADL, median [IQR] | 3 [1–6] | 3 [1–6] | 0.70 |
Pyridostigmine, n (%) | 8 (72.7) | 35 (85.4) | 0.38 |
Prednisone, n (%) | 3 (36.4) | 33 (80.5) | 0.008 |
Immunosuppressants, n (%) | 6 (54.5) | 19 (46.3) | 0.63 |
Intravenous Ig or PEX, n (%) | 2 (18.2) | 25 (61) | 0.02 |
Cognitive and behavioral variables | |||
FAB, mean ± SD | 15.3 ± 1.6 | 15.3 ± 1.47 | 0.78 |
BDI, median [IQR] | 5 [2–9] | 11 [5–19] | 0.04 |
ISI, median [IQR] | 1 [0–8] | 6 [1–11] | 0.13 |
Depression, n (%) | 2 (18.2) | 21 (51.2) | 0.09 |
Sleep disorders, n (%) | 3 (27.3) | 16 (39) | 0.73 |
MCI frequency, n (%) | 5 (45.5) | 29 (70.7) | 0.16 |
Memory | 1 (9.1) | 10 (24.4) | 0.42 |
Executive Functioning | 0 | 8 (19.5) | 0.18 |
Attention | 2 (18.2) | 8 (19.5) | 1 |
Language | 0 | 7 (17.1) | 0.32 |
Visuospatial and constructional abilities | 4 (36.4) | 12 (29.3) | 0.72 |
FAB | BDI | ISI | ||||
---|---|---|---|---|---|---|
rs | p | rs | p | |||
Age | −0.2 | 0.12 | −0.14 | 0.33 | −0.05 | 0.74 |
Disease duration | 0.12 | 0.39 | −0.18 | 0.2 | −0.006 | 0.97 |
Education | −0.11 | 0.43 | 0.21 | 0.14 | 0.17 | 0.22 |
MGFA Class | −0.003 | 0.98 | 0.18 | 0.2 | 0.28 | 0.047 |
MG-ADL | −0.01 | 0.6 | 0.32 | 0.02 | 0.38 | 0.006 |
AChRs serum titer | 0.22 | 0.16 | −0.26 | 0.09 | −0.14 | 0.39 |
MuSK serum titer | −0.24 | 0.45 | −0.3 | 0.34 | −0.19 | 0.55 |
Pyridostigmine dose | 0.11 | 0.49 | −0.004 | 0.98 | −0.06 | 0.72 |
Prednisone dose | −0.06 | 0.71 | 0.4 | 0.01 | 0.2 | 0.24 |
Azathioprine dose | −0.37 | 0.1 | −0.57 | 0.007 | −0.38 | 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iacono, S.; Di Stefano, V.; Costa, V.; Schirò, G.; Lupica, A.; Maggio, B.; Norata, D.; Pignolo, A.; Brighina, F.; Monastero, R. Frequency and Correlates of Mild Cognitive Impairment in Myasthenia Gravis. Brain Sci. 2023, 13, 170. https://doi.org/10.3390/brainsci13020170
Iacono S, Di Stefano V, Costa V, Schirò G, Lupica A, Maggio B, Norata D, Pignolo A, Brighina F, Monastero R. Frequency and Correlates of Mild Cognitive Impairment in Myasthenia Gravis. Brain Sciences. 2023; 13(2):170. https://doi.org/10.3390/brainsci13020170
Chicago/Turabian StyleIacono, Salvatore, Vincenzo Di Stefano, Vanessa Costa, Giuseppe Schirò, Antonino Lupica, Bruna Maggio, Davide Norata, Antonia Pignolo, Filippo Brighina, and Roberto Monastero. 2023. "Frequency and Correlates of Mild Cognitive Impairment in Myasthenia Gravis" Brain Sciences 13, no. 2: 170. https://doi.org/10.3390/brainsci13020170
APA StyleIacono, S., Di Stefano, V., Costa, V., Schirò, G., Lupica, A., Maggio, B., Norata, D., Pignolo, A., Brighina, F., & Monastero, R. (2023). Frequency and Correlates of Mild Cognitive Impairment in Myasthenia Gravis. Brain Sciences, 13(2), 170. https://doi.org/10.3390/brainsci13020170