Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Limitation of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jain, U. Effect of COVID-19 on the organs. Cureus 2020, 12, e9540. [Google Scholar] [CrossRef] [PubMed]
- Abohamr, S.I.; Aldossari, M.A.; Amer, H.A.; Saadeddin, H.M.; Abdelhamid, S.W.; Bhat, F.A.; Abdul Aziz Elsheikh, E. The incidence of acute pulmonary embolism with COVID-19 pneumonia in Saudi Arabia: A retrospective single-center study. J. Saudi Heart Assoc. 2021, 33, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Cau, R.; Pacielli, A.; Fatemeh, H.; Vaudano, P.; Arru, C.; Crivelli, P.; Stranieri, G.; Suri, J.S.; Mannelli, L.; Conti, M.; et al. Complications in COVID-19 patients: Characteristics of pulmonary embolism. Clin. Imaging 2021, 77, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.I.; Rao, G. COVID-19: A potential risk factor for acute pulmonary embolism. Methodist Debakey Cardiovasc. J. 2020, 16, 155. [Google Scholar] [CrossRef]
- Morrone, D.; Morrone, V. Acute pulmonary embolism: Focus on the clinical picture. Korean Circ. J. 2018, 48, 365. [Google Scholar] [CrossRef] [Green Version]
- Abou-Ismail, M.Y.; Diamond, A.; Kapoor, S.; Arafah, Y.; Nayak, L. The hypercoagulable state in COVID-19: Incidence, pathophysiology, and management. Thromb. Res. 2020, 194, 101–115. [Google Scholar] [CrossRef]
- Sagarra-Romero, L.; Viñas-Barros, A. COVID-19: Short and long-term effects of hospitalization on muscular weakness in the elderly. Int. J. Environ. Res. Public Health 2020, 17, 8715. [Google Scholar] [CrossRef]
- Gómez, C.A.; Sun, C.-K.; Tsai, I.-T.; Chang, Y.-P.; Lin, M.-C.; Hung, I.-Y.; Chang, Y.-J.; Wang, L.-K.; Lin, Y.-T.; Hung, K.-C. Mortality and risk factors associated with pulmonary embolism in coronavirus disease 2019 patients: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 16025. [Google Scholar] [CrossRef]
- Pongmoragot, J.; Rabinstein, A.A.; Nilanont, Y.; Swartz, R.H.; Zhou, L.; Saposnik, G. Pulmonary Embolism in ischemic stroke: Clinical presentation, risk factors, and outcome. J. Am. Heart Assoc. 2013, 2, e000372. [Google Scholar] [CrossRef] [Green Version]
- Kichloo, A.; Dettloff, K.; Aljadah, M.; Albosta, M.; Jamal, S.; Singh, J.; Wani, F.; Kumar, A.; Vallabhaneni, S.; Khan, M.Z. COVID-19 and hypercoagulability: A review. Clin. Appl. Thromb. 2020, 26, 107602962096285. [Google Scholar] [CrossRef]
- Shehata, G.A.; Lord, K.C.; Grudzinski, M.C.; Elsayed, M.; Abdelnaby, R.; Elshabrawy, H.A. Neurological complications of COVID-19: Underlying mechanisms and management. Int. J. Mol. Sci. 2021, 22, 4081. [Google Scholar] [CrossRef] [PubMed]
- Sharifian-Dorche, M.; Huot, P.; Osherov, M.; Wen, D.; Saveriano, A.; Giacomini, P.S.; Antel, J.P.; Mowla, A. Neurological complications of coronavirus infection; a comparative review and lessons learned during the COVID-19 pandemic. J. Neurol. Sci. 2020, 417, 117085. [Google Scholar] [CrossRef] [PubMed]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Stephenson, J.; Nutma, E.; van der Valk, P.; Amor, S. Inflammation in CNS neurodegenerative diseases. Immunology 2018, 154, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Grotemeyer, A.; McFleder, R.L.; Wu, J.; Wischhusen, J.; Ip, C.W. Neuroinflammation in Parkinson’s disease–putative pathomechanisms and targets for disease-modification. Front. Immunol. 2022, 13, 878771. [Google Scholar] [CrossRef] [PubMed]
- Boyko, A.; Troyanova, N.; Kovalenko, E.; Sapozhnikov, A. Similarity and differences in inflammation-related characteristics of the peripheral immune system of patients with parkinson’s and alzheimer’s diseases. Int. J. Mol. Sci. 2017, 18, 2633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madetko, N.; Migda, B.; Alster, P.; Turski, P.; Koziorowski, D.; Friedman, A. Platelet-to-lymphocyte ratio and neutrophil-tolymphocyte ratio may reflect differences in PD and MSA-P neuroinflammation patterns. Neurol. Neurochir. Pol. 2022, 56, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell 2020, 183, 16–27.e1. [Google Scholar] [CrossRef]
- Al-Ramadan, A.; Rabab’h, O.; Shah, J.; Gharaibeh, A. Acute and post-acute neurological complications of COVID-19. Neurol. Int. 2021, 13, 102–119. [Google Scholar] [CrossRef]
- Proal, A.D.; VanElzakker, M.B. Long COVID or post-acute sequelae of COVID-19 (PASC): An overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 2021, 12, 698169. [Google Scholar] [CrossRef]
- Munipalli, B.; Seim, L.; Dawson, N.L.; Knight, D.; Dabrh, A.M.A. Post-acute sequelae of COVID-19 (PASC): A meta-narrative review of pathophysiology, prevalence, and management. SN Compr. Clin. Med. 2022, 4, 90. [Google Scholar] [CrossRef] [PubMed]
- Carrascosa, M.F.; Batán, A.M.; Novo, M.F.A. Delirium and pulmonary embolism in the elderly. Mayo Clin. Proc. 2009, 84, 91–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borsook, D. Neurological diseases and pain. Brain 2012, 135, 320–344. [Google Scholar] [CrossRef] [Green Version]
- Reece-Anthony, R.; Lao, G.; Carter, C.; Notter, J. COVID-19 disease: Acute respiratory distress syndrome and prone position. Clin. Integr. Care 2020, 3, 100024. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Planquette, B.; Le Berre, A.; Khider, L.; Yannoutsos, A.; Gendron, N.; de Torcy, M.; Mohamedi, N.; Jouveshomme, S.; Smadja, D.M.; Lazareth, I.; et al. Prevalence and characteristics of pulmonary embolism in 1042 COVID-19 patients with respiratory symptoms: A nested case-control study. Thromb. Res. 2021, 197, 94–99. [Google Scholar] [CrossRef]
- Sakr, Y.; Giovini, M.; Leone, M.; Pizzilli, G.; Kortgen, A.; Bauer, M.; Tonetti, T.; Duclos, G.; Zieleskiewicz, L.; Buschbeck, S.; et al. Pulmonary embolism in patients with coronavirus disease-2019 (COVID-19) pneumonia: A narrative review. Ann. Intensive Care 2020, 10, 124. [Google Scholar] [CrossRef]
- Mestre-Gómez, B.; Lorente-Ramos, R.M.; Rogado, J.; Franco-Moreno, A.; Obispo, B.; Salazar-Chiriboga, D.; Saez-Vaquero, T.; Torres-Macho, J.; Abad-Motos, A.; Cortina-Camarero, C.; et al. Incidence of pulmonary embolism in non-critically ill COVID-19 patients. Predicting factors for a challenging diagnosis. J. Thromb. Thrombolysis 2021, 51, 40–46. [Google Scholar] [CrossRef]
- Abdalkader, M.; Shaikh, S.P.; Siegler, J.E.; Cervantes-Arslanian, A.M.; Tiu, C.; Radu, R.A.; Tiu, V.E.; Jillella, D.V.; Mansour, O.Y.; Vera, V.; et al. Cerebral venous sinus thrombosis in COVID-19 patients: A multicenter study and review of literature. J. Stroke Cerebrovasc. Dis. 2021, 30, 105733. [Google Scholar] [CrossRef]
- Desai, P.V.; Krepostman, N.; Collins, M.; De Sirkar, S.; Hinkleman, A.; Walsh, K.; Fareed, J.; Darki, A. Neurological complications of pulmonary embolism: A literature review. Curr. Neurol. Neurosci. Rep. 2021, 21, 59. [Google Scholar] [CrossRef]
- Van der Hulle, T.; Dronkers, C.E.A.; Klok, F.A.; Huisman, M.V. Recent developments in the diagnosis and treatment of pulmonary embolism. J. Intern. Med. 2016, 279, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.; Esmail, F.; Qin, S.; Nand, S.; Berg, S. Hypercoagulability of COVID-19 and neurological complications: A review. J. Stroke Cerebrovasc. Dis. 2022, 31, 106163. [Google Scholar] [CrossRef] [PubMed]
- Ahuja, N.; Bhinder, J.; Nguyen, J.; Langan, T.; O’Brien-Irr, M.; Montross, B.; Khan, S.; Sharma, A.M.; Harris, L.M. Venous thromboembolism in patients with COVID-19 infection: Risk factors, prevention, and management. Semin. Vasc. Surg. 2021, 34, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Christophe, C.; Fonteyne, C.; Ziereisen, F.; Christiaens, F.; Deltenre, P.; De Maertelaer, V.; Dan, B. Value of MR imaging of the brain in children with hypoxic coma. AJNR. Am. J. Neuroradiol. 2002, 23, 716–723. [Google Scholar] [PubMed]
- Baj, J.; Karakuła-Juchnowicz, H.; Teresiński, G.; Buszewicz, G.; Ciesielka, M.; Sitarz, R.; Forma, A.; Karakuła, K.; Flieger, W.; Portincasa, P.; et al. COVID-19: Specific and non-specific clinical manifestations and symptoms: The current state of knowledge. J. Clin. Med. 2020, 9, 1753. [Google Scholar] [CrossRef]
- Dhawan, R.T.; Gopalan, D.; Howard, L.; Vicente, A.; Park, M.; Manalan, K.; Wallner, I.; Marsden, P.; Dave, S.; Branley, H.; et al. Beyond the clot: Perfusion imaging of the pulmonary vasculature after COVID-19. Lancet Respir. Med. 2021, 9, 107–116. [Google Scholar] [CrossRef]
- Dale, L. Neurological complications of COVID-19: A review of the literature. Cureus 2022, 14, e27633. [Google Scholar] [CrossRef]
- Zakeri, A.; Jadhav, A.P.; Sullenger, B.A.; Nimjee, S.M. Ischemic stroke in COVID-19-positive patients: An overview of SARS-CoV-2 and thrombotic mechanisms for the neurointerventionalist. J. Neurointerv. Surg. 2021, 13, 202–206. [Google Scholar] [CrossRef]
- Achar, A.; Ghosh, C. COVID-19-associated neurological disorders: The potential route of cns invasion and blood-brain barrier relevance. Cells 2020, 9, 2360. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Aghagoli, G.; Gallo Marin, B.; Katchur, N.J.; Chaves-Sell, F.; Asaad, W.F.; Murphy, S.A. Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit. Care 2021, 34, 1062–1071. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Jahan, S.; Khan, A.; Siddiqui, A.J.; Redhu, N.S.; Wahajuddin; Khan, J.; Banwas, S.; Alshehri, B.; Alaidarous, M. Neurological manifestation of SARS-CoV-2 induced inflammation and possible therapeutic strategies against COVID-19. Mol. Neurobiol. 2021, 58, 3417–3434. [Google Scholar] [CrossRef] [PubMed]
Demographic Variables | Number | % | |
---|---|---|---|
Sex | Female | 14 | 22.2 |
Male | 49 | 77.8 | |
Smoker | No | 57 | 90.4 |
Yes | 6 | 9.5 | |
BMI | Normal | 32 | 50.8 |
Obese | 15 | 23.8 | |
Overweight | 11 | 17.5 | |
Incidence of PE | 63(334) | 18.86 | |
Age groups | 19–35 | 6 | 9.5 |
36–50 | 15 | 23.8 | |
51–65 | 21 | 33.3 | |
66–85 | 21 | 33.3 | |
Mean | SD | ||
Age | 57.57 | 13.82 | |
Number of admission days | 16.64 | 22.07 |
Risk Factor | Number | % |
---|---|---|
Smoker | 6 | 9.5% |
Obese | 15 | 23.8% |
Hypertensive | 21 | 33.3% |
Diabetic | 12 | 19% |
Total | 63 | 100% |
Complication Type | Number | % |
---|---|---|
Stroke | 5 | 8% |
Seizures | 3 | 5% |
Migraine | 7 | 11% |
Peripheral Neuropathy | 10 | 16% |
Total | 25 | 100% |
Severity of complication mild | 15 | 24% |
Severity moderate | 8 | 13% |
Severe | 2 | 3% |
Variable | Odds Ratio (95% CI) | p-Value |
---|---|---|
Age | 1.05 (1.01–1.10) | 0.03 |
Sex | 1.5 (0.5–4.5) | 0.5 |
BMI | 1.2 (0.8–1.8) | 0.4 |
Smoking | 2.0 (0.8–5.0) | 0.1 |
Hypertension | 1.5 (0.8–2.8) | 0.2 |
Diabetes | 1.3 (0.7–2.5) | 0.4 |
PE | 3.5 (1.5–8.0) | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakhsh, E.; Shaban, M.; Alzoum, M.A.; AlNassir, A.M.; Bin Hamad, A.A.; Alqahtani, M.S.; AlAyoubi, L.A.F.; Alamri, R.M.; Alamri, N.F. Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia. Brain Sci. 2023, 13, 343. https://doi.org/10.3390/brainsci13020343
Bakhsh E, Shaban M, Alzoum MA, AlNassir AM, Bin Hamad AA, Alqahtani MS, AlAyoubi LAF, Alamri RM, Alamri NF. Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia. Brain Sciences. 2023; 13(2):343. https://doi.org/10.3390/brainsci13020343
Chicago/Turabian StyleBakhsh, Ebtisam, Mostafa Shaban, Mohammad Abdullah Alzoum, Areej M. AlNassir, Aliah A. Bin Hamad, Munira S. Alqahtani, Leenah Ayman F. AlAyoubi, Raghad Mohammed Alamri, and Nasser F. Alamri. 2023. "Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia" Brain Sciences 13, no. 2: 343. https://doi.org/10.3390/brainsci13020343
APA StyleBakhsh, E., Shaban, M., Alzoum, M. A., AlNassir, A. M., Bin Hamad, A. A., Alqahtani, M. S., AlAyoubi, L. A. F., Alamri, R. M., & Alamri, N. F. (2023). Neurological Consequences of Pulmonary Emboli in COVID-19 Patients: A Study of Incidence and Outcomes in the Kingdom of Saudi Arabia. Brain Sciences, 13(2), 343. https://doi.org/10.3390/brainsci13020343