Exploring Associations between C-Reactive Protein and Self-Reported Interoception in Major Depressive Disorder: A Bayesian Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Participants
2.3. Measures
2.3.1. Multidimensional Assessment of Interoceptive Awareness, Version 2 (MAIA-2)
2.3.2. Beck Depression Inventory-II (BDI-II)
2.3.3. Multidimensional Fatigue Inventory (MFI-20)
2.4. C-Reactive Protein (CRP)
2.5. The Bayesian Framework
2.6. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Zero-Order Correlations between CRP and Self-Rating Scales
3.3. Adjusted Associations between CRP and Self-Rating Scales
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuchs, T.; Schlimme, J.E. Embodiment and psychopathology: A phenomenological perspective. Curr. Opin. Psychiatry 2009, 22, 570–575. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res. 2019, 126, 134–140. [Google Scholar] [CrossRef]
- Kapfhammer, H.-P. Somatic symptoms in depression. Dialogues Clin. Neurosci. 2006, 8, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Moncrieff, J.; Cooper, R.E.; Stockmann, T.; Amendola, S.; Hengartner, M.P.; Horowitz, M.A. The serotonin theory of depression: A systematic umbrella review of the evidence. Mol. Psychiatry 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Pandya, M.; Altinay, M.; Malone, D.A.; Anand, A. Where in the brain is depression? Curr. Psychiatry Rep. 2012, 14, 634–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banner, N.F. Mental disorders are not brain disorders. J. Eval. Clin. Pract. 2013, 19, 509–513. [Google Scholar] [CrossRef]
- Beurel, E.; Toups, M.; Nemeroff, C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron 2020, 107, 234–256. [Google Scholar] [CrossRef]
- Köhler-Forsberg, O.; Buttenschøn, H.N.; Tansey, K.E.; Maier, W.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A.; Rietschel, M.; et al. Association between C-reactive protein (CRP) with depression symptom severity and specific depressive symptoms in major depression. Brain Behav. Immun. 2017, 62, 344–350. [Google Scholar] [CrossRef]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef]
- Mac Giollabhui, N. Inflammation and depression: Research designs to better understand the mechanistic relationships between depression, inflammation, cognitive dysfunction, and their shared risk factors. Brain Behav. Immun. Health 2021, 15, 100278. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Lamers, F.; Berk, M.; Penninx, B.W.J.H. Depression Heterogeneity and Its Biological Underpinnings: Toward Immunometabolic Depression. Biol. Psychiatry 2020, 88, 369–380. [Google Scholar] [CrossRef]
- Frank, P.; Jokela, M.; Batty, G.D.; Cadar, D.; Steptoe, A.; Kivimäki, M. Association between Systemic Inflammation and Individual Symptoms of Depression: A Pooled Analysis of 15 Population-Based Cohort Studies. Am. J. Psychiatry 2021, 178, 1107–1118. [Google Scholar] [CrossRef] [PubMed]
- Lamers, F.; Milaneschi, Y.; de Jonge, P.; Giltay, E.J.; Penninx, B.W.J.H. Metabolic and inflammatory markers: Associations with individual depressive symptoms. Psychol. Med. 2018, 48, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- Chamberlain, S.R.; Cavanagh, J.; de Boer, P.; Mondelli, V.; Jones, D.N.C.; Drevets, W.C.; Cowen, P.J.; Harrison, N.A.; Pointon, L.; Pariante, C.M.; et al. Treatment-resistant depression and peripheral C-reactive protein. Br. J. Psychiatry 2019, 214, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Uher, R.; Tansey, K.E.; Dew, T.; Maier, W.; Mors, O.; Hauser, J.; Dernovsek, M.Z.; Henigsberg, N.; Souery, D.; Farmer, A.; et al. An inflammatory biomarker as a differential predictor of outcome of depression treatment with escitalopram and nortriptyline. Am. J. Psychiatry 2014, 171, 1278–1286. [Google Scholar] [CrossRef]
- Khandaker, G.M.; Pearson, R.M.; Zammit, S.; Lewis, G.; Jones, P.B. Association of serum interleukin 6 and C-reactive protein in childhood with depression and psychosis in young adult life: A population-based longitudinal study. JAMA Psychiatry 2014, 71, 1121–1128. [Google Scholar] [CrossRef] [Green Version]
- Craig, A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci. 2002, 3, 655–666. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.S.; Adolphs, R.; Cameron, O.G.; Critchley, H.D.; Davenport, P.W.; Feinstein, J.S.; Feusner, J.D.; Garfinkel, S.N.; Lane, R.D.; Mehling, W.E.; et al. Interoception and Mental Health: A Roadmap. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 501–513. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, M.; Critchley, H. Interoception beyond homeostasis: Affect, cognition and mental health. Philos. Trans. R. Soc. B 2016, 371, 1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, W. What is an emotion? Mind 1884, 9, 188–205. [Google Scholar] [CrossRef]
- Eggart, M.; Lange, A.; Binser, M.J.; Queri, S.; Müller-Oerlinghausen, B. Major depressive disorder is associated with impaired interoceptive accuracy: A systematic review. Brain Sci. 2019, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Mehling, W.E. Differentiating attention styles and regulatory aspects of self-reported interoceptive sensibility. Philos. Trans. R. Soc. B 2016, 371, 20160013. [Google Scholar] [CrossRef]
- Garfinkel, S.N.; Seth, A.K.; Barrett, A.B.; Suzuki, K.; Critchley, H.D. Knowing your own heart: Distinguishing interoceptive accuracy from interoceptive awareness. Biol. Psychol. 2015, 104, 65–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunne, J.; Flores, M.; Gawande, R.; Schuman-Olivier, Z. Losing trust in body sensations: Interoceptive awareness and depression symptom severity among primary care patients. J. Affect. Disord. 2021, 282, 1210–1219. [Google Scholar] [CrossRef]
- de Jong, M.; Lazar, S.W.; Hug, K.; Mehling, W.E.; Holzel, B.K.; Sack, A.T.; Peeters, F.; Ashih, H.; Mischoulon, D.; Gard, T. Effects of Mindfulness-Based Cognitive Therapy on Body Awareness in Patients with Chronic Pain and Comorbid Depression. Front. Psychol. 2016, 7, 967. [Google Scholar] [CrossRef] [Green Version]
- Fissler, M.; Winnebeck, E.; Schroeter, T.; Gummersbach, M.; Huntenburg, J.M.; Gaertner, M.; Barnhofer, T. An investigation of the effects of brief mindfulness training on self-reported interoceptive awareness, the ability to decenter, and their role in the reduction of depressive symptoms. Mindfulness 2016, 7, 1170–1181. [Google Scholar] [CrossRef]
- Eggart, M.; Valdés-Stauber, J. Can changes in multidimensional self-reported interoception be considered as outcome predictors in severely depressed patients? A moderation and mediation analysis. J. Psychosom. Res. 2021, 141, 110331. [Google Scholar] [CrossRef]
- Eggart, M.; Todd, J.; Valdés-Stauber, J. Validation of the Multidimensional Assessment of Interoceptive Awareness (MAIA-2) questionnaire in hospitalized patients with major depressive disorder. PLoS ONE 2021, 16, e0253913. [Google Scholar] [CrossRef] [PubMed]
- Eggart, M.; Queri, S.; Müller-Oerlinghausen, B. Are the antidepressive effects of massage therapy mediated by restoration of impaired interoceptive functioning? A novel hypothetical mechanism. Med. Hypotheses 2019, 128, 28–32. [Google Scholar] [CrossRef] [PubMed]
- Savitz, J.; Harrison, N.A. Interoception and Inflammation in Psychiatric Disorders. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 514–524. [Google Scholar] [CrossRef]
- Aruldass, A.R.; Kitzbichler, M.G.; Morgan, S.E.; Lim, S.; Lynall, M.-E.; Turner, L.; Vertes, P.; Cavanagh, J.; Cowen, P.; Pariante, C.M.; et al. Dysconnectivity of a brain functional network was associated with blood inflammatory markers in depression. Brain Behav. Immun. 2021, 98, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Keysers, C.; Gazzola, V.; Wagenmakers, E.-J. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat. Neurosci. 2020, 23, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Hengartner, M.P. Targeting the replication crisis and improving the credibility of research findings in clinical psychology. A commentary on Pittelkow et al. Clin. Psychol. Sci. Pract. 2021, 28, 226–228. [Google Scholar] [CrossRef]
- WHO. Manual of the International Classification of Diseases and Related Health Problems, 10th ed.; World Health Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Cai, H.; Jin, Y.; Liu, S.; Zhang, Q.; Zhang, L.; Cheung, T.; Balbuena, L.; Xiang, Y.-T. Prevalence of suicidal ideation and planning in patients with major depressive disorder: A meta-analysis of observation studies. J. Affect. Disord. 2021, 293, 148–158. [Google Scholar] [CrossRef]
- Hautzinger, M.; Keller, F.; Kühner, C. Beck Depressions-Inventar (BDI-II), rev. ed.; Harcourt Test Services: Frankfurt am Main, Germany, 2006. [Google Scholar]
- Hinz, A.; Weis, J.; Brähler, E.; Härter, M.; Geue, K.; Ernst, J. Fatigue in cancer patients: Comparison with the general population and prognostic factors. Support. Care Cancer 2020, 28, 4517–4526. [Google Scholar] [CrossRef] [Green Version]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O.; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Moriarity, D.P.; Horn, S.R.; Kautz, M.M.; Haslbeck, J.M.B.; Alloy, L.B. How handling extreme C-reactive protein (CRP) values and regularization influences CRP and depression criteria associations in network analyses. Brain Behav. Immun. 2021, 91, 393–403. [Google Scholar] [CrossRef]
- Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A.; Rubin, D.B. (Eds.) Bayesian Data Analysis, 3rd ed.; CRC Press Taylor & Francis: Boca Raton, FL, USA, 2014; ISBN 9781439840955. [Google Scholar]
- Makowski, D.; Ben-Shachar, M.S.; Chen, S.H.A.; Lüdecke, D. Indices of Effect Existence and Significance in the Bayesian Framework. Front. Psychol. 2019, 10, 2767. [Google Scholar] [CrossRef] [Green Version]
- Kruschke, J.K. Bayesian Analysis Reporting Guidelines. Nat. Hum. Behav. 2021, 5, 1282–1291. [Google Scholar] [CrossRef]
- Nuzzo, R. Scientific method: Statistical errors. Nature 2014, 506, 150–152. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Bland, J.M. Statistics notes: Absence of evidence is not evidence of absence. BMJ 1995, 311, 485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelter, R. Analysis of type I and II error rates of Bayesian and frequentist parametric and nonparametric two-sample hypothesis tests under preliminary assessment of normality. Comput Stat 2021, 36, 1263–1288. [Google Scholar] [CrossRef]
- Lee, M.D.; Wagenmakers, E.-J. Bayesian Cognitive Modeling: A Practical Course; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://link.springer.com/content/pdf/10.1007/s00180-020-01034-7.pdf (accessed on 12 January 2020).
- Morey, R.D.; Rouder, J.N.; BayesFactor: Computation of Bayes Factors for Common Designs. R Package Version 0.9.12-4.2. Available online: https://CRAN.R-project.org/package=BayesFactor (accessed on 12 January 2020).
- Wagenmakers, E.-J.; Lodewyckx, T.; Kuriyal, H.; Grasman, R. Bayesian hypothesis testing for psychologists: A tutorial on the Savage-Dickey method. Cogn. Psychol. 2010, 60, 158–189. [Google Scholar] [CrossRef] [Green Version]
- Makowski, D.; Ben-Shachar, M.; Lüdecke, D. bayestestR: Describing Effects and their Uncertainty, Existence and Significance within the Bayesian Framework. JOSS 2019, 4, 1541. [Google Scholar] [CrossRef]
- Ly, A.; Verhagen, J.; Wagenmakers, E.-J. Harold Jeffreys’s default Bayes factor hypothesis tests: Explanation, extension, and application in psychology. J. Math. Psychol. 2016, 72, 19–32. [Google Scholar] [CrossRef]
- Wagenmakers, E.-J.; Verhagen, J.; Ly, A. How to quantify the evidence for the absence of a correlation. Behav. Res. Methods 2016, 48, 413–426. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, M.-F.; Bower, J.E.; Cho, H.J.; Creswell, J.D.; Dimitrov, S.; Hamby, M.E.; Hoyt, M.A.; Martin, J.L.; Robles, T.F.; Sloan, E.K.; et al. To assess, to control, to exclude: Effects of biobehavioral factors on circulating inflammatory markers. Brain Behav. Immun. 2009, 23, 887–897. [Google Scholar] [CrossRef] [Green Version]
- Goodrich, B.; Gabry, J.; Ali, I.; Brilleman, S. rstanarm: Bayesian Applied Regression Modeling via Stan. R Package Version 2.21.1. Available online: https://mc-stan.org/rstanarm (accessed on 12 January 2020).
- Muth, C.; Oravecz, Z.; Gabry, J. User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. TQMP 2018, 14, 99–119. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Kappelmann, N.; Ye, Z.; Lamers, F.; Moser, S.; Jones, P.B.; Burgess, S.; Penninx, B.W.J.H.; Khandaker, G.M. Association of inflammation with depression and anxiety: Evidence for symptom-specificity and potential causality from UK Biobank and NESDA cohorts. Mol. Psychiatry 2021, 26, 7393–7402. [Google Scholar] [CrossRef]
- Harshaw, C. Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol. Bull. 2015, 141, 311–363. [Google Scholar] [CrossRef] [Green Version]
- Wiebking, C.; Bauer, A.; de Greck, M.; Duncan, N.W.; Tempelmann, C.; Northoff, G. Abnormal body perception and neural activity in the insula in depression: An fMRI study of the depressed “material me”. World J. Biol. Psychiatry 2010, 11, 538–549. [Google Scholar] [CrossRef] [PubMed]
- Barrett, L.F.; Quigley, K.S.; Hamilton, P. An active inference theory of allostasis and interoception in depression. Philos. Trans. R. Soc. B 2016, 371, 20160011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crucianelli, L.; Enmalm, A.; Ehrsson, H.H. Interoception as independent cardiac, thermosensory, nociceptive, and affective touch perceptual submodalities. Biol. Psychol. 2022, 172, 108355. [Google Scholar] [CrossRef]
- Reinhardt, K.M.; Zerubavel, N.; Young, A.S.; Gallo, M.; Ramakrishnan, N.; Henry, A.; Zucker, N.L. A multi-method assessment of interoception among sexual trauma survivors. Physiol. Behav. 2020, 226, 113108. [Google Scholar] [CrossRef]
- Oldroyd, K.; Pasupathi, M.; Wainryb, C. Social Antecedents to the Development of Interoception: Attachment Related Processes Are Associated with Interoception. Front. Psychol. 2019, 10, 712. [Google Scholar] [CrossRef] [Green Version]
- Schulz, A.; Vögele, C. Interoception and stress. Front. Psychol. 2015, 6, 993. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.J.; Blossom, S.J.; Delgado, P.L.; Carbajal, J.M.; Cáceda, R. Examination of pain threshold and neuropeptides in patients with acute suicide risk. Prog. Neuropsychopharmacol. Biol. Psychiatry 2019, 95, 109705. [Google Scholar] [CrossRef]
- Thompson, T.; Correll, C.U.; Gallop, K.; Vancampfort, D.; Stubbs, B. Is Pain Perception Altered in People with Depression? A Systematic Review and Meta-Analysis of Experimental Pain Research. J. Pain 2016, 17, 1257–1272. [Google Scholar] [CrossRef] [Green Version]
- Hartwig, F.P.; Borges, M.C.; Horta, B.L.; Bowden, J.; Davey Smith, G. Inflammatory Biomarkers and Risk of Schizophrenia: A 2-Sample Mendelian Randomization Study. JAMA Psychiatry 2017, 74, 1226–1233. [Google Scholar] [CrossRef]
- Lin, B.D.; Alkema, A.; Peters, T.; Zinkstok, J.; Libuda, L.; Hebebrand, J.; Antel, J.; Hinney, A.; Cahn, W.; Adan, R.; et al. Assessing causal links between metabolic traits, inflammation and schizophrenia: A univariable and multivariable, bidirectional Mendelian-randomization study. Int. J. Epidemiol. 2019, 48, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.M.; Smith, J.A.; Mezuk, B. Depression and interleukin-6 signaling: A Mendelian Randomization study. Brain Behav. Immun. 2021, 95, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-reactive protein in various populations: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 232–244. [Google Scholar] [CrossRef]
- Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet 2010, 375, 132–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berk, M.; Williams, L.J.; Jacka, F.N.; O’Neil, A.; Pasco, J.A.; Moylan, S.; Allen, N.B.; Stuart, A.L.; Hayley, A.C.; Byrne, M.L.; et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med. 2013, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Baumeister, D.; Akhtar, R.; Ciufolini, S.; Pariante, C.M.; Mondelli, V. Childhood trauma and adulthood inflammation: A meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 2016, 21, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Tu, S.; Sheng, J.; Shao, A. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J. Cell. Mol. Med. 2019, 23, 2324–2332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derry, H.M.; Padin, A.C.; Kuo, J.L.; Hughes, S.; Kiecolt-Glaser, J.K. Sex Differences in Depression: Does Inflammation Play a Role? Curr. Psychiatry Rep. 2015, 17, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J.; Viding, E.; Bird, G. Does atypical interoception following physical change contribute to sex differences in mental illness? Psychol. Rev. 2019, 126, 787–789. [Google Scholar] [CrossRef]
- Schönbrodt, F.D.; Wagenmakers, E.-J. Bayes factor design analysis: Planning for compelling evidence. Psychon. Bull. Rev. 2018, 25, 128–142. [Google Scholar] [CrossRef] [Green Version]
Characteristics | Total | Peripheral CRP (mg/L) | |||
---|---|---|---|---|---|
<1.0 | 1.0–3.0 | 3.1–10.0 | >10.0 | ||
N (Total %) | 97 (100%) | 8 (8.25%) | 53 (54.64%) | 28 (28.87%) | 8 (8.25%) |
Age (years, M ± SD) | 47.56 ± 11.12 | 49.75 ± 11.50 | 47.55 ± 11.60 | 47.57 ± 10.21 | 45.38 ± 12.35 |
Female sex | 53 (54.64%) | 3 (37.50%) | 30 (56.60%) | 16 (57.14%) | 4 (50.00%) |
BMI (kg/m2, M ± SD) | 26.31 ± 5.42 | 23.93 ± 4.70 | 24.90 ± 4.68 | 27.33 ± 4.40 | 34.45 ± 6.48 |
School Education | |||||
≤9 years | 23 (23.71%) | 1 (12.50%) | 13 (24.53%) | 5 (17.86%) | 4 (50.00%) |
10 years | 42 (43.30%) | 5 (62.50%) | 20 (37.74%) | 14 (50.00%) | 3 (37.50%) |
≥11 years | 32 (23.71%) | 2 (25.00%) | 20 (37.74%) | 9 (32.14%) | 1 (12.50%) |
Vocational Education | |||||
no vocational training | 9 (9.28%) | 0 (0.00%) | 7 (13.21%) | 2 (7.14%) | 0 (0.00%) |
vocational training | 72 (74.23%) | 7 (87.50%) | 36 (67.92%) | 22 (78.57%) | 7 (87.50%) |
academic degree | 16 (16.49%) | 1 (12.50%) | 10 (18.87%) | 4 (14.29%) | 1 (12.50%) |
Employment status | |||||
unemployed | 20 (20.62%) | 2 (25.00%) | 12 (22.64%) | 4 (14.29%) | 2 (25.00%) |
employed | 66 (68.04%) | 4 (50.00%) | 36 (67.92%) | 22 (78.57%) | 4 (50.00%) |
retired | 11 (11.34%) | 2 (25.00%) | 5 (9.43%) | 2 (7.14%) | 2 (25.00%) |
Main diagnosis (ICD-10) | |||||
Single depr. episode (F32) | 29 (29.90%) | 3 (37.50%) | 17 (32.08%) | 8 (28.57%) | 1 (12.50%) |
Recurrent depr. disorder (F33) | 68 (70.10%) | 5 (62.50%) | 36 (67.92%) | 20 (71.43%) | 7 (87.50%) |
Severity of depression (ICD-10) | |||||
Moderate (F3x.1) | 12 (12.37%) | 1 (12.50%) | 6 (11.32%) | 3 (10.71%) | 2 (25.00%) |
Severe without psychotic features (F3x.2) | 85 (87.63%) | 7 (87.50%) | 47 (88.68%) | 25 (89.29%) | 6 (75.00%) |
Number of past psychiatric inpatient stays (self-report, M ± SD) | 1.39 ± 1.78 | 0.75 ± 0.71 | 1.47 ± 1.68 | 1.46 ± 2.15 | 1.25 ± 1.83 |
Somatic comorbidity (yes) | 30 (30.93%) | 0 (0.00%) | 13 (24.53%) | 12 (42.86%) | 5 (62.50%) |
Medication | |||||
Psychotropic drugs at admission (self-reported number, M ± SD) | 1.40 ± 1.26 | 1.38 ± 1.06 | 1.36 ± 1.19 | 1.39 ± 1.34 | 1.75 ± 1.75 |
Statins (yes) | 9 (9.28%) | 1 (12.50%) | 4 (7.55%) | 3 (10.71%) | 1 (12.50%) |
Antihypertensives (yes) | 27 (27.84%) | 2 (25.00%) | 12 (22.64%) | 8 (28.57%) | 5 (62.50%) |
MAIA-2 | |||||
Noticing (M ± SD) | 2.98 ± 1.02 | 2.97 ± 0.97 | 2.96 ± 1.19 | 3.08 ± 0.75 | 2.75 ± 0.83 |
Not-Distracting (M ± SD) | 1.81 ± 0.81 | 1.77 ± 0.90 | 1.73 ± 0.82 | 1.92 ± 0.77 | 1.98 ± 0.88 |
Not-Worrying (M ± SD) | 2.01 ± 0.94 | 2.25 ± 0.50 | 1.98 ± 1.01 | 2.12 ± 0.85 | 1.52 ± 0.97 |
Attention Regulation (M ± SD) | 2.04 ± 0.92 | 2.36 ± 0.88 | 2.04 ± 0.89 | 1.95 ± 1.00 | 2.00 ± 0.94 |
Emotional Awareness (M ± SD) | 3.31 ± 1.15 | 3.28 ± 0.98 | 3.25 ± 1.28 | 3.40 ± 0.86 | 3.38 ± 1.49 |
Self-Regulation (M ± SD) | 1.64 ± 0.91 | 1.41 ± 0.48 | 1.67 ± 0.90 | 1.64 ± 0.92 | 1.72 ± 1.35 |
Body Listening (M ± SD) | 1.53 ± 1.02 | 2.29 ± 0.55 | 2.12 ± 1.26 | 2.20 ± 1.28 | 1.92 ± 1.22 |
Trusting (M ± SD) | 2.14 ± 1.21 | 2.29 ± 0.55 | 2.12 ± 1.26 | 2.20 ± 1.28 | 1.92 ± 1.22 |
BDI-II (M ± SD) | 31.32 ± 10.29 | 23.00 ± 9.50 | 31.96 ± 10.93 | 30.96 ± 8.16 | 36.62 ± 10.20 |
MFI-20 | |||||
General Fatigue (M ± SD) | 15.88 ± 3.34 | 13.50 ± 3.51 | 16.06 ± 3.25 | 15.75 ± 3.49 | 17.50 ± 2.33 |
Physical Fatigue (M ± SD) | 14.72 ± 3.87 | 10.88 ± 2.75 | 14.83 ± 3.88 | 14.71 ± 3.63 | 17.88 ± 2.53 |
Mental Fatigue (M ± SD) | 15.67 ± 3.26 | 13.00 ± 4.96 | 15.83 ± 3.08 | 15.79 ± 2.97 | 16.88 ± 2.53 |
Reduced Activity (M ± SD) | 15.09 ± 3.77 | 12.75 ± 3.92 | 15.11 ± 3.50 | 15.36 ± 4.35 | 16.38 ± 2.72 |
Reduced Motivation (M ± SD) | 14.03 ± 3.43 | 11.88 ± 3.60 | 14.42 ± 3.07 | 13.57 ± 3.99 | 15.25 ± 2.92 |
Scale | Bayesian Correlation with log10 CRP | Sensitivity Analysis with Varying Priors | ||||
---|---|---|---|---|---|---|
rMedian | 95% HDI | BF10 (γ1 = 1/3) | BF10 () | BF10 () | BF10 (γ4 = 1) | |
MAIA-2 | ||||||
Noticing 1 | 0.00 | [−0.17, 0.21] | 0.23 | 0.31 | 0.17 | 0.13 |
Not-Distracting 1 | 0.11 | [−0.08, 0.29] | 0.43 | 0.55 | 0.33 | 0.24 |
Not-Worrying 1 | −0.03 | [−0.20, 0.17] | 0.24 | 0.32 | 0.18 | 0.13 |
Attention Regulation 1 | −0.08 | [−0.26, 0.11] | 0.32 | 0.42 | 0.24 | 0.18 |
Emotional Awareness 1 | 0.02 | [−0.16, 0.22] | 0.24 | 0.31 | 0.18 | 0.13 |
Self-Regulation 1 | 0.02 | [−0.15, 0.23] | 0.24 | 0.31 | 0.18 | 0.13 |
Body Listening 1 | 0.02 | [−0.16, 0.22] | 0.24 | 0.31 | 0.18 | 0.13 |
Trusting 1 | −0.01 | [−0.18, 0.19] | 0.23 | 0.31 | 0.18 | 0.13 |
BDI-II 2 | 0.21 | [0.03, 0.39] | 3.19 | 3.86 | 2.51 | 1.89 |
MFI-20 | ||||||
General Fatigue 2 | 0.16 | [0.01, 0.34] | 1.22 | 1.52 | 0.97 | 0.70 |
Physical Fatigue 2 | 0.28 | [0.09, 0.46] | 20.64 | 23.14 | 16.98 | 13.11 |
Mental Fatigue 2 | 0.15 | [0.01, 0.33] | 1.01 | 1.27 | 0.77 | 0.57 |
Reduced Activity 2 | 0.22 | [0.04, 0.40] | 4.67 | 5.55 | 3.70 | 2.79 |
Reduced Motivation 2 | 0.14 | [0.01, 0.32] | 0.80 | 1.01 | 0.61 | 0.45 |
Scale | Predictor: log10 CRP (Overall Inflammation, N = 97) | Sensitivity Analysis (Exclusion of Acute Inflammation, N = 89) | ||||||
---|---|---|---|---|---|---|---|---|
βMedian [95% HDI] | bMedian [95% HDI] | ESS | BF | βMedian [95% HDI] | bMedian [95% HDI] | ESS | BF | |
MAIA-2 | ||||||||
Noticing 1 | −0.08 [−0.33, 0.18] | −0.21 [−0.90, 0.48] | 21,421 | 0.59 | 0.01 [−0.22, 0.26] | 0.05 [−0.75, 0.86] | 24,469 | 0.56 |
Not-Distracting 1 | 0.15 [−0.10, 0.41] | 0.33 [−0.22, 0.87] | 21,130 | 0.73 | 0.20 [−0.03, 0.43] | 0.52 [−0.09, 1.12] | 23,606 | 1.25 |
Not-Worrying 1 | 0.26 [0.03, 0.50] | 0.66 [0.06, 1.24] | 20,833 | 2.69 | 0.28 [0.06, 0.52] | 0.84 [0.15, 1.51] | 23,395 | 3.97 |
Attention Regulation 1 | −0.05 [−0.29, 0.20] | −0. 11 [−0.71, 0.49] | 24,267 | 0.34 | −0.04 [−0.27, 0.19] | −0.13 [−0.81, 0.55] | 22,453 | 0.39 |
Emotional Awareness 1 | −0.03 [−0.28, 0.24] | −0.08 [−0.88, 0.71] | 21,465 | 0.35 | 0.01 [−0.24, 0.25] | 0.02 [−0.88, 0.90] | 22,697 | 0.41 |
Self-Regulation 1 | −0.02 [−0.29, 0.22] | −0.06 [−0.69, 0.55] | 21,710 | 0.34 | 0.02 [−0.22, 0.26] | 0.06 [−0.62, 0.74] | 23,575 | 0.37 |
Body Listening 1 | −0.02 [−0.27, 0.24] | −0.04 [−0.73, 0.66] | 22,118 | 0.33 | 0.01 [−0.23, 0.25] | 0.02 [−0.77, 0.79] | 22,465 | 0.40 |
Trusting 1 | 0.00 [−0.26, 0.25] | 0.00 [−0.82, 0.82] | 22,109 | 0.33 | 0.00 [−0.25, 0.25] | 0.00 [−0.95, 0.96] | 19,393 | 0.35 |
BDI-II 2 | 0.24 [−0.01, 0.48] | 6.33 [−0.37, 13.08] | 22,177 | 1.43 | 0.13 [−0.09, 0.36] | 4.17 [−3.24, 11.63] | 23,479 | 0.66 |
MFI-20 | ||||||||
General Fatigue 2 | 0.08 [−0.16, 0.33] | 0.74 [−1.46, 2.91] | 21,148 | 0.35 | 0.02 [−0.21, 0.27] | 0.27 [−2.37, 2.89] | 23,136 | 0.36 |
Physical Fatigue 2 | 0.24 [−0.01, 0.48] | 2.44 [−0.07, 4.95] | 22,672 | 6.11 | 0.13 [−0.12, 0.37] | 1.56 [−1.43, 4.52] | 22,856 | 0.55 |
Mental Fatigue 2 | 0.23 [−0.03, 0.47] | 1.98 [−0.23, 4.14] | 21,937 | 1.27 | 0.14 [−0.10, 0.39] | 1.53 [−1.09, 4.16] | 21,201 | 0.63 |
Reduced Activity 2 | 0.34 [0.09, 0.57] | 3.38 [0.94, 5.76] | 21,939 | 7.35 | 0.29 [0.05, 0.52] | 3.53 [0.63, 6.46] | 23,116 | 3.24 |
Reduced Motivation 2 | 0.19 [−0.07, 0.44] | 1.71 [−0.59, 4.09] | 22,722 | 0.79 | 0.14 [−0.10, 0.39] | 1.54 [−1.18, 4.26] | 23,865 | 0.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eggart, M.; Valdés-Stauber, J.; Müller-Oerlinghausen, B.; Heinze, M. Exploring Associations between C-Reactive Protein and Self-Reported Interoception in Major Depressive Disorder: A Bayesian Analysis. Brain Sci. 2023, 13, 353. https://doi.org/10.3390/brainsci13020353
Eggart M, Valdés-Stauber J, Müller-Oerlinghausen B, Heinze M. Exploring Associations between C-Reactive Protein and Self-Reported Interoception in Major Depressive Disorder: A Bayesian Analysis. Brain Sciences. 2023; 13(2):353. https://doi.org/10.3390/brainsci13020353
Chicago/Turabian StyleEggart, Michael, Juan Valdés-Stauber, Bruno Müller-Oerlinghausen, and Martin Heinze. 2023. "Exploring Associations between C-Reactive Protein and Self-Reported Interoception in Major Depressive Disorder: A Bayesian Analysis" Brain Sciences 13, no. 2: 353. https://doi.org/10.3390/brainsci13020353
APA StyleEggart, M., Valdés-Stauber, J., Müller-Oerlinghausen, B., & Heinze, M. (2023). Exploring Associations between C-Reactive Protein and Self-Reported Interoception in Major Depressive Disorder: A Bayesian Analysis. Brain Sciences, 13(2), 353. https://doi.org/10.3390/brainsci13020353