Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients
Abstract
:1. Introduction
- -
- promoting the usefulness of SS-OCT in optimizing the evaluation of pwMS,
- -
- indicating the potential significance of single-time-point SS-OCT measurements in non-ON eyes of treatment-naïve pwMS,
- -
- searching for optimal pRNFL and GCIPL thickness thresholds to distinguish MS types,
- -
- searching for optimal pRNFL and GCIPL thickness thresholds for discriminating non-ON eyes of CIS patients from non-ON eyes of pwMS, and
- -
- the use of pRNFL and GCIPL thickness thresholds in differentiating the disability status of pwMS.
2. Materials and Methods
2.1. Study Design and Participants
2.2. OCT Assessment
2.3. Statistical Analysis
3. Results
3.1. GCIPL Thickness Cut-Off Points
3.2. pRNFL Thickness Cut-Off Points
3.3. Diagnostic Accuracy of OCT Cut-Off Values
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Acronym | Meaning |
ANOVA | analysis of variance |
APOSTEL | Advised Protocol for Optical Coherence Tomography Study Terminology and Elements |
AUC | area under the curve |
BNMS | benign multiple sclerosis |
CI | confidence interval |
CIS | clinically isolated syndrome |
CNS | central nervous system |
DMTs | disease-modifying treatments |
EDSS | Expanded Disability Status Scale |
GCIPL | ganglion cell–inner plexiform layer |
LSD | least significant differences |
MS | multiple sclerosis |
non-ON | non-optic neuritis |
NPV | negative predictive value |
OCT | optical coherence tomography |
ON | optic neuritis |
OR | odds ratio |
PPMS | primary progressive multiple sclerosis |
PPV | positive predictive value |
pRNFL | peripapillary retinal nerve fiber layer |
pwMS | people with MS |
ROC | receiver operating characteristic |
RRMS | relapsing–remitting multiple sclerosis |
SD | standard deviation |
SD-OCT | spectral-domain optical coherence tomography |
SPMS | secondary progressive multiple sclerosis |
SS-OCT | swept-source optical coherence tomography |
References
- Lassmann, H. Pathogenic Mechanisms Associated With Different Clinical Courses of Multiple Sclerosis. Front. Immunol. 2019, 9, 3116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Cree, B.A.C.; Arnold, D.L.; Chataway, J.; Chitnis, T.; Fox, R.J.; Ramajo, A.P.; Murphy, N.; Lassmann, H. Secondary Progressive Multiple Sclerosis. Neurology 2021, 97, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Absinta, M.; Lassmann, H.; Trapp, B.D. Mechanisms underlying progression in multiple sclerosis. Curr. Opin. Neurol. 2020, 33, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Sapko, K.; Jamroz-Wiśniewska, A.; Rejdak, K. Novel Drugs in a Pipeline for Progressive Multiple Sclerosis. J. Clin. Med. 2022, 11, 3342. [Google Scholar] [CrossRef]
- Reynders, T.; D’Haeseleer, M.; De Keyser, J.; Nagels, G.; D’Hooghe, M.B. Definition, prevalence and predictive factors of benign multiple sclerosis. eNeurologicalSci 2017, 7, 37–43. [Google Scholar] [CrossRef]
- Petzold, A.; Balcer, L.J.; Calabresi, P.A.; Costello, F.; Frohman, T.C.; Frohman, E.M.; Martinez-Lapiscina, E.H.; Green, A.J.; Kardon, R.; Outteryck, O.; et al. Retinal layer segmentation in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2017, 16, 797–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- London, A.; Benhar, I.; Schwartz, M. The retina as a window to the brain—From eye research to CNS disorders. Nat. Rev. Neurol. 2013, 9, 44–53. [Google Scholar] [CrossRef]
- Minakaran, N.; de Carvalho, E.R.; Petzold, A.; Wong, S.H. Optical coherence tomography (OCT) in neuro-ophthalmology. Eye 2021, 35, 17–32. [Google Scholar] [CrossRef]
- Kucharczuk, J.; Maciejek, Z.; Sikorski, B.L. Optical coherence tomography in diagnosis and monitoring multiple sclerosis. Neurol. Neurochir. Pol. 2018, 52, 140–149. [Google Scholar] [CrossRef]
- Lu, G.; Beadnall, H.N.; Barton, J.; Hardy, T.A.; Wang, C.; Barnett, M.H. The evolution of “No Evidence of Disease Activity” in multiple sclerosis. Mult. Scler. Relat. Disord. 2018, 20, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lapiscina, E.H.; Arnow, S.; Wilson, J.A.; Saidha, S.; Preiningerova, J.L.; Oberwahrenbrock, T.; Brandt, A.U.; Pablo, L.E.; Guerrieri, S.; Gonzalez, I.; et al. Retinal thickness measured with optical coherence tomography and risk of disability worsening in multiple sclerosis: A cohort study. Lancet Neurol. 2016, 15, 574–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambe, J.; Fitzgerald, K.C.; Murphy, O.C.; Filippatou, A.G.; Sotirchos, E.S.; Kalaitzidis, G.; Vasileiou, E.; Pellegrini, N.; Ogbuokiri, E.; Toliver, B.; et al. Association of Spectral-Domain OCT With Long-term Disability Worsening in Multiple Sclerosis. Neurology 2021, 96, e2058–e2069. [Google Scholar] [CrossRef] [PubMed]
- Schurz, N.; Sariaslani, L.; Altmann, P.; Leutmezer, F.; Mitsch, C.; Pemp, B.; Rommer, P.; Zrzavy, T.; Berger, T.; Bsteh, G. Evaluation of Retinal Layer Thickness Parameters as Biomarkers in a Real-World Multiple Sclerosis Cohort. Eye Brain 2021, 13, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Laíns, I.; Wang, J.C.; Cui, Y.; Katz, R.; Vingopoulos, F.; Staurenghi, G.; Vavvas, D.G.; Miller, J.W.; Miller, J.B. Retinal applications of swept source optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Prog. Retin. Eye Res. 2021, 84, 100951. [Google Scholar] [CrossRef] [PubMed]
- Rzepiński, Ł.; Kucharczuk, J.; Maciejek, Z.; Grzybowski, A.; Parisi, V. Spectral-Domain Optical Coherence Tomography Assessment in Treatment-Naïve Patients with Clinically Isolated Syndrome and Different Multiple Sclerosis Types: Findings and Relationship with the Disability Status. J. Clin. Med. 2021, 10, 2892. [Google Scholar] [CrossRef] [PubMed]
- Button, J.; Al-Louzi, O.; Lang, A.; Bhargava, P.; Newsome, S.D.; Frohman, T.; Balcer, L.J.; Frohman, E.M.; Prince, J.; Calabresi, P.A.; et al. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis. Neurology 2017, 88, 525–532. [Google Scholar] [CrossRef] [Green Version]
- Bsteh, G.; Hegen, H.; Teuchner, B.; Amprosi, M.; Berek, K.; Ladstätter, F.; Wurth, S.; Auer, M.; Di Pauli, F.; Deisenhammer, F.; et al. Peripapillary retinal nerve fibre layer as measured by optical coherence tomography is a prognostic biomarker not only for physical but also for cognitive disability progression in multiple sclerosis. Mult. Scler. J. 2019, 25, 196–203. [Google Scholar] [CrossRef]
- Ford, R.K.; Juillard, P.; Hawke, S.; Grau, G.E.; Marsh-Wakefield, F. Cladribine Reduces Trans-Endothelial Migration of Memory T Cells across an In Vitro Blood–Brain Barrier. J. Clin. Med. 2022, 11, 6006. [Google Scholar] [CrossRef]
- Lublin, F.D.; Reingold, S.C. Defining the clinical course of multiple sclerosis: Results of an international survey. Neurology 1996, 46, 907–911. [Google Scholar] [CrossRef]
- Glad, S.B.; Aarseth, J.H.; Nyland, H.; Riise, T.; Myhr, K.-M. Benign multiple sclerosis: A need for a consensus. Acta Neurol. Scand. Suppl. 2010, 190, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Saidha, S.; Al-Louzi, O.; Ratchford, J.N.; Bhargava, P.; Oh, J.; Newsome, S.D.; Prince, J.L.; Pham, D.; Roy, S.; van Zijl, P.; et al. Optical coherence tomography reflects brain atrophy in multiple sclerosis: A four-year study. Ann. Neurol. 2015, 78, 801–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.C.; Kardon, R.H.; Leavitt, J.A.; Flanagan, E.P.; Pittock, S.J.; Chen, J.J. Optical coherence tomography is highly sensitive in detecting prior optic neuritis. Neurology 2019, 92, e527–e535. [Google Scholar] [CrossRef]
- Petzold, A.; de Boer, J.F.; Schippling, S.; Vermersch, P.; Kardon, R.; Green, A.; Calabresi, P.A.; Polman, C. Optical coherence tomography in multiple sclerosis: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 921–932. [Google Scholar] [CrossRef] [Green Version]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Cettomai, D.; Pulicken, M.; Gordon-Lipkin, E.; Salter, A.; Frohman, T.C.; Conger, A.; Zhang, X.; Cutter, G.; Balcer, L.J.; Frohman, E.M.; et al. Reproducibility of Optical Coherence Tomography in Multiple Sclerosis. Arch. Neurol. 2008, 65, 1218–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schippling, S.; Balk, L.J.; Costello, F.; Albrecht, P.; Balcer, L.; Calabresi, P.; Frederiksen, J.L.; Frohman, E.; Green, A.J.; Klistorner, A.; et al. Quality control for retinal OCT in multiple sclerosis: Validation of the OSCAR-IB criteria. Mult. Scler. J. 2015, 21, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Petzold, A.; Albrecht, P.; Balcer, L.; Bekkers, E.; Brandt, A.U.; Calabresi, P.A.; Deborah, O.G.; Graves, J.S.; Green, A.; Keane, P.A.; et al. Artificial intelligence extension of the OSCAR-IB criteria. Ann. Clin. Transl. Neurol. 2021, 8, 1528–1542. [Google Scholar] [CrossRef]
- Cruz-Herranz, A.; Balk, L.J.; Oberwahrenbrock, T.; Saidha, S.; Martinez-Lapiscina, E.H.; Lagreze, W.A.; Schuman, J.S.; Villoslada, P.; Calabresi, P.; Balcer, L.; et al. The APOSTEL recommendations for reporting quantitative optical coherence tomography studies. Neurology 2016, 86, 2303–2309. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Ghosh, R.; Phadikar, S.; Deb, N.; Sinha, N.; Das, P.; Ghaderpour, E. Automatic Eyeblink and Muscular Artifact Detection and Removal From EEG Signals Using k-Nearest Neighbor Classifier and Long Short-Term Memory Networks. IEEE Sens. J. 2023, 23, 5422–5436. [Google Scholar] [CrossRef]
- Neurostatus.net. Available online: https://www.neurostatus.net/media/specimen/Definitions_0410-2_s.pdf (accessed on 1 February 2023).
- Skirková, M.; Mikula, P.; Maretta, M.; Fedičová, M.; Vitková, M.; Frigová, L.; Szilasi, J.; Moravská, M.; Horňák, M.; Szilasiová, J. Associations of optical coherence tomography with disability and brain MRI volumetry in patients with multiple sclerosis. Neurol. Neurochir. Polska 2022, 56, 326–332. [Google Scholar] [CrossRef]
- Bsteh, G.; Berek, K.; Hegen, H.; Altmann, P.; Wurth, S.; Auer, M.; Zinganell, A.; Di Pauli, F.; Rommer, P.; Leutmezer, F.; et al. Macular ganglion cell–inner plexiform layer thinning as a biomarker of disability progression in relapsing multiple sclerosis. Mult. Scler. J. 2021, 27, 684–694. [Google Scholar] [CrossRef]
- Bsteh, G.; Hegen, H.; Altmann, P.; Auer, M.; Berek, K.; Di Pauli, F.; Leutmezer, F.; Rommer, P.; Wurth, S.; Zinganell, A.; et al. Retinal layer thinning predicts treatment failure in relapsing multiple sclerosis. Eur. J. Neurol. 2021, 28, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
- Pietroboni, A.M.; Dell’Arti, L.; Caprioli, M.; Scarioni, M.; Carandini, T.; Arighi, A.; Ghezzi, L.; Fumagalli, G.G.; De Riz, M.A.; Basilico, P.; et al. The loss of macular ganglion cells begins from the early stages of disease and correlates with brain atrophy in multiple sclerosis patients. Mult. Scler. J. 2019, 25, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Šimundić, A.M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211. [Google Scholar] [PubMed]
- Li, F.; He, H. Assessing the Accuracy of Diagnostic Tests. Shanghai Arch. Psychiatry 2018, 30, 207–212. [Google Scholar] [CrossRef]
- Pisa, M.; Croese, T.; Costa, G.D.; Guerrieri, S.; Huang, S.-C.; Finardi, A.; Fabbella, L.; Sangalli, F.; Colombo, B.; Moiola, L.; et al. Subclinical anterior optic pathway involvement in early multiple sclerosis and clinically isolated syndromes. Brain 2021, 144, 848–862. [Google Scholar] [CrossRef]
- Britze, J.; Pihl-Jensen, G.; Frederiksen, J.L. Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: A systematic review and meta-analysis. J. Neurol. 2017, 264, 1837–1853. [Google Scholar] [CrossRef]
- Olbert, E.; Struhal, W. Retinal imaging with optical coherence tomography in multiple sclerosis: Novel aspects. Retinale Bildgebung mittels optischer Kohärenztomographie bei multipler Sklerose: Neue Aspekte. Wien. Med. Wochenschr. 2022, 172, 329–336. [Google Scholar] [CrossRef]
- López-Dorado, A.; Ortiz, M.; Satue, M.; Rodrigo, M.J.; Barea, R.; Sánchez-Morla, E.M.; Cavaliere, C.; Rodríguez-Ascariz, J.M.; Orduna-Hospital, E.; Boquete, L.; et al. Early Diagnosis of Multiple Sclerosis Using Swept-Source Optical Coherence Tomography and Convolutional Neural Networks Trained with Data Augmentation. Sensors 2021, 22, 167. [Google Scholar] [CrossRef] [PubMed]
- Ziemssen, T.; Vandercappellen, J.; Mondragon, V.J.; Giovannoni, G. MSProDiscuss™ Clinical Decision Support Tool for Identifying Multiple Sclerosis Progression. J. Clin. Med. 2022, 11, 4401. [Google Scholar] [CrossRef] [PubMed]
MS Patients | Statistical Parameters | ||||
---|---|---|---|---|---|
N (%) | M | SD | 95% CI | Min.–Max. | |
Gender | |||||
Female | 189 (69%) | ||||
Male | 86 (31%) | ||||
Disease type | |||||
CIS | 23 (9%) | ||||
BNMS | 8 (3%) | ||||
PPMS | 31 (11%) | ||||
RRMS | 185 (67%) | ||||
SPMS | 28 (10%) | ||||
Age (years) | 41.3 | 12.4 | 39.9–42.8 | 18–72 | |
Disease Duration (years) | 6.4 | 7.1 | 5.6–7.3 | 0–46 | |
EDSS score | 3.0 | 1.6 | 2.8–3.2 | 0–7.0 | |
pRNFL thickness (total eyes) | 97.1 | 11.7 | 95.7–98.5 | 61–128 | |
pRNFL thickness (right eyes) | 97.4 | 12.3 | 96.0–98.9 | 62–128 | |
pRNFL thickness (left eyes) | 96.9 | 12.4 | 95.4–98.4 | 61–127 | |
GCIPL thickness (total eyes) | 63.0 | 7.0 | 62.2–63.9 | 43–83 | |
GCIPL thickness (right eyes) | 63.0 | 7.1 | 62.1–63.8 | 45–82 | |
GCIPL thickness (left eyes) | 63.1 | 7.4 | 62.2–64 | 43–83 |
MS Patients | Gender (N,%) | p-Value | Disease Type (N,%) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Female | Male | CIS | BNMS | RRMS | SPMS | PPMS | |||
pRNFL thickness ≤87 µm (n = 74) >87 µm (n = 201) | 46 (62%) 143 (71%) | 28 (38%) 58 (29%) | 0.154 | 0 23 (11%) | 1 (1%) 7 (4%) | 43 (58%) 142 (71%) | 16 (22%) 12 (6%) | 14 (19%) 17 (8%) | <0.001 |
pRNFL thickness ≤88 µm (n = 79) >88 µm (n = 196) | 51 (65%) 138 (70%) | 28 (35%) 58 (30%) | 0.344 | 1 (1%) 22 (11%) | 1 (1%) 7(4%) | 47 (60%) 138 (70%) | 16 (20%) 12 (6%) | 14 (18%) 17 (9%) | <0.001 |
GCIPL thickness <70 µm (n = 233) ≥70 µm (n = 42) | 165 (71%) 24 (57%) | 68 (29%) 18 (43%) | 0.114 | 19 (8%) 4 (10%) | 7 (3%) 1 (2%) | 158 (68%) 27 (64%) | 21 (9%) 7 (17%) | 28 (12%) 3 (7%) | 0.544 |
MS Patients | Cut-Off Point | Statistical Metrics | p-Value | |||
---|---|---|---|---|---|---|
M | SD | 95% CI | Min.–Max. | |||
Age (years) | GCIPL <70 µm ≥70 µm | 41.1 42.7 | 12.1 14.5 | 39.5–42.7 38.2–47.2 | 18–72 18–71 | 0.440 |
pRNFL ≤87 µm >87 µm | 41.3 41.4 | 12.1 12.6 | 38.5–44.1 39.6–43.1 | 19–69 18–72 | 0.821 | |
pRNFL ≤88 µm >88 µm | 41.1 41.4 | 11.8 12.7 | 38.5–43.8 39.6–43.2 | 19–69 18–72 | 0.7 | |
Disease Duration (years) | GCIPL <70 µm ≥70 µm | 6.4 6.2 | 7.2 6.8 | 5.5–7.4 4.1–8.4 | 1–33 0–46 | 0.818 |
pRNFL ≤87 µm >87 µm | 9.5 5.3 | 7.8 6.5 | 7.7–11.3 4.4–6.2 | 1–33 0–46 | <0.001 | |
pRNFL ≤87 µm >88 µm | 9.1 5.3 | 7.7 6.6 | 7.3–10.8 4.4–6.3 | 1–33 0–46 | <0.001 | |
EDSS | GCIPL <70 µm ≥70 µm | 3.0 3.0 | 1.6 1.7 | 2.8–3.2 2.5–3.5 | 0–7.0 0–6.5 | 0.872 |
pRNFL ≤87 µm >87 µm | 3.8 2.8 | 1.4 1.6 | 3.5–4.1 2.5–3.0 | 1.0–7.0 0–6.5 | <0.001 | |
pRFNL ≤88 µm >88 µm | 3.7 2.8 | 1.4 1.6 | 3.4–4.0 2.5–3.0 | 0–7.0 0–6.5 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rzepiński, Ł.; Kucharczuk, J.; Tkaczyńska, M.; Parisi, V.; Grzybowski, A. Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients. Brain Sci. 2023, 13, 591. https://doi.org/10.3390/brainsci13040591
Rzepiński Ł, Kucharczuk J, Tkaczyńska M, Parisi V, Grzybowski A. Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients. Brain Sciences. 2023; 13(4):591. https://doi.org/10.3390/brainsci13040591
Chicago/Turabian StyleRzepiński, Łukasz, Jan Kucharczuk, Magda Tkaczyńska, Vincenzo Parisi, and Andrzej Grzybowski. 2023. "Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients" Brain Sciences 13, no. 4: 591. https://doi.org/10.3390/brainsci13040591
APA StyleRzepiński, Ł., Kucharczuk, J., Tkaczyńska, M., Parisi, V., & Grzybowski, A. (2023). Swept-Source Optical Coherence Tomography Thresholds in Differentiating Clinical Outcomes in a Real-World Cohort of Treatment-Naïve Multiple Sclerosis Patients. Brain Sciences, 13(4), 591. https://doi.org/10.3390/brainsci13040591