Item-Level Scores on the Boston Naming Test as an Independent Predictor of Perirhinal Volume in Individuals with Mild Cognitive Impairment
Abstract
:1. Introduction
BNT Literature Review
2. Methods
2.1. Participants
2.2. Materials
2.2.1. Boston Naming Test Scores
2.2.2. MRI Processing
2.3. Data Analyses
3. Results
3.1. Descriptive Variables
3.2. Model 1: Quantitative BNT Performance
3.3. Model 2: Qualitative BNT Performance
3.4. Post Hoc ROI Analyses
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hart, J., Jr.; Anand, R.; Zoccoli, S.; Maguire, M.; Gamino, J.; Tillman, G.; King, R.; Kraut, M.A. Neural Substrates of Semantic Memory. J. Int. Neuropsychol. Soc. 2007, 13, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Huth, A.G.; de Heer, W.A.; Griffiths, T.L.; Theunissen, F.E.; Gallant, J.L. Natural Speech Reveals the Semantic Maps that Tile Human Cerebral Cortex. Nature 2016, 532, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Binder, J.R.; Desai, R.H.; Graves, W.W.; Conant, L.L. Where is the Semantic System? A Critical Review and Meta-Analysis of 120 Functional Neuroimaging Studies. Cereb. Cortex 2009, 19, 2767–2796. [Google Scholar] [CrossRef]
- Gatti, D.; Vecchi, T.; Mazzoni, G. Cerebellum and Semantic Memory: A TMS Study Using the DRM Paradigm. Cortex 2021, 135, 78–91. [Google Scholar] [CrossRef]
- Jefferies, E. The Neural Basis of Semantic Cognition: Converging Evidence from Neuropsychology, Neuroimaging and TMS. Cortex 2013, 49, 611–625. [Google Scholar] [CrossRef]
- Lambon Ralph, M.A.; Jefferies, E.; Patterson, K.; Rogers, T.T. The Neural and Computational Bases of Semantic Cognition. Nat. Rev. Neurosci. 2017, 18, 42–55. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.L. The Neural Correlates of Semantic Control Revisited. Neuroimage 2021, 224, 117444. [Google Scholar] [CrossRef] [PubMed]
- Hanson, G.K.; Chrysikou, E.G. Attention to Distinct Goal-Relevant Features Differentially Guides Semantic Knowledge Retrieval. J. Cogn. Neurosci. 2017, 29, 1178–1193. [Google Scholar] [CrossRef]
- Tendolkar, I.; Arnold, J.; Petersson, K.M.; Weis, S.; Brockhaus-Dumke, A.; van Eijndhoven, P.; Buitelaar, J.; Fernández, G. Contributions of the Medial Temporal Lobe to Declarative Memory Retrieval: Manipulating the Amount of Contextual Retrieval. Learn. Mem. 2008, 15, 611–617. [Google Scholar] [CrossRef]
- Mishkin, M.; Suzuki, W.A.; Gadian, D.G.; Vargha-Khadem, F. Hierarchical Organization of Cognitive Memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1997, 352, 1461–1467. [Google Scholar] [CrossRef]
- Vargha-Khadem, F.; Gadian, D.G.; Watkins, K.E.; Connelly, A.; Van Paesschen, W.; Mishkin, M. Differential Effects of Early Hippocampal Pathology on Episodic and Semantic Memory. Science 1997, 277, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Davies, R.R.; Graham, K.S.; Xuereb, J.H.; Williams, G.B.; Hodges, J.R. The Human Perirhinal Cortex and Semantic Memory. Eur. J. Neurosci. 2004, 20, 2441–2446. [Google Scholar] [CrossRef] [PubMed]
- Duke, D.; Martin, C.B.; Bowles, B.; McRae, K.; Köhler, S. Perirhinal Cortex Tracks Degree of Recent as Well as Cumulative Lifetime Experience with Object Concepts. Cortex 2017, 89, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Murray, E.A.; Bussey, T.J.; Saksida, L.M. Visual Perception and Memory: A New View of Medial Temporal Lobe Function in Primates and Rodents. Annu. Rev. Neurosci. 2007, 30, 99–122. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Thal, D.R.; Ghebremedhin, E.; Del Tredici, K. Stages of the Pathologic Process in Alzheimer Disease: Age Categories from 1 to 100 Years. J. Neuropathol. Exp. Neurol. 2011, 70, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Amieva, H.; Le Goff, M.; Millet, X.; Orgogozo, J.M.; Pérės, K.; Barberger-Gateau, P.; Jacqmin-Gadda, H.; Dartigues, J.F. Prodromal Alzheimer’s Disease: Successive Emergence of the Clinical Symptoms. Ann. Neurol. 2008, 64, 492–498. [Google Scholar] [CrossRef]
- Hirni, D.I.; Kivisaari, S.L.; Krumm, S.; Monsch, A.U.; Berres, M.; Oeksuez, F.; Reinhardt, J.; Ulmer, S.; Kressig, R.W.; Stippich, C.; et al. Neuropsychological Markers of Medial Perirhinal and Entorhinal Cortex Functioning are Impaired Twelve Years Preceding Diagnosis of Alzheimer’s Dementia. J. Alzheimers Dis. 2016, 52, 573–580. [Google Scholar] [CrossRef]
- Payton, N.M.; Rizzuto, D.; Fratiglioni, L.; Kivipelto, M.; Bäckman, L.; Laukka, E.J. Combining Cognitive Markers to Identify Individuals at Increased Dementia Risk: Influence of Modifying Factors and Time to Diagnosis. J. Int. Neuropsychol. Soc. 2020, 26, 785–797. [Google Scholar] [CrossRef]
- Krumm, S.; Kivisaari, S.L.; Probst, A.; Monsch, A.U.; Reinhardt, J.; Ulmer, S.; Stippich, C.; Kressig, R.W.; Taylor, K.I. Cortical Thinning of Parahippocampal Subregions in Very Early Alzheimer’s Disease. Neurobiol. Aging 2016, 38, 188–196. [Google Scholar] [CrossRef]
- Miller, M.I.; Younes, L.; Ratnanather, J.T.; Brown, T.; Trinh, H.; Postell, E.; Lee, D.S.; Wang, M.C.; Mori, S.; O’Brien, R.; et al. The Diffeomorphometry of Temporal Lobe Structures in Preclinical Alzheimer’s Disease. Neuroimage Clin. 2013, 3, 352–360. [Google Scholar] [CrossRef]
- Venneri, A.; Mitolo, M.; De Marco, M. Paradigm Shift: Semantic Memory Decline as a Biomarker of Preclinical Alzheimer’s Disease. Biomark. Med. 2016, 10, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Venneri, A.; Jahn-Carta, C.; De Marco, M.; Quaranta, D.; Marra, C. Diagnostic and Prognostic Role of Semantic Processing in Preclinical Alzheimer’s Disease. Biomark. Med. 2018, 12, 637–651. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, D.M.; Kealey, T.; Semla, M.; Luu, H.; Rice, L.; Basso, M.R.; Roper, B. Verbal Fluency: Language or Executive Function Measure? Appl. Neuropsychol. Adult 2016, 23, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Janse, E.; Visser, K.; Meyer, A.S. What do Verbal Fluency Tasks Measure? Predictors of Verbal Fluency Performance in Older Adults. Front. Psychol. 2014, 5, 772. [Google Scholar] [CrossRef]
- Amunts, J.; Camilleri, J.A.; Eickhoff, S.B.; Patil, K.R.; Heim, S.; Von Polier, G.G.; Weis, S. Comprehensive Verbal Fluency Features Predict Executive Function Performance. Sci. Rep. 2021, 11, 6929. [Google Scholar] [CrossRef] [PubMed]
- De Marco, M.; Quaranta, D.; Vonk, J.M.J. Editorial: The Mechanistic and Clinical Principles of Item-Level Scoring Methods Applied to the Category Fluency Test and Other Tests of Semantic Memory. Front. Psychol. 2023, 14, 1152574. [Google Scholar] [CrossRef]
- Venneri, A.; McGeown, W.J.; Hietanen, H.M.; Guerrini, C.; Ellis, A.W.; Shanks, M.F. The Anatomical Bases of Semantic Retrieval Deficits in Early Alzheimer’s Disease. Neuropsychologia 2008, 46, 497–510. [Google Scholar] [CrossRef]
- Sailor, K.M.; Zimmerman, M.E.; Sanders, A.E. Differential Impacts of Age of Acquisition on Letter and Semantic Fluency in Alzheimer’s Disease Patients and Healthy Older Adults. Q. J. Exp. Psychol. 2011, 64, 2383–2391. [Google Scholar] [CrossRef]
- Vonk, J.M.J.; Flores, R.J.; Rosado, D.; Qian, C.; Cabo, R.; Habegger, J.; Louie, K.; Allocco, E.; Brickman, A.M.; Manly, J.J. Semantic Network Function Captured by Word Frequency in Nondemented APOE ε4 Carriers. Neuropsychology 2019, 33, 256–262. [Google Scholar] [CrossRef]
- Vita, M.G.; Marra, C.; Spinelli, P.; Caprara, A.; Scaricamazza, E.; Castelli, D.; Canulli, S.; Gainotti, G.; Quaranta, D. Typicality of Words Produced on a Semantic Fluency Task in Amnesic Mild Cognitive Impairment: Linguistic Analysis and Risk of Conversion to Dementia. J. Alzheimers Dis. 2014, 42, 1171–1178. [Google Scholar] [CrossRef]
- De Marco, M.; Blackburn, D.J.; Venneri, A. Serial Recall Order and Semantic Features of Category Fluency Words to Study Semantic Memory in Normal Ageing. Front. Aging Neurosci. 2021, 13, 678588. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, E.; Goodglass, H.; Weintraub, S. The Boston Naming Test; Lea and Febiger: Philadelphia, PA, USA, 1983. [Google Scholar]
- Hargreaves, I.S.; Leonard, G.A.; Pexman, P.M.; Pittman, D.J.; Siakaluk, P.D.; Goodyear, B.G. The Neural Correlates of the Body-Object Interaction Effect in Semantic Processing. Front. Hum. Neurosci. 2012, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.W.; Mack, W.; Henderson, V.W. Boston Naming Test in Alzheimer’s Disease. Neuropsychologia 1989, 27, 1073–1079. [Google Scholar] [CrossRef] [PubMed]
- Knesevich, J.W.; LaBarge, E.; Edwards, D. Predictive Value of the Boston Naming Test in Mild Senile Dementia of the Alzheimer’s Type. Psychiatry Res. 1986, 19, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Williams, V.G.; Bruce, J.M.; Westervelt, H.J.; Davis, J.D.; Grace, J.; Malloy, P.F.; Tremont, G. Boston Naming Performance Distinguishes Between Lewy Body and Alzheimer’s Dementias. Arch. Clin. Neuropsychol. 2007, 22, 925–931. [Google Scholar] [CrossRef]
- Diehl, J.; Monsch, A.U.; Aebi, C.; Wagenpfeil, S.; Krapp, S.; Grimmer, T.; Seeley, W.; Förstl, H.; Kurz, A. Frontotemporal Dementia, Semantic Dementia, and Alzheimer’s Disease: The Contribution of Standard Neuropsychological Tests to Differential Diagnosis. J. Geriatr. Psychiatry Neurol. 2005, 18, 39–44. [Google Scholar] [CrossRef]
- Montembeault, M.; Brambati, S.M.; Joubert, S.; Boukadi, M.; Chapleau, M.; Laforce, R., Jr.; Wilson, M.A.; Macoir, J.; Rouleau, I. Naming Unique Entities in the Semantic Variant of Primary Progressive Aphasia and Alzheimer’s Disease: Towards a Better Understanding of the Semantic Impairment. Neuropsychologia 2017, 95, 11–20. [Google Scholar] [CrossRef]
- Willers, I.F.; Feldman, M.L.; Allegri, R.F. Subclinical Naming Errors in Mild Cognitive Impairment: A Semantic Deficit? Dement. Neuropsychol. 2008, 2, 217–222. [Google Scholar] [CrossRef]
- Balthazar, M.L.F.; Cendes, F.; Damasceno, B.P. Semantic Error Patterns on the Boston Naming Test in Normal Aging, Amnestic Mild Cognitive Impairment, and Mild Alzheimer’s Disease: Is There Semantic Disruption? Neuropsychology 2008, 22, 703–709. [Google Scholar] [CrossRef]
- Frings, L.; Klöppel, S.; Teipel, S.; Peters, O.; Frölich, L.; Pantel, J.; Schröder, J.; Gertz, H.J.; Arlt, S.; Heuser, I.; et al. Left Anterior Temporal Lobe Sustains Naming in Alzheimer’s Dementia and Mild Cognitive Impairment. Curr. Alzheimers Res. 2011, 8, 893–901. [Google Scholar] [CrossRef]
- Arlt, S.; Buchert, R.; Spies, L.; Eichenlaub, M.; Lehmbeck, J.T.; Jahn, H. Association between Fully Automated MRI-Based Volumetry of Different Brain Regions and Neuropsychological Test Performance in Patients with Amnestic Mild Cognitive Impairment and Alzheimer’s Disease. Eur. Arch. Psychiatry Clin. Neurosci. 2013, 263, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Pravatà, E.; Tavernier, J.; Parker, R.; Vavro, H.; Mintzer, J.E.; Spampinato, M.V. The Neural Correlates of Anomia in the Conversion from Mild Cognitive Impairment to Alzheimer’s Disease. Neuroradiology 2016, 58, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Park, L.Q.; Gross, A.L.; McLaren, D.G.; Pa, J.; Johnson, J.K.; Mitchell, M.; Manly, J.J. Alzheimer’s Disease Neuroimaging Initiative. Confirmatory Factor Analysis of the ADNI Neuropsychological Battery. Brain Imaging Behav. 2012, 6, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Sachs, B.C.; Lucas, J.A.; Smith, G.E.; Ivnik, R.J.; Petersen, R.C.; Graff-Radford, N.R.; Pedraza, O. Reliable Change on the Boston Naming Test. J. Int. Neuropsychol. Soc. 2012, 18, 375–378. [Google Scholar] [CrossRef]
- Pexman, P.M.; Muraki, E.; Sidhu, D.M.; Siakaluk, P.D.; Yap, M.J. Quantifying Sensorimotor Experience: Body-Object Interaction Ratings for More than 9000 English Words. Behav. Res. Methods 2019, 51, 453–466. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Bernstein, M.A.; Fox, N.C.; Thompson, P.; Alexander, G.; Harvey, D.; Borowski, B.; Britson, P.J.; Whitwell, J.L.; Ward, C.; et al. The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI Methods. J. Magn. Reson. Imag. 2008, 27, 685–691. [Google Scholar] [CrossRef]
- Maldjian, J.A.; Laurienti, P.J.; Kraft, R.A.; Burdette, J.H. An Automated Method for Neuroanatomic and Cytoarchitectonic Atlas-Based Interrogation of fMRI Data Sets. Neuroimage 2003, 19, 1233–1239. [Google Scholar] [CrossRef]
- Staekenborg, S.S.; Kelly, N.; Schuur, J.; Koster, P.; Scherder, E.; Tielkes, C.E.M.; Scheltens, P.; Claus, J.J. Education as Proxy for Cognitive Reserve in a Large Elderly Memory Clinic: ‘Window of Benefit’. J. Alzheimers Dis. 2020, 76, 671–679. [Google Scholar] [CrossRef]
- Iso-Markku, P.; Kaprio, J.; Lindgrén, N.; Rinne, J.O.; Vuoksimaa, E. Education as a Moderator of Middle-Age Cardiovascular Risk Factor—Old-Age Cognition Relationships: Testing Cognitive Reserve Hypothesis in Epidemiological Study. Age Ageing 2022, 51, afab228. [Google Scholar] [CrossRef]
- Satz, P.; Cole, M.A.; Hardy, D.J.; Rassovsky, Y. Brain and Cognitive Reserve: Mediator(s) and Construct Validity, a Critique. J. Clin. Exp. Neuropsychol. 2011, 33, 121–130. [Google Scholar] [CrossRef]
- Stern, Y.; Arenaza-Urquijo, E.M.; Bartrés-Faz, D.; Belleville, S.; Cantilon, M.; Chetelat, G.; Ewers, M.; Franzmeier, N.; Kempermann, G.; Kremen, W.S.; et al. Whitepaper: Defining and Investigating Cognitive Reserve, Brain Reserve, and Brain Maintenance. Alzheimers Dement. 2020, 16, 1305–1311. [Google Scholar] [CrossRef] [PubMed]
- Vonk, J.M.J.; Ghaznawi, R.; Zwartbol, M.H.T.; Stern, Y.; Geerlings, M.I.; UCC-SMART-Study Group. The Role of Cognitive and Brain Reserve in Memory Decline and Atrophy Rate in Mid and Late-Life: The SMART-MR Study. Cortex 2022, 148, 204–214. [Google Scholar] [CrossRef]
- Buckner, R.L.; Krienen, F.M.; Castellanos, A.; Diaz, J.C.; Yeo, B.T.T. The Organization of the Human Cerebellum Estimated by Intrinsic Functional Connectivity. J. Neurophysiol. 2011, 106, 2322–2345. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, H.; Nakamura, Y.; Okanoya, K. Respective Involvement of the Right Cerebellar Crus I and II in Syntactic and Semantic Processing for Comprehension of Language. Cerebellum, 2022; in press. [Google Scholar] [CrossRef]
- Georgiou, E.; Prapiadou, S.; Thomopoulos, V.; Skondra, M.; Charalampopoulou, M.; Pachi, A.; Anagnostopoulou, A.; Vorvolakos, T.; Perneczky, R.; Politis, A.; et al. Naming Ability Assessment in Neurocognitive Disorders: A Clinician’s Perspective. BMC Psychiatry 2022, 22, 837. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, F.R.; Blaine, T.; Flaig, S.; Bradford, S. Familiarity Norms for the Boston Naming Test Stimuli. Appl. Neuropsychol. 1998, 5, 43–47. [Google Scholar] [CrossRef]
- Besson, G.; Ceccaldi, M.; Tramoni, E.; Felician, O.; Didic, M.; Barbeau, E.J. Fast, but not Slow, Familiarity is Preserved in Patients with Amnestic Mild Cognitive Impairment. Cortex 2015, 65, 36–49. [Google Scholar] [CrossRef]
- Hedderich, D.M.; Drost, R.; Goldhardt, O.; Ortner, M.; Müller-Sarnowski, F.; Diehl-Schmid, J.; Zimmer, C.; Förstl, H.; Yakushev, I.; Jahn, T.; et al. Regional Cerebral Associations Between Psychometric Tests and Imaging Biomarkers in Alzheimer’s Disease. Front. Psychiatry 2020, 11, 793. [Google Scholar] [CrossRef]
- Qiao, Z.; Wang, G.; Zhao, X.; Wang, K.; Fan, D.; Chen, Q.; Ai, L. Neuropsychological Performance is Correlated with Tau Protein Deposition and Glucose Metabolism in Patients with Alzheimer’s Disease. Front. Aging Neurosci. 2022, 14, 841942. [Google Scholar] [CrossRef]
- Libowitz, M.R.; Wei, K.; Tran, T.; Chu, K.; Moncrieffe, K.; Harrington, M.G.; King, K. Regional Brain Volumes Relate to Alzheimer’s Disease Cerebrospinal Fluid Biomarkers and Neuropsychometry: A Cross-Sectional, Observational Study. PLoS ONE 2021, 16, e0254332. [Google Scholar] [CrossRef] [PubMed]
- Beattey, R.A.; Murphy, H.; Cornwell, M.; Braun, T.; Stein, V.; Goldstein, M.; Bender, H.A. Caution Warranted in Extrapolating from Boston Naming Test Item Gradation Construct. Appl. Neuropsychol. Adult 2017, 24, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Siakaluk, P.D.; Pexman, P.M.; Sears, C.R.; Wilson, K.; Locheed, K.; Owen, W.J. The Benefits of Sensorimotor Knowledge: Body-Object Interaction Facilitates Semantic Processing. Cogn. Sci. 2008, 32, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.C.; Goh, W.D.; Yap, M.J. An Item-Level Analysis of Lexical-Semantic Effects in Free Recall and Recognition Memory Using the Megastudy Approach. Q. J. Exp. Psychol. 2018, 71, 2207–2222. [Google Scholar] [CrossRef]
- Jefferies, E.; Patterson, K.; Lambon Ralph, M.A. Deficits of Knowledge versus Executive Control in Semantic Cognition: Insights from Cued Naming. Neuropsychologia 2008, 46, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Mueller, K.D.; Du, L.; Bruno, D.; Betthauser, T.; Christian, B.; Johnson, S.; Hermann, B.; Langhough Koscik, R. Item-Level Story Recall Predictors of Amyloid-Beta in Late Middle-Aged Adults at Increased Risk for Alzheimer’s Disease. Front. Psychol. 2022, 13, 908651. [Google Scholar] [CrossRef]
Descriptor | Controls | MCI | Test Statistic | p-Value |
---|---|---|---|---|
Age (years) | 76.07 (4.93) | 74.90 (7.24) | tdf=525.941 = 2.233 | 0.026 |
Education (years) | 16.14 (2.93) | 15.76 (2.91) | tdf=545 = 1.459 | 0.145 |
Gender (F/M) | 97/100 | 118/232 | χ2df=1 = 12.734 | <0.001 |
Handedness (L/R) | 13/184 | 27/322 * | χ2df=1 = 0.240 | 0.624 |
APOE genotype (ε2ε2/ε2ε3/ε3ε3/ε4ε2/ε4ε3/ε4ε4) | 2/27/120/1/43/4 | 0/15/141/9/142/43 | χ2df=5 = 60.822 | <0.001 |
MRI scan—BNT test distance (days) | 20.89 (13.58) | 22.57 (14.39) | tdf=545 = −1.338 | 0.182 |
Mini Mental State Examination | 29.15 (0.94) | 27.04 (1.80) | tdf=542.435 = 18.030 | <0.001 |
N of correctly named BNT trials (nmax = 30) | 27.43 (2.68) | 25.24 (3.99) | tdf=528.282 = 7.632 | <0.001 |
N of correctly named BNT trials (nmax = 27) | 24.83 (2.29) | 22.91 (3.54) | tdf=534.584 = 7.658 | <0.001 |
BNT Item | Word | SMI | Correct Naming (Proportion) | p (χ2) | |
---|---|---|---|---|---|
Controls (n = 197) | MCI (n = 350) | ||||
01 | “BED” | 6.360 | 1.000 | 1.000 | N/A |
03 | “PENCIL” | 5.870 | 1.000 | 1.000 | N/A |
05 | “WHISTLE” | 4.478 | 1.000 | 0.989 | 0.132 |
07 | “COMB” | 5.923 | 1.000 | 1.000 | N/A |
09 | “SAW” | 4.760 | 1.000 | 0.994 | 0.288 |
11 | “HELICOPTER” | 5.179 | 0.990 | 0.969 | 0.117 |
15 | “HANGER” | 5.292 | 1.000 | 1.000 | N/A |
17 | “CAMEL” | 4.522 | 1.000 | 0.986 | 0.092 |
19 | “PRETZEL” | 6.040 | 0.959 | 0.826 | <0.001 |
21 | “RACQUET” | 5.240 | 0.990 | 0.974 | 0.213 |
25 | “DART” | 5.292 | 0.964 | 0.914 | 0.025 |
27 | “GLOBE” | 5.280 | 0.975 | 0.906 | 0.002 |
29 | “BEAVER” | 3.826 | 0.827 | 0.711 | 0.003 |
31 | “RHINOCEROS” | 3.680 | 0.924 | 0.814 | <0.001 |
33 | “IGLOO” | 4.852 | 0.980 | 0.940 | 0.033 |
35 | “DOMINOES” | 5.704 | 0.919 | 0.851 | 0.022 |
37 | “ESCALATOR” | 5.520 | 0.975 | 0.911 | 0.004 |
39 | “HAMMOCK” | 6.167 | 0.964 | 0.886 | 0.002 |
41 | “PELICAN” | 3.667 | 0.843 | 0.720 | 0.001 |
43 | “PYRAMID” | 4.000 | 0.934 | 0.857 | 0.007 |
45 | “UNICORN” | 1.296 | 0.807 | 0.603 | <0.001 |
47 | “ACCORDION” | 5.826 | 0.934 | 0.823 | <0.001 |
49 | “ASPARAGUS” | 5.560 | 0.985 | 0.906 | <0.001 |
51 | “LATCH” | 5.542 | 0.624 | 0.591 | 0.450 |
53 | “SCROLL” | 4.227 | 0.909 | 0.800 | <0.001 |
55 | “SPHINX” | 3.120 | 0.802 | 0.603 | <0.001 |
59 | “PROTRACTOR” | 5.435 | 0.523 | 0.340 | <0.001 |
Cluster Number | Cluster Level p (FWE) | Cluster Extent (Voxels) | Side | Brodmann Area | Brain Region | z-Score at Local Maximum | Talairach Coordinate | ||
---|---|---|---|---|---|---|---|---|---|
x | y | z | |||||||
1 | <0.001 | 5250 | L | 20 | Uncus | 4.74 | −33 | −16 | −29 |
28 | Uncus | 4.73 | −28 | −11 | −32 | ||||
47 | Inferior Frontal Gyrus | 4.24 | −24 | 14 | −18 | ||||
20 | Uncus | 4.12 | −28 | 0 | −37 | ||||
20 | Fusiform Gyrus | 4.11 | −45 | −34 | −16 | ||||
36 | Parahippocampal Gyrus | 3.98 | −30 | −24 | −21 | ||||
Hippocampus | 3.90 | −27 | −13 | −18 | |||||
Cerebellum-Culmen | 3.76 | −28 | −57 | −26 | |||||
47 | Inferior Frontal Gyrus | 3.71 | −32 | 22 | −18 | ||||
38 | Superior Temporal Gyrus | 3.71 | −33 | 1 | −14 | ||||
21 | Middle Temporal Gyrus | 3.69 | −56 | −4 | −20 | ||||
20 | Inferior Temporal Gyrus | 3.61 | −50 | −16 | −28 | ||||
38 | Superior Temporal Gyrus | 3.60 | −24 | 6 | −33 | ||||
37 | Inferior Temporal Gyrus | 3.53 | −44 | −44 | −15 | ||||
2 | 0.006 | 1281 | L | Cerebellar Tonsil | 4.50 | −20 | −49 | −45 | |
3 | <0.001 | 4418 | R | Putamen | 4.41 | 30 | 3 | 7 | |
30 | Limbic Sub-Gyral | 4.34 | 16 | −41 | −5 | ||||
36 | Parahippocampal Gyrus | 4.29 | 30 | −33 | −16 | ||||
20 | Uncus | 4.13 | 32 | −13 | −28 | ||||
20 | Uncus | 4.10 | 30 | −9 | −33 | ||||
19 | Lingual Gyrus | 3.97 | 15 | −47 | −1 | ||||
36 | Parahippocampal Gyrus | 3.88 | 32 | −22 | −22 | ||||
38 | Superior Temporal Gyrus | 3.82 | 33 | 12 | −34 | ||||
20 | Inferior Temporal Gyrus | 3.71 | 44 | −4 | −38 | ||||
21 | Middle Temporal Gyrus | 3.71 | 45 | 1 | −35 | ||||
38 | Superior Temporal Gyrus | 3.64 | 44 | 14 | −21 | ||||
28 | Parahippocampal Gyrus | 3.60 | 20 | −11 | −22 | ||||
38 | Superior Temporal Gyrus | 3.56 | 53 | 9 | −9 | ||||
38 | Superior Temporal Gyrus | 3.52 | 34 | 14 | −33 |
Cluster Number | Cluster-Level p (FWE) | Cluster Extent (Voxels) | Side | Brodmann Area | Brain Region | z-Score at Local Maximum | Talairach Coordinate | ||
---|---|---|---|---|---|---|---|---|---|
x | y | z | |||||||
1 | <0.001 | 5881 | L | 20 | Inferior Temporal Gyrus | 5.01 | −51 | −9 | −23 |
21 | Temporal Sub-Gyral | 4.42 | −42 | −5 | −13 | ||||
Insula | 4.31 | −44 | −20 | 1 | |||||
21 | Middle Temporal Gyrus | 4.20 | −50 | −3 | −12 | ||||
20 | Uncus | 4.18 | −28 | 0 | −35 | ||||
21 | Middle Temporal Gyrus | 3.97 | −56 | −9 | −11 | ||||
20 | Inferior Temporal Gyrus | 3.94 | −56 | −24 | −17 | ||||
22 | Superior Temporal Gyrus | 3.93 | −51 | −29 | 4 | ||||
20 | Fusiform Gyrus | 3.83 | −38 | −26 | −21 | ||||
22 | Middle Temporal Gyrus | 3.78 | −56 | −32 | 5 | ||||
21 | Superior Temporal Gyrus | 3.75 | −56 | −23 | −1 | ||||
21 | Middle Temporal Gyrus | 3.73 | −61 | −39 | −1 | ||||
21 | Middle Temporal Gyrus | 3.67 | −45 | 1 | −29 | ||||
38 | Superior Temporal Gyrus | 3.63 | −30 | 4 | −27 | ||||
2 | 0.002 | 1635 | R | 13 | Insula | 4.81 | 36 | 8 | 13 |
Claustrum | 4.09 | 26 | 20 | 2 | |||||
44 | Precentral Gyrus | 3.69 | 42 | 16 | 7 | ||||
3 | <0.001 | 4595 | R | 38 | Superior Temporal Gyrus | 4.30 | 40 | −1 | −15 |
38 | Middle Temporal Gyrus | 3.98 | 39 | 7 | −37 | ||||
20 | Inferior Temporal Gyrus | 3.95 | 44 | 1 | −38 | ||||
20 | Uncus | 3.95 | 33 | −9 | −31 | ||||
22 | Superior Temporal Gyrus | 3.92 | 57 | −2 | −2 | ||||
21 | Middle Temporal Gyrus | 3.73 | 50 | −12 | −11 | ||||
20 | Fusiform Gyrus | 3.73 | 50 | −3 | −23 | ||||
21 | Middle Temporal Gyrus | 3.66 | 61 | −9 | −6 | ||||
38 | Superior Temporal Gyrus | 3.53 | 53 | 11 | −21 |
Cluster Number | Cluster-Level p (FWE) | Cluster Extent (Voxels) | Side | Brodmann Area | Brain Region | z-Score at Local Maximum | Talairach Coordinate | ||
---|---|---|---|---|---|---|---|---|---|
x | y | z | |||||||
1 | 0.004 | 1434 | L | 20 | Fusiform Gyrus | 4.27 | −39 | −26 | −17 |
28 | Uncus | 4.26 | −26 | −9 | −27 | ||||
20 | Temporal Sub-Gyral | 4.11 | −39 | −15 | −22 | ||||
35 | Parahippocampal Gyrus | 4.00 | −22 | −16 | −26 | ||||
2 | 0.001 | 1650 | R | 36 | Parahippocampal Gyrus | 3.71 | 36 | −30 | −16 |
20 | Uncus | 3.62 | 27 | −5 | −35 | ||||
Claustrum | 3.53 | 38 | −2 | 8 | |||||
3 | <0.001 | 2370 | R | 19 | Lingual Gyrus | 3.53 | 20 | −68 | −4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Marco, M.; Bocchetta, M.; Venneri, A.; for the Alzheimer’s Disease Neuroimaging Initiative. Item-Level Scores on the Boston Naming Test as an Independent Predictor of Perirhinal Volume in Individuals with Mild Cognitive Impairment. Brain Sci. 2023, 13, 806. https://doi.org/10.3390/brainsci13050806
De Marco M, Bocchetta M, Venneri A, for the Alzheimer’s Disease Neuroimaging Initiative. Item-Level Scores on the Boston Naming Test as an Independent Predictor of Perirhinal Volume in Individuals with Mild Cognitive Impairment. Brain Sciences. 2023; 13(5):806. https://doi.org/10.3390/brainsci13050806
Chicago/Turabian StyleDe Marco, Matteo, Martina Bocchetta, Annalena Venneri, and for the Alzheimer’s Disease Neuroimaging Initiative. 2023. "Item-Level Scores on the Boston Naming Test as an Independent Predictor of Perirhinal Volume in Individuals with Mild Cognitive Impairment" Brain Sciences 13, no. 5: 806. https://doi.org/10.3390/brainsci13050806
APA StyleDe Marco, M., Bocchetta, M., Venneri, A., & for the Alzheimer’s Disease Neuroimaging Initiative. (2023). Item-Level Scores on the Boston Naming Test as an Independent Predictor of Perirhinal Volume in Individuals with Mild Cognitive Impairment. Brain Sciences, 13(5), 806. https://doi.org/10.3390/brainsci13050806