A Three-Fold Integrated Perspective on Healthy Development: An Opinion Paper
Abstract
:1. The Importance of Emotional Wellbeing in Post-Pandemic Times
2. Sphere Model of Consciousness, Emotional Intelligence, Electrophysiological and Neuroanatomical Data
3. Quadrato Motor Training and Its Two Paths of Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2019 Mental Disorders Collaborators. Global, Regional, and National Burden of 12 Mental Disorders in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry 2022, 9, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Santomauro, D.F.; Herrera, A.M.M.; Shadid, J.; Zheng, P.; Ashbaugh, C.; Pigott, D.M.; Abbafati, C.; Adolph, C.; Amlag, J.O.; Aravkin, A.Y. Global Prevalence and Burden of Depressive and Anxiety Disorders in 204 Countries and Territories in 2020 Due to the COVID-19 Pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Chen, J.-H.; Xu, Y.-F. Patients with Mental Health Disorders in the COVID-19 Epidemic. Lancet Psychiatry 2020, 7, e21. [Google Scholar] [CrossRef]
- Racine, N.; McArthur, B.A.; Cooke, J.E.; Eirich, R.; Zhu, J.; Madigan, S. Global Prevalence of Depressive and Anxiety Symptoms in Children and Adolescents during COVID-19: A Meta-Analysis. JAMA Pediatr. 2021, 175, 1142–1150. [Google Scholar] [CrossRef]
- UNESCO. Education: From Disruption to Recovery. 2021. [Google Scholar]
- Ebert, D.D.; Mortier, P.; Kaehlke, F.; Bruffaerts, R.; Baumeister, H.; Auerbach, R.P.; Alonso, J.; Vilagut, G.; Martínez, K.U.; Lochner, C. Barriers of Mental Health Treatment Utilization among First-year College Students: First Cross-national Results from the WHO World Mental Health International College Student Initiative. Int. J. Methods Psychiatr. Res. 2019, 28, e1782. [Google Scholar] [CrossRef]
- Benjet, C. Stress Management Interventions for College Students in the Context of the COVID-19 Pandemic. Clin. Psychol. Sci. Pract. 2020, e12353. [Google Scholar] [CrossRef]
- Amanvermez, Y.; Rahmadiana, M.; Karyotaki, E.; de Wit, L.; Ebert, D.D.; Kessler, R.C.; Cuijpers, P. Stress Management Interventions for College Students: A Systematic Review and Meta-Analysis. Clin. Psychol. Sci. Pract. 2020, 28, 100503. [Google Scholar] [CrossRef]
- De Meester, A.; Stodden, D.; Goodway, J.; True, L.; Brian, A.; Ferkel, R.; Haerens, L. Identifying a Motor Proficiency Barrier for Meeting Physical Activity Guidelines in Children. J. Sci. Med. Sport 2018, 21, 58–62. [Google Scholar] [CrossRef]
- Opstoel, K.; Chapelle, L.; Prins, F.J.; De Meester, A.; Haerens, L.; van Tartwijk, J.; De Martelaer, K. Personal and Social Development in Physical Education and Sports: A Review Study. Eur. Phys. Educ. Rev. 2020, 26, 797–813. [Google Scholar] [CrossRef]
- Tait, J.L.; Collyer, T.A.; Gall, S.L.; Magnussen, C.G.; Venn, A.J.; Dwyer, T.; Fraser, B.J.; Moran, C.; Srikanth, V.K.; Callisaya, M.L. Longitudinal Associations of Childhood Fitness and Obesity Profiles with Midlife Cognitive Function: An Australian Cohort Study. J. Sci. Med. Sport 2022, 25, 667–672. [Google Scholar] [CrossRef]
- Van der Fels, I.M.; Te Wierike, S.C.; Hartman, E.; Elferink-Gemser, M.T.; Smith, J.; Visscher, C. The Relationship between Motor Skills and Cognitive Skills in 4–16 Year Old Typically Developing Children: A Systematic Review. J. Sci. Med. Sport 2015, 18, 697–703. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Denstel, K.D.; Beals, K.; Carlson, J.; Crouter, S.E.; McKenzie, T.L.; Pate, R.R.; Sisson, S.B.; Staiano, A.E.; Stanish, H. Results from the United States 2018 Report Card on Physical Activity for Children and Youth. J. Phys. Act. Health 2018, 15, S422–S424. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.J.; Watson, K.B.; Michael, S.L.; Carlson, S.A. Sex-Stratified Trends in Meeting Physical Activity Guidelines, Participating in Sports, and Attending Physical Education among US Adolescents, Youth Risk Behavior Survey 2009–2019. J. Phys. Act. Health 2021, 18, S102–S113. [Google Scholar] [CrossRef]
- Brian, A.; Pennell, A.; Taunton, S.; Starrett, A.; Howard-Shaughnessy, C.; Goodway, J.D.; Wadsworth, D.; Rudisill, M.; Stodden, D. Motor Competence Levels and Developmental Delay in Early Childhood: A Multicenter Cross-Sectional Study Conducted in the USA. Sports Med. 2019, 49, 1609–1618. [Google Scholar] [CrossRef]
- Mazzoli, E.; Salmon, J.; Teo, W.-P.; Pesce, C.; He, J.; Ben-Soussan, T.D.; Barnett, L.M. Breaking up Classroom Sitting Time with Cognitively Engaging Physical Activity: Behavioural and Brain Responses. PLoS ONE 2021, 16, e0253733. [Google Scholar] [CrossRef]
- Lees, C.; Hopkins, J. Peer Reviewed: Effect of Aerobic Exercise on Cognition, Academic Achievement, and Psychosocial Function in Children: A Systematic Review of Randomized Control Trials. Prev. Chronic. Dis. 2013, 10, E174. [Google Scholar] [CrossRef]
- Best, J.R.; Miller, P.H. A Developmental Perspective on Executive Function. Child Dev. 2010, 81, 1641–1660. [Google Scholar] [CrossRef]
- Robbins, S.B.; Lauver, K.; Le, H.; Davis, D.; Langley, R.; Carlstrom, A. Do Psychosocial and Study Skill Factors Predict College Outcomes? A Meta-Analysis. Psychol. Bull. 2004, 130, 261. [Google Scholar] [CrossRef]
- Sanchez-Ruiz, M.-J.; Mavroveli, S.; Poullis, J. Trait Emotional Intelligence and Its Links to University Performance: An Examination. Personal. Individ. Differ. 2013, 54, 658–662. [Google Scholar] [CrossRef]
- Sanchez-Ruiz, M.-J.; El Khoury, J.; Saadé, G.; Salkhanian, M. Non-Cognitive Variables and Academic Achievement: The Role of General and Academic Self-Efficacy and Trait Emotional Intelligence. In Non-Cognitive Skills and Factors in Educational Attainment; Brill: Leiden, The Netherlands, 2016; pp. 65–85. ISBN 94-6300-591-9. [Google Scholar]
- Leisman, G.; Moustafa, A.A.; Shafir, T. Thinking, Walking, Talking: Integratory Motor and Cognitive Brain Function. Front. Public Health 2016, 4, 94. [Google Scholar] [CrossRef]
- Leisman, G.; Machado, C.; Melillo, R.; Mualem, R. Intentionality and “Free-Will” from a Neurodevelopmental Perspective. Front. Integr. Neurosci. 2012, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P. Crescere Nell’eccellenza; Armando Editore: Rome, Italy, 2008; ISBN 88-6081-174-0. [Google Scholar]
- Pesce, C.; Ben-Soussan, T.D. “Cogito Ergo Sum” or “Ambulo Ergo Sum”? New Perspectives in Developmental Exercise and Cognition Research. In Exercise-Cognition Interaction: Neuroscience Perspectives; Elsevier Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Stodden, D.F.; Pesce, C.; Zarrett, N.; Tomporowski, P.; Ben-Soussan, T.D.; Brian, A.; Abrams, T.; Weist, M.D. Holistic Functioning from a Developmental Perspective: A New Synthesis with a Focus on a Multi-Tiered System Support Structure. Clin. Child Fam. Psychol. Rev. 2023, 26, 343–361. [Google Scholar] [CrossRef] [PubMed]
- Soto-Rubio, A.; Giménez-Espert, M.d.C.; Prado-Gascó, V. Effect of Emotional Intelligence and Psychosocial Risks on Burnout, Job Satisfaction, and Nurses’ Health during the Covid-19 Pandemic. Int. J. Environ. Res. Public. Health 2020, 17, 7998. [Google Scholar] [CrossRef] [PubMed]
- Goleman, D. Working with Emotional Intelligence; Bantam Books: New York, NY, USA, 1998. [Google Scholar]
- Lea, R.G.; Davis, S.K.; Mahoney, B.; Qualter, P. Does Emotional Intelligence Buffer the Effects of Acute Stress? A Systematic Review. Front. Psychol. 2019, 10, 810. [Google Scholar] [CrossRef]
- Pool, L.D.; Qualter, P. An Introduction to Emotional Intelligence; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 1-119-10827-6. [Google Scholar]
- Schneider, T.R.; Lyons, J.B.; Khazon, S. Emotional Intelligence and Resilience. Personal. Individ. Differ. 2013, 55, 909–914. [Google Scholar] [CrossRef]
- Luthar, S.S.; Cicchetti, D.; Becker, B. Research on Resilience: Response to Commentaries. Child Dev. 2000, 71, 573–575. [Google Scholar] [CrossRef]
- Paoletti, P.; Di Giuseppe, T.; Lillo, C.; Ben-Soussan, T.D.; Bozkurt, A.; Tabibnia, G.; Kelmendi, K.; Warthe, G.W.; Leshem, R.; Bigo, V. What Can We Learn from the COVID-19 Pandemic? Resilience for the Future and Neuropsychopedagogical Insights. Front. Psychol. 2022, 13, 5403. [Google Scholar] [CrossRef]
- Paoletti, P. Flussi, Territori, Luogo [Flows, Territories, Place]; Madeira Med. Publisher: Madeira, Portugal, 2002. [Google Scholar]
- Paoletti, P.; Ben Soussan, T.D. The Sphere Model of Consciousness: From Geometrical to Neuro-Psycho-Educational Perspectives. Log. Univers. 2019, 13, 395–415. [Google Scholar] [CrossRef]
- Paoletti, P.; Ben-Soussan, T.D. Reflections on Inner and Outer Silence and Consciousness without Contents According to the Sphere Model of Consciousness. Front. Psychol. 2020, 11, 1807. [Google Scholar] [CrossRef]
- Paoletti, P.; Ben-Soussan, T.D.; Glicksohn, J. Inner Navigation and Theta Activity: From Movement to Cognition and Hypnosis According to the Sphere Model of Consciousness. In Hypnotheraphy and Hypnosis; Intech Open: London, UK, 2020; pp. 1–27. [Google Scholar] [CrossRef]
- Paoletti, P.; Leshem, R.; Pellegrino, M.; Ben-Soussan, T.D. Tackling the Electro-Topography of the Selves through the Sphere Model of Consciousness. Front. Psychol. 2022, 13, 836290. [Google Scholar] [CrossRef]
- Davey, C.G.; Harrison, B.J. The Brain’s Center of Gravity: How the Default Mode Network Helps Us to Understand the Self. World Psychiatry 2018, 17, 278. [Google Scholar] [CrossRef]
- Mehl-Madrona, L.; Mainguy, B. Neuroscience and Narrative. Anthropol. Conscious. 2022, 33, 79–95. [Google Scholar] [CrossRef]
- Paoletti, P.; Ben-Soussan, T.D. Emotional Intelligence, Identification, and Self-Awareness According to the Sphere Model of Consciousness. Sci. Emot. Intell. 2021. [Google Scholar] [CrossRef]
- Catalano, R.F.; Berglund, M.L.; Ryan, J.A.; Lonczak, H.S.; Hawkins, J.D. Positive Youth Development in the United States: Research Findings on Evaluations of Positive Youth Development Programs. Prev. Treat. 2002, 5, 15a. [Google Scholar] [CrossRef]
- Durlak, J.A.; Weissberg, R.P. The Impact of After-School Programs That Promote Personal and Social Skills. Collab. Acad. Soc. Emot. Learn. NJ1 2007. [Google Scholar]
- Greenberg, M.T.; Weissberg, R.P.; O’Brien, M.U.; Zins, J.E.; Fredericks, L.; Resnik, H.; Elias, M.J. Enhancing School-Based Prevention and Youth Development through Coordinated Social, Emotional, and Academic Learning. Am. Psychol. 2003, 58, 466. [Google Scholar] [CrossRef]
- Gohm, C.L.; Corser, G.C.; Dalsky, D.J. Emotional Intelligence under Stress: Useful, Unnecessary, or Irrelevant? Personal. Individ. Differ. 2005, 39, 1017–1028. [Google Scholar] [CrossRef]
- Drigas, A.; Papoutsi, C. The Need for Emotional Intelligence Training Education in Critical and Stressful Situations: The Case of Covid-19. Int. J. Recent Contrib. Eng. Sci. IT 2020, 8, 20–36. [Google Scholar] [CrossRef]
- Colonna, A. Creating Communities of Knowledge and Connecting to Landscape. In Humanistic Futures of Learning: Perspectives from UNESCO Chairs and UNITWI N Networks; UNESCO: Paris, France, 2020; pp. 16–20. [Google Scholar]
- Pintimalli, A.; Glicksohn, J.; Marson, F.; Di Giuseppe, T.; Ben-Soussan, T.D. Change in Time Perception Following the Place of Pre-Existence Technique. Int. J. Environ. Res. Public. Health 2023, 20, 3509. [Google Scholar] [CrossRef]
- Ben-Soussan, T.D.; Glicksohn, J.; Berkovich-Ohana, A. From Cerebellar Activation and Connectivity to Cognition: A Review of the Quadrato Motor Training. BioMed Res. Int. 2015, 2015, 954901. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C. Shifting the Focus from Quantitative to Qualitative Exercise Characteristics in Exercise and Cognition Research. J. Sport Exerc. Psychol. 2012, 34, 766–786. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Pesce, C. Exercise, Sports, and Performance Arts Benefit Cognition via a Common Process. Psychol. Bull. 2019, 145, 929. [Google Scholar] [CrossRef] [PubMed]
- Huggins, E.; Ennis, M.; Zuttermeister, P. Academic Performance among Middle School Students after Exposure to a Relaxation Response Curriculum. J. Res. Dev. Educ. 2000, 33, 157. [Google Scholar]
- De Fano, A.; Leshem, R.; Ben-Soussan, T.D. Creating an Internal Environment of Cognitive and Psycho-Emotional Well-Being through an External Movement-Based Environment: An Overview of Quadrato Motor Training. Int. J. Environ. Res. Public Health 2019, 16, 2160. [Google Scholar] [CrossRef]
- Marson, F.; Fano, A.D.; Pellegrino, M.; Pesce, C.; Glicksohn, J.; Ben-Soussan, T.D. Age-Related Differential Effects of School-Based Sitting and Movement Meditation on Creativity and Spatial Cognition: A Pilot Study. Children 2021, 8, 583. [Google Scholar] [CrossRef]
- Cooper, N.R.; Croft, R.J.; Dominey, S.J.; Burgess, A.P.; Gruzelier, J.H. Paradox Lost? Exploring the Role of Alpha Oscillations during Externally vs. Internally Directed Attention and the Implications for Idling and Inhibition Hypotheses. Int. J. Psychophysiol. 2003, 47, 65–74. [Google Scholar] [CrossRef]
- Takahashi, T.; Murata, T.; Hamada, T.; Omori, M.; Kosaka, H.; Kikuchi, M.; Yoshida, H.; Wada, Y. Changes in EEG and Autonomic Nervous Activity during Meditation and Their Association with Personality Traits. Int. J. Psychophysiol. 2005, 55, 199–207. [Google Scholar] [CrossRef]
- Lomas, T.; Ivtzan, I.; Fu, C.H. A Systematic Review of the Neurophysiology of Mindfulness on EEG Oscillations. Neurosci. Biobehav. Rev. 2015, 57, 401–410. [Google Scholar] [CrossRef]
- Cona, G.; Chiossi, F.; Di Tomasso, S.; Pellegrino, G.; Piccione, F.; Bisiacchi, P.; Arcara, G. Theta and Alpha Oscillations as Signatures of Internal and External Attention to Delayed Intentions: A Magnetoencephalography (MEG) Study. NeuroImage 2020, 205, 116295. [Google Scholar] [CrossRef]
- Sauseng, P.; Klimesch, W.; Doppelmayr, M.; Pecherstorfer, T.; Freunberger, R.; Hanslmayr, S. EEG Alpha Synchronization and Functional Coupling during Top-down Processing in a Working Memory Task. Hum. Brain Mapp. 2005, 26, 148–155. [Google Scholar] [CrossRef]
- Klimesch, W.; Sauseng, P.; Hanslmayr, S. EEG Alpha Oscillations: The Inhibition–Timing Hypothesis. Brain Res. Rev. 2007, 53, 63–88. [Google Scholar] [CrossRef]
- Klimesch, W. Evoked Alpha and Early Access to the Knowledge System: The P1 Inhibition Timing Hypothesis. Brain Res. 2011, 1408, 52–71. [Google Scholar] [CrossRef]
- Fink, A.; Graif, B.; Neubauer, A.C. Brain Correlates Underlying Creative Thinking: EEG Alpha Activity in Professional vs. Novice Dancers. NeuroImage 2009, 46, 854–862. [Google Scholar] [CrossRef]
- Wolff, N.; Zink, N.; Stock, A.-K.; Beste, C. On the Relevance of the Alpha Frequency Oscillation’s Small-World Network Architecture for Cognitive Flexibility. Sci. Rep. 2017, 7, 13910. [Google Scholar] [CrossRef]
- Sugimura, K.; Iwasa, Y.; Kobayashi, R.; Honda, T.; Hashimoto, J.; Kashihara, S.; Zhu, J.; Yamamoto, K.; Kawahara, T.; Anno, M. Association between Long-Range Temporal Correlations in Intrinsic EEG Activity and Subjective Sense of Identity. Sci. Rep. 2021, 11, 422. [Google Scholar] [CrossRef]
- Kerr, C.E.; Sacchet, M.D.; Lazar, S.W.; Moore, C.I.; Jones, S.R. Mindfulness Starts with the Body: Somatosensory Attention and Top-down Modulation of Cortical Alpha Rhythms in Mindfulness Meditation. Front. Hum. Neurosci. 2013, 7, 12. [Google Scholar] [CrossRef]
- Aftanas, L.I.; Golocheikine, S.A. Human Anterior and Frontal Midline Theta and Lower Alpha Reflect Emotionally Positive State and Internalized Attention: High-Resolution EEG Investigation of Meditation. Neurosci. Lett. 2001, 310, 57–60. [Google Scholar] [CrossRef]
- Mayer, J.D.; Caruso, D.R.; Salovey, P. Emotional Intelligence Meets Traditional Standards for an Intelligence. Intelligence 1999, 27, 267–298. [Google Scholar] [CrossRef]
- Jaušovec, N.; Jaušovec, K. Differences in Induced Gamma and Upper Alpha Oscillations in the Human Brain Related to Verbal/Performance and Emotional Intelligence. Int. J. Psychophysiol. 2005, 56, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lindquist, K.A.; Nam, C.S. Emotional Granularity Effects on Event-Related Brain Potentials during Affective Picture Processing. Front. Hum. Neurosci. 2017, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Sekiya, T.; Minote, N.; Watanuki, S. Relative Left Frontal Activity in Reappraisal and Suppression of Negative Emotion: Evidence from Frontal Alpha Asymmetry (FAA). Int. J. Psychophysiol. 2016, 109, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Hua, Y.; Xiu, L.; Oei, T.P.; Hu, P. Resting State Frontal Alpha Asymmetry Predicts Emotion Regulation Difficulties in Impulse Control. Personal. Individ. Differ. 2020, 159, 109870. [Google Scholar] [CrossRef]
- Kujala, J.; Pammer, K.; Cornelissen, P.; Roebroeck, A.; Formisano, E.; Salmelin, R. Phase Coupling in a Cerebro-Cerebellar Network at 8–13 Hz during Reading. Cereb. Cortex 2007, 17, 1476–1485. [Google Scholar] [CrossRef]
- Silberstein, R.B.; Danieli, F.; Nunez, P.L. Fronto-Parietal Evoked Potential Synchronization Is Increased during Mental Rotation. NeuroReport 2003, 14, 67–71. [Google Scholar] [CrossRef]
- Dietrich, A. Transient Hypofrontality as a Mechanism for the Psychological Effects of Exercise. Psychiatry Res. 2006, 145, 79–83. [Google Scholar] [CrossRef]
- Watson, T.C.; Becker, N.; Apps, R.; Jones, M.W. Back to Front: Cerebellar Connections and Interactions with the Prefrontal Cortex. Front. Syst. Neurosci. 2014, 8, 4. [Google Scholar] [CrossRef]
- Schmahmann, J.D.; Sherman, J.C. The Cerebellar Cognitive Affective Syndrome. Brain J. Neurol. 1998, 121, 561–579. [Google Scholar] [CrossRef]
- Swinnen, S.P. Intermanual Coordination: From Behavioural Principles to Neural-Network Interactions. Nat. Rev. Neurosci. 2002, 3, 348–359. [Google Scholar] [CrossRef]
- De Zeeuw, C.I.; Hoebeek, F.E.; Bosman, L.W.; Schonewille, M.; Witter, L.; Koekkoek, S.K. Spatiotemporal Firing Patterns in the Cerebellum. Nat. Rev. Neurosci. 2011, 12, 327–344. [Google Scholar] [CrossRef]
- Carbon, M.; Kingsley, P.B.; Tang, C.; Bressman, S.; Eidelberg, D. Microstructural White Matter Changes in Primary Torsion Dystonia. Mov. Disord. 2008, 23, 234–239. [Google Scholar] [CrossRef]
- Carbon, M.; Argyelan, M.; Habeck, C.; Ghilardi, M.F.; Fitzpatrick, T.; Dhawan, V.; Pourfar, M.; Bressman, S.B.; Eidelberg, D. Increased Sensorimotor Network Activity in DYT1 Dystonia: A Functional Imaging Study. Brain 2010, 133, 690–700. [Google Scholar] [CrossRef]
- Diamond, A. The Evidence Base for Improving School Outcomes by Addressing the Whole Child and by Addressing Skills and Attitudes, Not Just Content. Early Educ. Dev. 2010, 21, 780–793. [Google Scholar] [CrossRef] [PubMed]
- Shernoff, D.J.; Csikszentmihalyi, M.; Shneider, B.; Shernoff, E.S. Student Engagement in High School Classrooms from the Perspective of Flow Theory. Sch. Psychol. Q. 2003, 18, 158. [Google Scholar] [CrossRef]
- Dotan Ben-Soussan, T.; Glicksohn, J.; Goldstein, A.; Berkovich-Ohana, A.; Donchin, O. Into the Square and out of the Box: The Effects of Quadrato Motor Training on Creativity and Alpha Coherence. PLoS ONE 2013, 8, e55023. [Google Scholar] [CrossRef]
- Leshem, R.; De Fano, A.; Ben-Soussan, T.D. The Implications of Motor and Cognitive Inhibition for Hot and Cool Executive Functions: The Case of Quadrato Motor Training. Front. Psychol. 2020, 11, 940. [Google Scholar] [CrossRef]
- Ben-Soussan, T.D.; Avirame, K.; Glicksohn, J.; Goldstein, A.; Harpaz, Y.; Ben-Shachar, M. Changes in Cerebellar Activity and Inter-Hemispheric Coherence Accompany Improved Reading Performance Following Quadrato Motor Training. Front. Syst. Neurosci. 2014, 8, 81. [Google Scholar] [CrossRef]
- Ben-Soussan, T.D.; Berkovich-Ohana, A.; Piervincenzi, C.; Glicksohn, J.; Carducci, F. Embodied Cognitive Flexibility and Neuroplasticity Following Quadrato Motor Training. Front. Psychol. 2015, 6, 1021. [Google Scholar] [CrossRef]
- Piervincenzi, C.; Ben-Soussan, T.D.; Mauro, F.; Mallio, C.A.; Errante, Y.; Quattrocchi, C.C.; Carducci, F. White Matter Microstructural Changes Following Quadrato Motor Training: A Longitudinal Study. Front. Hum. Neurosci. 2017, 11, 590. [Google Scholar] [CrossRef]
- Ben-Soussan, T.D.; Glicksohn, J.; Berkovich-Ohana, A. Attentional Effort, Mindfulness, and Altered States of Consciousness Experiences Following Quadrato Motor Training. Mindfulness 2017, 8, 59–67. [Google Scholar] [CrossRef]
- Stefano, L.; Federica, M.; Ben-Soussan, T.D.; Filippo, C.; Tombini, M.; Quattrocchi, C.C.; Yuri, E.; Mallio, C.A.; Patrizio, P. Electrophysiological Indexes of Eyes Open and Closed Resting States Conditions Following the Quadrato Motor Training. Int. J. Bioelectromagn. 2016, 18, 99–108. [Google Scholar]
- Lasaponara, S.; Mauro, F.; Carducci, F.; Paoletti, P.; Tombini, M.; Quattrocchi, C.C.; Mallio, C.A.; Errante, Y.; Scarciolla, L.; Ben-Soussan, T.D. Increased Alpha Band Functional Connectivity Following the Quadrato Motor Training: A Longitudinal Study. Front. Hum. Neurosci. 2017, 11, 282. [Google Scholar] [CrossRef]
- Sauseng, P.; Klimesch, W.; Stadler, W.; Schabus, M.; Doppelmayr, M.; Hanslmayr, S.; Gruber, W.R.; Birbaumer, N. A Shift of Visual Spatial Attention Is Selectively Associated with Human EEG Alpha Activity. Eur. J. Neurosci. 2005, 22, 2917–2926. [Google Scholar] [CrossRef]
- Engel, T.A.; Steinmetz, N.A.; Gieselmann, M.A.; Thiele, A.; Moore, T.; Boahen, K. Selective Modulation of Cortical State during Spatial Attention. Science 2016, 354, 1140–1144. [Google Scholar] [CrossRef]
- Lasaponara, S.; Glicksohn, J.; Mauro, F.; Ben-Soussan, T.D. Contingent Negative Variation and P3 Modulations Following Mindful Movement Training. Prog. Brain Res. 2019, 244, 101–114. [Google Scholar]
- Harung, H.; Travis, F.; Blank, W.; Heaton, D. Higher Development, Brain Integration, and Excellence in Leadership. Manag. Decis. 2009, 47, 872–894. [Google Scholar] [CrossRef]
- Travis, F.; Harung, H.S.; Lagrosen, Y. Moral Development, Executive Functioning, Peak Experiences and Brain Patterns in Professional and Amateur Classical Musicians: Interpreted in Light of a Unified Theory of Performance. Conscious. Cogn. 2011, 20, 1256–1264. [Google Scholar] [CrossRef]
- Shaw, J.C. Intention as a Component of the Alpha-Rhythm Response to Mental Activity. Int. J. Psychophysiol. 1996, 24, 7–23. [Google Scholar] [CrossRef]
- Katahira, K.; Yamazaki, Y.; Yamaoka, C.; Ozaki, H.; Nakagawa, S.; Nagata, N. EEG Correlates of the Flow State: A Combination of Increased Frontal Theta and Moderate Frontocentral Alpha Rhythm in the Mental Arithmetic Task. Front. Psychol. 2018, 9, 300. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M.; Larson, R. Flow and the Foundations of Positive Psychology; Springer: Berlin/Heidelberg, Germany, 2014; Volume 10. [Google Scholar]
- Ben-Soussan, T.D.; Piervincenzi, C.; Venditti, S.; Verdone, L.; Caserta, M.; Carducci, F. Increased Cerebellar Volume and BDNF Level Following Quadrato Motor Training. Synapse 2015, 69, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Mamah, D.; Conturo, T.E.; Harms, M.P.; Akbudak, E.; Wang, L.; McMichael, A.R.; Gado, M.H.; Barch, D.M.; Csernansky, J.G. Anterior Thalamic Radiation Integrity in Schizophrenia: A Diffusion-Tensor Imaging Study. Psychiatry Res. Neuroimaging 2010, 183, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Van Der Werf, Y.D.; Jolles, J.; Witter, M.P.; Uylings, H.B. Contributions of Thalamic Nuclei to Declarative Memory Functioning. Cortex 2003, 39, 1047–1062. [Google Scholar] [CrossRef]
- Caserta, M.; Ben-Soussan, T.D.; Vetriani, V.; Venditti, S.; Verdone, L. Influence of Quadrato Motor Training on Salivary ProNGF and ProBDNF. Front. Neurosci. 2019, 13, 58. [Google Scholar] [CrossRef]
- Venditti, S.; Verdone, L.; Pesce, C.; Tocci, N.; Caserta, M.; Ben-Soussan, T.D. Creating Well-Being: Increased Creativity and ProNGF Decrease Following Quadrato Motor Training. BioMed Res. Int. 2015, 2015, 275062. [Google Scholar] [CrossRef]
- Verdone, L.; Caserta, M.; Vetriani, V.; Glicksohn, J.; Venditti, S.; Ben-Soussan, T.D. Molecular and Cognitive Effects of Quadrato Motor Training in Adult Dyslexia: A Longitudinal Case Study. Brain Body Cogn. 2019, 8, 37–44. [Google Scholar]
- Mandel, R.; Gage, F.; Thal, L. Spatial Learning in Rats: Correlation with Cortical Choline Acetyltransferase and Improvement with NGF Following NBM Damage. Exp. Neurol. 1989, 104, 208–217. [Google Scholar] [CrossRef]
- Angelucci, F.; De Bartolo, P.; Gelfo, F.; Foti, F.; Cutuli, D.; Bossù, P.; Caltagirone, C.; Petrosini, L. Increased Concentrations of Nerve Growth Factor and Brain-Derived Neurotrophic Factor in the Rat Cerebellum after Exposure to Environmental Enrichment. Cerebellum 2009, 8, 499–506. [Google Scholar] [CrossRef]
- Conner, J.M.; Franks, K.M.; Titterness, A.K.; Russell, K.; Merrill, D.A.; Christie, B.R.; Sejnowski, T.J.; Tuszynski, M.H. NGF Is Essential for Hippocampal Plasticity and Learning. J. Neurosci. 2009, 29, 10883–10889. [Google Scholar] [CrossRef]
- Fritsch, B.; Reis, J.; Martinowich, K.; Schambra, H.M.; Ji, Y.; Cohen, L.G.; Lu, B. Direct Current Stimulation Promotes BDNF-Dependent Synaptic Plasticity: Potential Implications for Motor Learning. Neuron 2010, 66, 198–204. [Google Scholar] [CrossRef]
- Levi-Montalcini, R.; Hamburger, V. Selective Growth Stimulating Effects of Mouse Sarcoma on the Sensory and Sympathetic Nervous System of the Chick Embryo. J. Exp. Zool. 1951, 116, 321–361. [Google Scholar] [CrossRef] [PubMed]
- Levi-Montalcini, R. Effects of Mouse Tumor Transplantation on the Nervous System. Ann. N. Y. Acad. Sci. 1952, 55, 330–344. [Google Scholar] [CrossRef]
- Verge, V.; Richardson, P.; Wiesenfeld-Hallin, Z.; Hokfelt, T. Differential Influence of Nerve Growth Factor on Neuropeptide Expression in Vivo: A Novel Role in Peptide Suppression in Adult Sensory Neurons. J. Neurosci. 1995, 15, 2081–2096. [Google Scholar] [CrossRef]
- Han, Z.; Wang, C.-P.; Cong, N.; Gu, Y.-Y.; Ma, R.; Chi, F.-L. Therapeutic Value of Nerve Growth Factor in Promoting Neural Stem Cell Survival and Differentiation and Protecting against Neuronal Hearing Loss. Mol. Cell. Biochem. 2017, 428, 149–159. [Google Scholar] [CrossRef]
- Schwarz, S.; Lehmbecker, A.; Tongtako, W.; Hahn, K.; Wang, Y.; Felmy, F.; Zdora, I.; Brogden, G.; Branitzki-Heinemann, K.; von Köckritz-Blickwede, M. Neurotrophic Effects of GM1 Ganglioside, NGF, and FGF2 on Canine Dorsal Root Ganglia Neurons in Vitro. Sci. Rep. 2020, 10, 5380. [Google Scholar] [CrossRef]
- Denk, F.; Bennett, D.L.; McMahon, S.B. Nerve Growth Factor and Pain Mechanisms. Annu. Rev. Neurosci. 2017, 40, 307–325. [Google Scholar] [CrossRef]
- Indo, Y. Nerve Growth Factor and the Physiology of Pain: Lessons from Congenital Insensitivity to Pain with Anhidrosis. Clin. Genet. 2012, 82, 341–350. [Google Scholar] [CrossRef]
- Indo, Y. NGF-Dependent Neurons and Neurobiology of Emotions and Feelings: Lessons from Congenital Insensitivity to Pain with Anhidrosis. Neurosci. Biobehav. Rev. 2018, 87, 1–16. [Google Scholar] [CrossRef]
- Ben-Soussan, T.D.; Berkovich-Ohana, A.; Glicksohn, J.; Goldstein, A. A Suspended Act: Increased Reflectivity and Gender-Dependent Electrophysiological Change Following Quadrato Motor Training. Front. Psychol. 2014, 5, 55. [Google Scholar] [CrossRef]
- Paoletti, P.; Glicksohn, J.; Ben-Soussan, T.D. Inner Design Technology: Improved Affect by Quadrato Motor Training. In The Amygdala—Where Emotions Shape Perception, Learning and Memories; InTech: Rijeka, Croatia, 2017; pp. 27–41. [Google Scholar]
- Ben-Soussan, T.D.; Glicksohn, J. Gender-Dependent Changes in Time Production Following Quadrato Motor Training in Dyslexic and Normal Readers. Front. Comput. Neurosci. 2018, 12, 71. [Google Scholar] [CrossRef]
- Ben-Soussan, T.D.; Glicksohn, J.; De Fano, A.; Mauro, F.; Marson, F.; Modica, M.; Pesce, C. Embodied Time: Time Production in Advanced Quadrato and Aikido Practitioners. PsyCh J. 2019, 8, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Ben-Soussan, T.D.; Marson, F.; Piervincenzi, C.; Glicksohn, J.; De Fano, A.; Amenduni, F.; Quattrocchi, C.C.; Carducci, F. Correlates of Silence: Enhanced Microstructural Changes in the Uncinate Fasciculus. Front. Psychol. 2020, 11, 543773. [Google Scholar] [CrossRef] [PubMed]
- Verdone, L.; Marson, F.; Caserta, M.; Zampieri, M.; Reale, A.; Bacalini, M.G.; Vetriani, V.; Ben-Soussan, T.D.; Venditti, S. Quadrato Motor Training (QMT) Influences IL-1β Expression and Creativity: Implications for Inflammatory State Reduction and Cognitive Enhancement. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–21. [Google Scholar]
- Rosenthal, R.; Jacobsen, L. Pygmalion in the Classroom: Self-Fulfilling Prophecies and Teacher Expectations; Holt, Rhinehart, and Winston: New York, NY, USA, 1968; ISBN 9781904424062. [Google Scholar]
- Flink, C.; Boggiano, A.K.; Barrett, M. Controlling Teaching Strategies: Undermining Children’s Self-Determination and Performance. J. Pers. Soc. Psychol. 1990, 59, 916. [Google Scholar] [CrossRef]
- Flink, C.; Boggiano, A.K.; Main, D.S.; Barrett, M.; Katz, P. Children’s Achievement-Related Behaviors: The Role of Extrinsic and Intrinsic Motivational Orientations. In Achievement and Motivation: A Social-Developmental Perspective; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Steele, C.M.; Aronson, J. Attitudes and Social Cognition. J. Pers. Soc. Psychol. 1995, 69, 797–811. [Google Scholar] [CrossRef]
- Aronson, J.; Cohen, G.; Nail, P.R. Self-Affirmation Theory: An Update and Appraisal. In Cognitive Dissonance: Reexamining a Pivotal Theory in Psychology; American Psychological Association: Washington, DC, USA, 1999. [Google Scholar]
- Arnsten, A.F. Catecholamine Modulation of Prefrontal Cortical Cognitive Function. Trends Cogn. Sci. 1998, 2, 436–447. [Google Scholar] [CrossRef]
- Jethwani-Keyser, M.M. “When Teachers Treat Me Well, I Think I Belong”: School Belonging and the Psychological and Academic Well Being of Adolescent Girls in India. Ph.D. Thesis, New York University, New York, NY, USA, 2008. [Google Scholar]
- Jennings, P.A.; Greenberg, M.T. The Prosocial Classroom: Teacher Social and Emotional Competence in Relation to Student and Classroom Outcomes. Rev. Educ. Res. 2009, 79, 491–525. [Google Scholar] [CrossRef]
- Denham, S.A.; Brown, C. “Plays Nice with Others”: Social–Emotional Learning and Academic Success. Early Educ. Dev. 2010, 21, 652–680. [Google Scholar] [CrossRef]
- Downer, J.; Sabol, T.J.; Hamre, B. Teacher–Child Interactions in the Classroom: Toward a Theory of within-and Cross-Domain Links to Children’s Developmental Outcomes. Early Educ. Dev. 2010, 21, 699–723. [Google Scholar] [CrossRef]
- National Research Council. Community Programs to Promote Youth Development; National Academies Press: Washington, DC, USA, 2002; ISBN 030913403X. [Google Scholar]
- Shernoff, D.J. Engagement in After-School Programs as a Predictor of Social Competence and Academic Performance. Am. J. Community Psychol. 2010, 45, 325–337. [Google Scholar] [CrossRef]
- Dawes, N.P.; Larson, R. How Youth Get Engaged: Grounded-Theory Research on Motivational Development in Organized Youth Programs. Dev. Psychol. 2011, 47, 259. [Google Scholar] [CrossRef]
- Zarrett, N.; Sorensen, C.; Cook, B.S. Physical and Social-Motivational Contextual Correlates of Youth Physical Activity in Underresourced Afterschool Programs. Health Educ. Behav. 2015, 42, 518–529. [Google Scholar] [CrossRef]
- Zarrett, N.; Abraczinskas, M.; Skiles Cook, B.; Wilson, D.K.; Ragaban, F. Promoting Physical Activity within Under-Resourced Afterschool Programs: A Qualitative Investigation of Staff Experiences and Motivational Strategies for Engaging Youth. Appl. Dev. Sci. 2018, 22, 58–73. [Google Scholar] [CrossRef]
- Hillman, C.H.; Erickson, K.I.; Kramer, A.F. Be Smart, Exercise Your Heart: Exercise Effects on Brain and Cognition. Nat. Rev. Neurosci. 2008, 9, 58–65. [Google Scholar] [CrossRef]
- Hillman, C.H.; Buck, S.M.; Themanson, J.R.; Pontifex, M.B.; Castelli, D.M. Aerobic Fitness and Cognitive Development: Event-Related Brain Potential and Task Performance Indices of Executive Control in Preadolescent Children. Dev. Psychol. 2009, 45, 114. [Google Scholar] [CrossRef]
- Diamond, A. Close Interrelation of Motor Development and Cognitive Development and of the Cerebellum and Prefrontal Cortex. Child Dev. 2000, 71, 44–56. [Google Scholar] [CrossRef]
- Rosenbaum, D.A.; Carlson, R.A.; Gilmore, R.O. Acquisition of Intellectual and Perceptual-Motor Skills. Annu. Rev. Psychol. 2001, 52, 453–470. [Google Scholar] [CrossRef]
- Levit-Binnun, N.; Davidovitch, M.; Golland, Y. Sensory and Motor Secondary Symptoms as Indicators of Brain Vulnerability. J. Neurodev. Disord. 2013, 5, 26. [Google Scholar] [CrossRef]
- Karpinski, R.I.; Kolb, A.M.K.; Tetreault, N.A.; Borowski, T.B. High Intelligence: A Risk Factor for Psychological and Physiological Overexcitabilities. Intelligence 2018, 66, 8–23. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; ISBN 92-4-159997-9. [Google Scholar]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Craig, C.L.; Clarke, J.; Tremblay, M.S. Physical Activity of Canadian Children and Youth: Accelerometer Results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011, 22, 15. [Google Scholar]
- Cliff, D.P.; Hesketh, K.D.; Vella, S.A.; Hinkley, T.; Tsiros, M.D.; Ridgers, N.D.; Carver, A.; Veitch, J.; Parrish, A.; Hardy, L.L. Objectively Measured Sedentary Behaviour and Health and Development in Children and Adolescents: Systematic Review and Meta-analysis. Obes. Rev. 2016, 17, 330–344. [Google Scholar] [CrossRef]
- Watson, A.; Timperio, A.; Brown, H.; Best, K.; Hesketh, K.D. Effect of Classroom-Based Physical Activity Interventions on Academic and Physical Activity Outcomes: A Systematic Review and Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Waters, L.; Barsky, A.; Ridd, A.; Allen, K. Contemplative Education: A Systematic, Evidence-Based Review of the Effect of Meditation Interventions in Schools. Educ. Psychol. Rev. 2015, 27, 103–134. [Google Scholar] [CrossRef]
- Russell, T.A.; Arcuri, S.M. A Neurophysiological and Neuropsychological Consideration of Mindful Movement: Clinical and Research Implications. Front. Hum. Neurosci. 2015, 9, 282. [Google Scholar] [CrossRef] [PubMed]
- Paoletti, P. OMM: The One Minute Meditation, 5th ed.; Medidea: Tenero-Contra, Switzerland, 2018. [Google Scholar]
Study | Participants | Design | Duration | Measures | Outcomes |
---|---|---|---|---|---|
Ben Soussan et al., 2013 | N = 27; 20–35 years * | Between groups comparison: QMT; Verbal Training; Simple Motor Training | Single training | Pre-post evaluation: EEG; Reaction Time Task; AUT | Enhanced inter-hemispheric and intra-hemispheric alpha coherence; increased divergent thinking (AUT) scores pre-post in QMT group compared to both control groups |
Ben-Soussan et al., 2014a | N = 22; 2 groups of 10 healthy and 12 dyslexic participants | Longitudinal | 4 weeks of daily training | Pre-post evaluation: MEG; Reading Test; Category-based Fluency Task; Letter-based Fluency Task | Increased cerebellar alpha power after QMT in dyslexic participants; Improved performance on Reading Test after QMT in both dyslexic and healthy participants |
Ben-Soussan et al., 2014b (Study A) | N = 24; 3 groups of 9, 7 and 8 participants | Between groups comparison: QMT; Verbal Training; Simple Motor Training | Single training | Pre-post evaluation: HFT | Improved performance on spatial cognition (HFT) in QMT group compared to two control groups |
Ben-Soussan et al., 2014b (Study B) | N = 37 | Longitudinal | Single training | Pre-post evaluation: EEG; HFT | Enhanced theta and alpha intra-hemispheric coherence in females; Reduced theta and alpha intra-hemispheric coherence in males; spatial cognition (HFT) performance improved in both genders after QMT; |
Ben-Soussan et al., 2014c | N = 3; 29, 49 and 53 years | Longitudinal | 12 weeks of daily training | Pre-post evaluation: MRI; Salivary proBDNF | ProBDNF levels increased after QMT; GM volume increased bilaterally in the cerebellum, in right thalamus and limbic lobe; WMI increased in the corpus callosum, anterior thalamic radiations, corticospinal tracts, cerebellar peduncles, and superior longitudinal fascicule; ProBDNF levels positively correlated with GM and WMI |
Venditti et al., 2015 | N = 40; 2 groups of 20 participants | Between groups comparison: QMT; Simple Motor Training | 4 weeks of daily training | Pre-post evaluation: Salivary proNGF; AUT | Increased divergent thinking (AUT) scores in the QMT group; Change in scores negatively correlated with the change in proNGF levels in QMT group. |
Ben-Soussan et al., 2015 | N = 27; 20–35 years * | Between groups comparison: QMT; Verbal Training; Simple Motor Training | 4 weeks of daily training | Pre-post evaluation: MRI; AUT | GM volume and WMI changes in cerebellum, inferior frontal and middle frontal gyri; Increased divergent thinking (AUT) scores in the QMT group compared to control groups; Anatomical changes were positively correlated with cognitive flexibility scores |
Ben-Soussan et al., 2017 | N = 43; 3 groups of 15, 14 and 14 participants | Between groups comparison: BM practitioners (1 week of QMT); BM practitioners (4 weeks of QMT); controls (4 weeks of QMT) | 4 weeks of daily training | Pre-post evaluation: First-person reports | Increased reports of attention, mindfulness, ability to wait, positive emotions, bodily harmony, spontaneous visualization, sense of wonder |
Lasaponara et al., 2017 | N = 50; 25–45 years * | Longitudinal | 12 weeks of daily training | Evaluation in T0-T1-T2: EEG | Increased limbic and fronto-temporal alpha connectivity after 6 weeks of QMT; Increased occipital alpha connectivity after 12 weeks of QMt |
Paoletti et al., 2017 | N = 84; 2 groups of 42 participants | Between groups comparison: BM with/without QMT | 7 days of daily training | Pre-post evaluation: ABS; GSE | Higher increase in affective balance (ABS) score for the QMT group compared to control group |
Piervincenzi et al., 2017 | N = 50; 25–45 years * | Longitudinal | 12 weeks of daily training | Evaluation in T0-T1-T2: MRI; AUT; GSE; The Motivation Scale | Bilateral increase in WMI after 6 weeks of QMT (T1) in tracts related to sensorimotor and cognitive functions; WMI increments still present after 12 weeks of QMT (T2) in the left hemisphere; Significant correlations between WMI changes and increased scores in self-efficacy (GSE) and divergent thinking (AUT) |
Ben-Soussan and Glicksohn, 2018 | N = 29; 3 groups of 9, 10 and 10 participants | Between groups comparison: Healthy-Verbal Training; Healthy-QMT; Dyslexic-QMT | 4 weeks of daily training | Pre-post evaluation: TP Task | Compared to Verbal training group, longer TP after QMT in the in dyslexic females; Shorter TP after QMT in healthy females |
Verdone et al., 2018 | N = 1; 20 years old male dyslexic participant | Longitudinal | 10 weeks of daily training | Pre-post evaluation: Salivary proBDNF and proNGF; Reading Test; AUT | Increased salivary proBDNF and proNGF after QMT; Improved performance on Reading Test after QMT; Increased divergent thinking (AUT) scores after QMT |
Ben-Soussan et al., 2019 | N = 34; 3 groups of 11, 9 and 14 participants | Between groups comparison: Aikido practitioners; QMT practitioners; passive control group | Observational | TP; Homolateral interlimb coordination Task | Longer and more accurate time duration estimations in QMT group compared to Aikido and passive control groups |
Caserta et al., 2019 | N = 40; 2 groups of 20 participants | Between groups comparison: QMT; Simple Motor Training | 12 weeks of daily training | Pre-post evaluation: Salivary proBDNF and proNGF | proNGF level increased in QMT group while proBDNF showed no significant change. No correlation between the two neurotrophins prior to training was detectable, but a significant positive correlation between change in proNGF and proBDNF after training |
Lasaponara et al., 2019 | N = 23; 19–41 years | Longitudinal | Single training | Pre-post evaluation: EEG; SRT; CRT | CNV amplitude (change in alertedness) reduced in CRT and increased in SRT after QMT; P3 amplitude (cognitive load and novelty detection) increased in CRT and decreased in SRT after QMT |
Ben-Soussan et al., 2020 | N = 50; 25–45 years * | Longitudinal | 6 weeks of daily training | Pre-post evaluation: MRI; First-person reports | Silence experience positively correlated with longitudinal WMI increments in the left Uncinate Fasciculus; First-person reports of experiencing silence and reduced mind-wandering |
Marson et al., 2021 | N = 50; 4 class from 5th to 8th grade | All participants (crossover design) performed: QMT; OMM | 5 weeks of daily training | Pre-post evaluation: HFT; AUT | Younger children showed increased spatial cognition (HFT) and divergent thinking (AUT) scores after QMT; Older children showed increased divergent thinking (AUT) scores after OMM and increased spatial cognition (HFT) after both trainings |
Verdone et al., 2023 | N = 30; 2 groups of 15 participants | Between groups comparison: QMT; passive control group | 8 weeks of daily training | Pre-post evaluation: Salivary IL-1β; HFT; AUT | pro-inflammatory (IL-1β protein) level decreased and AUT scores in QMT group increased compared to the control group |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paoletti, P.; Pellegrino, M.; Ben-Soussan, T.D. A Three-Fold Integrated Perspective on Healthy Development: An Opinion Paper. Brain Sci. 2023, 13, 857. https://doi.org/10.3390/brainsci13060857
Paoletti P, Pellegrino M, Ben-Soussan TD. A Three-Fold Integrated Perspective on Healthy Development: An Opinion Paper. Brain Sciences. 2023; 13(6):857. https://doi.org/10.3390/brainsci13060857
Chicago/Turabian StylePaoletti, Patrizio, Michele Pellegrino, and Tal Dotan Ben-Soussan. 2023. "A Three-Fold Integrated Perspective on Healthy Development: An Opinion Paper" Brain Sciences 13, no. 6: 857. https://doi.org/10.3390/brainsci13060857
APA StylePaoletti, P., Pellegrino, M., & Ben-Soussan, T. D. (2023). A Three-Fold Integrated Perspective on Healthy Development: An Opinion Paper. Brain Sciences, 13(6), 857. https://doi.org/10.3390/brainsci13060857