The Misguided Veneration of Averageness in Clinical Neuroscience: A Call to Value Diversity over Typicality
Abstract
:1. Introduction
2. Neurological and Cognitive Diversity
3. The Use of Central Tendency in Cognitive Assessment
4. The Biological–Evolutionary Perspective: Diversity of Abilities and Traits Is Normal
5. The Neurocognitive Perspective: Degeneracy
6. (un)Representativeness of Samples
7. Normative Data from WEIRD People
8. Unfair Comparisons to Normative Data
9. Conclusions and Tentative Suggestions to Achieve More Accurate and Fair Cognitive Assessments
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heilman, K.M. The case for case reports. In The Roots of Cognitive Neuroscience: Behavioral Neurology and Neuropsychology; Chatterjee, A., Coslett, H.B., Eds.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Halligan, P.W.; Marshall, J.C. Method of Madness: Case Studies in Cognitive Neuropsychiatry; Psychology Press: Hove, UK, 1996. [Google Scholar]
- Haberg, A.K.; Hammer, T.A.; Kvistad, K.A.; Rydland, J.; Muller, T.B.; Eikenes, L.; Garseth, M.; Stovner, L.J. Incidental intracranial findings and their clinical impact; the HUNT MRI study in a general population of 1006 participants between 50–66 Years. PLoS ONE 2016, 11, e0151080. [Google Scholar] [CrossRef]
- Wangaryattawanich, P.; Rutman, A.M.; Petcharunpaisan, S.; Mossa-Basha, M. Incidental findings on brain magnetic resonance imaging (MRI) in adults: A review of imaging spectrum, clinical significance, and management. Br. J. Radiol. 2023, 96, 20220108. [Google Scholar] [CrossRef] [PubMed]
- Zeman, A.; Dewar, M.; Della Sala, S. Lives without imagery-congenital aphantasia. Cortex 2015, 73, 378–380. [Google Scholar] [CrossRef] [PubMed]
- Dance, C.J.; Ipser, A.; Simner, J. The prevalence of aphantasia (imagery weakness) in the general population. Conscious. Cogn. 2021, 97, 103243. [Google Scholar] [CrossRef] [PubMed]
- Susilo, T.; Duchaine, B. Advances in developmental prosopagnosia research. Curr. Opin. Neurobiol. 2013, 23, 423–429. [Google Scholar] [CrossRef]
- Kennerknecht, I.; Grueter, T.; Welling, B.; Wentzek, S.; Horst, J.; Edwards, S.; Grueter, M. First report of prevalence of non-syndromic hereditary prosopagnosia (HPA). Am. J. Med. Genet. 2006, 140, 1617–1622. [Google Scholar] [CrossRef]
- Shilowich, B.E.; Biederman, I. An estimate of the prevalence of developmental phonagnosia. Brain Lang. 2016, 159, 84–91. [Google Scholar] [CrossRef]
- Beauchamp, M.S.; Ro, T. Neural substrates of sound-touch synesthesia after a thalamic lesion. J. Neurosci. 2008, 28, 13696–13702. [Google Scholar] [CrossRef]
- Simner, J.; Mulvenna, C.; Sagiv, N.; Tsakanikos, E.; Witherby, S.A.; Fraser, C.; Scott, K.; Ward, J. Synaesthesia: The prevalence of atypical cross-modal experiences. Perception 2006, 35, 1024–1033. [Google Scholar] [CrossRef]
- Armstrong, T. The myth of the normal brain: Embracing neurodiversity. AMA J. Ethics 2015, 17, 348–352. [Google Scholar] [CrossRef]
- Baron-Cohen, S. Editorial perspective: Neurodiversity—A revolutionary concept for autism and psychiatry. J. Child Psychol. Psychiatry 2017, 58, 744–747. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.J.; Boilson, M.; Rutherford, M.; Prior, S.; Johnston, L.; Maciver, D.; Forsyth, K. Neurodevelopmental disorders and neurodiversity: Definition of terms from Scotland’s National Autism Implementation Team. Br. J. Psychiatry 2022, 221, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Sonuga-Barke, E.; Thapar, A. The neurodiversity concept: Is it helpful for clinicians and scientists? Lancet Psychiatry 2021, 8, 559–561. [Google Scholar] [CrossRef] [PubMed]
- Farroni, T.; Valori, I.; Carnevali, L. Multimedia interventions for neurodiversity: Leveraging insights from developmental cognitive neuroscience to build an innovative practice. Brain Sci. 2022, 12, 147. [Google Scholar] [CrossRef] [PubMed]
- Randolph, J.J. Positive neuropsychology: The science and practice of promoting cognitive health. Appl. Neuropsychol. Adult 2018, 25, 287–294. [Google Scholar] [CrossRef]
- Schoenberg, M.R.; Soble, J.R.; Osborn, K.E. Psychometrics of assessment: Understanding what neuropsychology adds to the physician’s understanding of the patient. In Physician’s Field Guide to Neuropsychology; Sanders, K., Ed.; Springer: New York, NY, USA, 2019; pp. 45–60. [Google Scholar]
- Henrich, J.; Heine, S.J.; Norenzayan, A. The weirdest people in the world? Behav. Brain Sci. 2010, 33, 61–83. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Adult Intelligence Scale Administration and Scoring Manual; The Psychological Corporation: San Antonio, TX, USA, 2008. [Google Scholar]
- Iverson, G.L.; Brooks, B.L. Improving accuracy for identifying cognitive impairment. In The Little Black Book of Neuropsychology; Schoenberg, M.R., Scott, J.G., Eds.; Springer: New York, NY, USA, 2011. [Google Scholar]
- Della Sala, S.; Cubelli, R. Alleged “sonic attack” supported by poor neuropsychology. Cortex 2018, 103, 387–388. [Google Scholar] [CrossRef]
- Binder, L.M.; Iverson, G.L.; Brooks, B.L. To err is human: “abnormal” neuropsychological scores and variability are common in healthy adults. Arch. Clin. Neuropsychol. 2009, 24, 31–46. [Google Scholar] [CrossRef]
- Hedges, D.; Farrer, T.J.; Bigler, E.D.; Hopkins, R.O. The Brain at Risk: Associations between Disease and Cognition; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Cimino, C.R. Principles of neuropsychologial interpretation. In Clinician’s Guide to Neuropsychological Assessment, 2nd ed.; Vanderploeg, R.D., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2000; pp. 65–101. [Google Scholar]
- Freedman, D.; Manly, J. Use of Normative Data and Measures of Performance Validity and Symptom Validity in Assessment of Cognitive Function; Institute of Medicine: Kathmandu, Nepal, 2015. [Google Scholar]
- Gasquoine, P.G. Performance-based alternatives to race-norms in neuropsychological assessment. Cortex 2022, 148, 231–238. [Google Scholar] [CrossRef]
- Gravetter, F.J.; Wallnau, L.B. Statistics for the Behavioral Sciences, 5th ed.; Wadsworth—Thomson Learning: Belmont, CA, USA, 2000. [Google Scholar]
- Burton, L.J. Psychology Australian and New Zealand, 4th ed.; Wiley: Hoboken, NJ, USA, 2018. [Google Scholar]
- Seghier, M.L.; Price, C.J. Interpreting and utilising intersubject variability in brain function. Trends Cogn. Sci. 2018, 22, 517–530. [Google Scholar] [CrossRef]
- Bernier, R. The species as an individual: Facing essentialism. Syst. Zool. 1984, 33, 460–469. [Google Scholar] [CrossRef]
- Cox, S.R.; Ritchie, S.J.; Fawns-Ritchie, C.; Tucker-Drob, E.M.; Deary, I.J. Structural brain imaging correlates of general intelligence in UK Biobank. Intelligence 2019, 76, 101376. [Google Scholar] [CrossRef] [PubMed]
- Cattell, R.B. Where is intelligence? some answers from the Triadic Theory. In Human Cognitive Abilities in Theory and Practice; McArdle, J.J., Woodcock, R.W., Eds.; Routledge: New York, NY, USA, 1998. [Google Scholar]
- Padamsey, Z.; Rochefort, N.L. Paying the brain’s energy bill. Curr. Opin. Neurobiol. 2023, 78, 102668. [Google Scholar] [CrossRef]
- Rolfe, D.F.; Brown, G.C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 1997, 77, 731–758. [Google Scholar] [CrossRef] [PubMed]
- Niven, J.E. Brain evolution: Getting better all the time? Curr. Biol. 2005, 15, R624–R626. [Google Scholar] [CrossRef]
- Safi, K.; Seid, M.A.; Dechmann, D.K. Bigger is not always better: When brains get smaller. Biol. Lett. 2005, 1, 283–286. [Google Scholar] [CrossRef]
- DeSilva, J.M.; Traniello, J.F.; Claxton, A.G.; Fannin, L.D. When and why did human brains decrease in size? a new change-point analysis and insights from brain evolution in ants. Front. Ecol. Evol. 2021, 712, 742639. [Google Scholar] [CrossRef]
- Darwin, C. On The Origin of Species by Means of Natural Selection, or, The Preservation of Favoured Races in the Struggle for Life; John Murray: Hachette, UK, 1859. [Google Scholar]
- Vukasovic, T.; Bratko, D. Heritability of personality: A meta-analysis of behavior genetic studies. Psychol. Bull. 2015, 141, 769–785. [Google Scholar] [CrossRef]
- Nettle, D. The evolution of personality variation in humans and other animals. Am. Psychol. 2006, 61, 622–631. [Google Scholar] [CrossRef]
- Struijs, S.Y.; de Jong, P.J.; Jeronimus, B.F.; van der Does, W.; Riese, H.; Spinhoven, P. Psychological risk factors and the course of depression and anxiety disorders: A review of 15 years NESDA research. J. Affect. Disord. 2021, 295, 1347–1359. [Google Scholar] [CrossRef]
- Peters, H.; Gotz, F.M.; Ebert, T.; Muller, S.R.; Rentfrow, P.J.; Gosling, S.D.; Obschonka, M.; Ames, D.; Potter, J.; Matz, S.C. Regional personality differences predict variation in early COVID-19 infections and mobility patterns indicative of social distancing. J. Pers. Soc. Psychol. 2023, 124, 848–872. [Google Scholar] [CrossRef] [PubMed]
- Croston, R.; Branch, C.L.; Kozlovsky, D.Y.; Dukas, R.; Pravosudov, V.V. Heritability and the evolution of cognitive traits. Behav. Ecol. 2015, 26, 1447–1459. [Google Scholar] [CrossRef]
- Belloy, M.E.; Napolioni, V.; Greicius, M.D. A quarter century of APOE and Alzheimer’s disease: Progress to date and the path forward. Neuron 2019, 101, 820–838. [Google Scholar] [CrossRef] [PubMed]
- Tai, L.M.; Thomas, R.; Marottoli, F.M.; Koster, K.P.; Kanekiyo, T.; Morris, A.W.; Bu, G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol. 2016, 131, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Knickmeyer, R.C.; Wang, J.; Zhu, H.; Geng, X.; Woolson, S.; Hamer, R.M.; Konneker, T.; Lin, W.; Styner, M.; Gilmore, J.H. Common variants in psychiatric risk genes predict brain structure at birth. Cereb. Cortex 2014, 24, 1230–1246. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, M.C.; Murphy, S.E.; Zamboni, G.; Nobre, A.C.; Mackay, C.E. APOE genotype and cognition in healthy individuals at risk of Alzheimer’s disease: A review. Cortex 2018, 104, 103–123. [Google Scholar] [CrossRef]
- Yu, Y.W.; Lin, C.H.; Chen, S.P.; Hong, C.J.; Tsai, S.J. Intelligence and event-related potentials for young female human volunteer apolipoprotein E epsilon4 and non-epsilon4 carriers. Neurosci. Lett. 2000, 294, 179–181. [Google Scholar] [CrossRef]
- Hubacek, J.A.; Pitha, J.; Skodova, Z.; Adamkova, V.; Lanska, V.; Poledne, R. A possible role of apolipoprotein E polymorphism in predisposition to higher education. Neuropsychobiology 2001, 43, 200–203. [Google Scholar] [CrossRef]
- Schlaudecker, E.P.; Steinhoff, M.C.; Moore, S.R. Interactions of diarrhea, pneumonia, and malnutrition in childhood: Recent evidence from developing countries. Curr. Opin. Infect. Dis. 2011, 24, 496–502. [Google Scholar] [CrossRef]
- Oria, R.B.; Patrick, P.D.; Oria, M.O.; Lorntz, B.; Thompson, M.R.; Azevedo, O.G.; Lobo, R.N.; Pinkerton, R.F.; Guerrant, R.L.; Lima, A.A. ApoE polymorphisms and diarrheal outcomes in Brazilian shanty town children. Braz. J. Med. Biol. Res. 2010, 43, 249–256. [Google Scholar] [CrossRef]
- Pinkerton, R.; Oria, R.B.; Lima, A.A.; Rogawski, E.T.; Oria, M.O.; Patrick, P.D.; Moore, S.R.; Wiseman, B.L.; Niehaus, M.D.; Guerrant, R.L. Early childhood diarrhea predicts cognitive delays in later childhood independently of malnutrition. Am. J. Trop. Med. Hyg. 2016, 95, 1004–1010. [Google Scholar] [CrossRef] [PubMed]
- Mitter, S.S.; Oria, R.B.; Kvalsund, M.P.; Pamplona, P.; Joventino, E.S.; Mota, R.M.; Goncalves, D.C.; Patrick, P.D.; Guerrant, R.L.; Lima, A.A. Apolipoprotein E4 influences growth and cognitive responses to micronutrient supplementation in shantytown children from northeast Brazil. Clinics 2012, 67, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Oria, R.B.; Patrick, P.D.; Zhang, H.; Lorntz, B.; de Castro Costa, C.M.; Brito, G.A.; Barrett, L.J.; Lima, A.A.; Guerrant, R.L. APOE4 protects the cognitive development in children with heavy diarrhea burdens in Northeast Brazil. Pediatr. Res. 2005, 57, 310–316. [Google Scholar] [CrossRef]
- Kopal, J.; Uddin, L.Q.; Bzdok, D. The end game: Respecting major sources of population diversity. Nat. Methods 2023. [Google Scholar] [CrossRef]
- Waegeman, A.; Declerck, C.H.; Boone, C.; Van Hecke, W.; Parizel, P.M. Individual differences in self-control in a time discounting task: An fMRI study. J. Neurosci. Psychol. Econ. 2014, 7, 65–79. [Google Scholar] [CrossRef]
- Cesario, J.; Johnson, D.J.; Eisthen, H.L. Your brain is not an onion with a tiny reptile inside. Curr. Dir. Psychol. Sci. 2020, 29, 255–260. [Google Scholar] [CrossRef]
- Dahlman, S.; Backstrom, P.; Bohlin, G.; Frans, O. Cognitive abilities of street children: Low-SES Bolivian boys with and without experience of living in the street. Child Neuropsychol. 2013, 19, 540–556. [Google Scholar] [CrossRef]
- Alaraudanjoki, E.; Regmi, M.P.; Ahonen, T.; Nurmi, J.E.; Ruoppila, I. Cognitive skills among Nepalese child labourers. Int. J. Psychol. 2001, 36, 242–250. [Google Scholar] [CrossRef]
- Saxe, G.B. The mathematics of child street vendors. Child Dev. 1988, 59, 1415–1425. [Google Scholar] [CrossRef]
- Fendinger, N.J.; Dietze, P.; Knowles, E.D. Beyond cognitive deficits: How social class shapes social cognition. Trends Cogn. Sci. 2023, 27, 528–538. [Google Scholar] [CrossRef]
- Rothen, N.; Meier, B. Higher prevalence of synaesthesia in art students. Perception 2010, 39, 718–720. [Google Scholar] [CrossRef] [PubMed]
- Watkins, N.W. (A)phantasia and severely deficient autobiographical memory: Scientific and personal perspectives. Cortex 2018, 105, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Ando, V.; Claridge, G.; Clark, K. Psychotic traits in comedians. Br. J. Psychiatry 2014, 204, 341–345. [Google Scholar] [CrossRef]
- Chapman, R. Neurodiversity and the social ecology of mental functions. Perspect. Psychol. Sci. 2021, 16, 1360–1372. [Google Scholar] [CrossRef]
- Holmes, A.J.; Patrick, L.M. The myth of optimality in clinical neuroscience. Trends Cogn. Sci. 2018, 22, 241–257. [Google Scholar] [CrossRef]
- Mason, P.H. Degeneracy: Demystifying and destigmatizing a core concept in systems biology. Complexity 2015, 20, 12–21. [Google Scholar] [CrossRef]
- Rathour, R.K.; Narayanan, R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019, 29, 980–1022. [Google Scholar] [CrossRef]
- Kherif, F.; Josse, G.; Seghier, M.L.; Price, C.J. The main sources of intersubject variability in neuronal activation for reading aloud. J. Cogn. Neurosci. 2009, 21, 654–668. [Google Scholar] [CrossRef]
- Seghier, M.L.; Price, C.J. Reading aloud boosts connectivity through the putamen. Cereb. Cortex 2010, 20, 570–582. [Google Scholar] [CrossRef]
- Gvion, A.; Friedmann, N. A principled relation between reading and naming in acquired and developmental anomia: Surface dyslexia following impairment in the phonological output lexicon. Front. Psychol. 2016, 7, 240. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Dehaene, S.; McCormick, S.; Durant, S.; Zanker, J.M. Brain mechanisms of recovery from pure alexia: A single case study with multiple longitudinal scans. Neuropsychologia 2016, 91, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Stoerig, P.; Cowey, A. Blindsight. Curr. Biol. 2007, 17, R822–R824. [Google Scholar] [CrossRef]
- Mengotti, P.; Corradi-Dell’Acqua, C.; Negri, G.A.; Ukmar, M.; Pesavento, V.; Rumiati, R.I. Selective imitation impairments differentially interact with language processing. Brain 2013, 136, 2602–2618. [Google Scholar] [CrossRef]
- Price, C.J.; Hope, T.M.; Seghier, M.L. Ten problems and solutions when predicting individual outcome from lesion site after stroke. Neuroimage 2017, 145, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Sauce, B.; Matzel, L.D. The causes of variation in learning and behavior: Why individual differences matter. Front. Psychol. 2013, 4, 395. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.A. The functional equivalence of problem solving skills. Cogn. Psychol. 1975, 7, 268–288. [Google Scholar] [CrossRef]
- Roca, M.; Parr, A.; Thompson, R.; Woolgar, A.; Torralva, T.; Antoun, N.; Manes, F.; Duncan, J. Executive function and fluid intelligence after frontal lobe lesions. Brain 2010, 133, 234–247. [Google Scholar] [CrossRef]
- Cheng, X.; Yuan, Y.; Wang, Y.; Wang, R. Neural antagonistic mechanism between default-mode and task-positive networks. Neurocomputing 2020, 417, 74–85. [Google Scholar] [CrossRef]
- Pluck, G.; Bravo Mancero, P.; Maldonado Gavilanez, C.E.; Urquizo Alcivar, A.M.; Ortiz Encalada, P.A.; Tello Carrasco, E.; Lara, I.; Trueba, A.F. Modulation of striatum based non-declarative and medial temporal lobe based declarative memory predicts academic achievement at university level. Trends Neurosci. Educ. 2019, 14, 1–10. [Google Scholar] [CrossRef]
- Brandt, J.; Benedict, R.H.B. Hopkins Verbal Learning Test—Revised Professional Manual; Psychological Assesment Resources: Lutz, FL, USA, 2001. [Google Scholar]
- Kongs, S.K.; Thompson, L.L.; Iverson, G.L.; Heaton, R.K. Wisconsin Card Sort Test—64 Card Version Professional Manual; Psychological Assessment Resources: Odessa, FL, USA, 2000. [Google Scholar]
- Wechsler, D. Weshlser Abbreviated Scale of Intelligence; The Psychological Corporation: San Antonio, TX, USA, 1999. [Google Scholar]
- Wechsler, D. Wechsler Memory Scale Abbreviated Manual, 3rd ed.; The Psychological Corporation: San Antontio, TX, USA, 1997. [Google Scholar]
- Delis, D.C.; Kaplan, E.; Kramer, J.H. Delis-Kaplan Executive Function System Technical Manual; The Psychological Corporation: San Antonio, TX, USA, 2001. [Google Scholar]
- Shin, H.B.; Bruno, R. Language Use and English-Speaking Ability: 2000; C2KBR-29; Bureau of the Census: Washington, DC, USA, 2003. [Google Scholar]
- Moore, T.J.; Mattison, D.R. Adult utilization of psychiatric drugs and differences by sex, age, and race. JAMA Inten. Med. 2017, 177, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Grant, B.F.; Dawson, D.A.; Stinson, F.S.; Chou, S.P.; Dufour, M.C.; Pickering, R.P. The 12-month prevalence and trends in DSM-IV alcohol abuse and dependence: United States, 1991–1992 and 2001–2002. Drug Alcohol Depend. 2004, 74, 223–234. [Google Scholar] [CrossRef]
- Birch, J. Worldwide prevalence of red-green color deficiency. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2012, 29, 313–320. [Google Scholar] [CrossRef]
- Brooks, B.L.; Sherman, E.M.S.; Iverson, G.L.; Slick, D.J.; Strauss, E. Psychometric foundations for the interpretation of neuropsychological test results. In The Little Black Book of Neuropsychology; Schoenberg, M.R., Scott, J.G., Eds.; Springer: New York, NY, USA, 2011; pp. 893–922. [Google Scholar]
- Roxas, A., Jr.; Mehndiratta, M.M.; Bornstein, N.; Macdonell, R.; Lim, K.S.; Ng, P.W.; Dashzeveg, S.; Mizusawa, H.; Esmatullah, H.; Wu, S.L.; et al. The professional practice and training of neurology in the Asian and Oceanian Region: A cross-sectional survey by the Asian and Oceanian Association of Neurology (AOAN). J. Neurol. Sci. 2017, 382, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Heaton, R.K.; Miller, S.W.; Taylor, M.J.; Grant, I. Revised Comprehensive Norms for an Expanded Halstead-Reitan Battery: Demographically Adjusted Neuropsychological Norms for African American and Caucasian Adults; Psychological Assessment Resources: Odessa, FL, USA, 2004. [Google Scholar]
- McKee, A.C.; Stein, T.D.; Huber, B.R.; Crary, J.F.; Bieniek, K.; Dickson, D.; Alvarez, V.E.; Cherry, J.D.; Farrell, K.; Butler, M.; et al. Chronic traumatic encephalopathy (CTE): Criteria for neuropathological diagnosis and relationship to repetitive head impacts. Acta Neuropathol. 2023, 145, 371–394. [Google Scholar] [CrossRef] [PubMed]
- Possin, K.L.; Tsoy, E.; Windon, C.C. Perils of race-based norms in cognitive testing: The case of former NFL players. JAMA Neurol. 2021, 78, 377–378. [Google Scholar] [CrossRef]
- Trujillo, A.K.; Kesse, E.N.; Rollin, O.; Della Sala, S.; Cubelli, R. A discussion on the notion of race in cognitive neuroscience research. Cortex 2022, 150, 153–164. [Google Scholar] [CrossRef]
- Cubelli, R.; Della Sala, S. Taking race out of neuroscience too. Cortex 2018, 99, A1–A2. [Google Scholar] [CrossRef]
- American Association of Physical Anthropologists. AAPA statement on biological aspects of race. Am. J. Phys. Anthropol. 1996, 101, 569–570. [Google Scholar] [CrossRef]
- Pluck, G. Theory of mind ability and socioeconomic status, a study of street-connected children and adolescents in Ecuador. Psych 2021, 3, 72–84. [Google Scholar] [CrossRef]
- Pluck, G.; Cordova, M.A.; Bock, C.; Chalen, I.; Trueba, A.F. Socio-economic status, executive functions, and theory of mind ability in adolescents: Relationships with language ability and cortisol. Br. J. Dev. Psychol. 2021, 39, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Judd, N.; Sauce, B.; Wiedenhoeft, J.; Tromp, J.; Chaarani, B.; Schliep, A.; van Noort, B.; Penttila, J.; Grimmer, Y.; Insensee, C.; et al. Cognitive and brain development is independently influenced by socioeconomic status and polygenic scores for educational attainment. Proc. Natl. Acad. Sci. USA 2020, 117, 12411–12418. [Google Scholar] [CrossRef] [PubMed]
- Yeates, K.O.; Ris, M.D.; Taylor, H.G. Hospital referral patterns in pediatric neuropsychology. Child Neuropsychol. 1995, 1, 56–62. [Google Scholar] [CrossRef]
- Sweet, J.J.; Nelson, N.W.; Moberg, P.J. The TCN/AACN 2005 “salary survey”: Professional practices, beliefs, and incomes of U.S. neuropsychologists. Clin. Neuropsychol. 2006, 20, 325–364. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.W.; Diaz, I. Exploring the social determinants of health and health disparities in traumatic brain injury: A scoping review. Brain Sci. 2023, 13, 707. [Google Scholar] [CrossRef]
- Kisser, J.; Waldstein, S.R.; Evans, M.K.; Zonderman, A.B. Lifetime prevalence of traumatic brain injury in a demographically diverse community sample. Brain Inj. 2017, 31, 620–623. [Google Scholar] [CrossRef]
- Durkin, M.S.; Yeargin-Allsopp, M. Socioeconomic status and pediatric neurologic disorders: Current evidence. Semin. Pediatr. Neurol. 2018, 27, 16–25. [Google Scholar] [CrossRef]
- Resende, E.P.F.; Llibre Guerra, J.J.; Miller, B.L. Health and socioeconomic inequities as contributors to brain health. JAMA Neurol. 2019, 76, 633–634. [Google Scholar] [CrossRef]
- Pluck, G.; Lee, K.H.; David, R.; Spence, S.A.; Parks, R.W. Neuropsychological and cognitive performance of homeless adults. Can. J. Behav. Sci. 2012, 44, 9–15. [Google Scholar] [CrossRef]
- Solliday-McRoy, C.; Campbell, T.C.; Melchert, T.P.; Young, T.J.; Cisler, R.A. Neuropsychological functioning of homeless men. J. Nerv. Ment. Dis. 2004, 192, 471–478. [Google Scholar] [CrossRef]
- Benjaminsen, L. The variation in family background amongst young homeless shelter users in Denmark. J. Youth Stud. 2016, 19, 55–73. [Google Scholar] [CrossRef]
- Koegel, P.; Melamid, E.; Burnamm, A. Childhood risk factors for homelessness among homeless adults. Am. J. Public Health 1995, 85, 1642–1649. [Google Scholar] [CrossRef]
- Saperstein, A.M.; Lee, S.; Ronan, E.J.; Seeman, R.S.; Medalia, A. Cognitive deficit and mental health in homeless transition-age youth. Pediatrics 2014, 134, e138–e145. [Google Scholar] [CrossRef] [PubMed]
- O’Neil-Pirozzi, T.M. Language functioning of residents in family homeless shelters. Am. J. Speech Lang. Pathol. 2003, 12, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Bush, S.S. Ethical Decision Making in Clinical Neuropsychology; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- McHutchison, C.A.; Chappell, F.M.; Makin, S.; Shuler, K.; Wardlaw, J.M.; Cvoro, V. Stability of estimated premorbid cognitive ability over time after minor stroke and its relationship with post-stroke cognitive ability. Brain Sci. 2019, 9, 117. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.E.; Willison, J. National Adult Reading Test (NART); Nfer-Nelson: Windsor, UK, 1991. [Google Scholar]
- Wechsler, D. Test of Premorbid Functioning (TOPF); The Psychological Corporation: San Antonio, TX, USA, 2011. [Google Scholar]
- Baddeley, A.; Emslie, H.; Nimmo-Smith, I. The Speed and Capacity of Language-Processing Test; Thames Valley Test Company: Bury St Edmunds, UK, 1992. [Google Scholar]
- Pluck, G. A lexical decision task to measure crystallized-verbal ability in Spanish. Rev. Latinoam. Psicol. 2020, 52, 1–10. [Google Scholar] [CrossRef]
- Crawford, J.R.; Millar, J.; Milne, A.B. Estimating premorbid IQ from demographic variables: A comparison of a regression equation vs. clinical judgement. Br. J. Clin. Psychol. 2001, 40, 97–105. [Google Scholar] [CrossRef]
- Fuller, R.; Nopoulos, P.; Arndt, S.; O’Leary, D.; Ho, B.C.; Andreasen, N.C. Longitudinal assessment of premorbid cognitive functioning in patients with schizophrenia through examination of standardized scholastic test performance. Am. J. Psychiatry 2002, 159, 1183–1189. [Google Scholar] [CrossRef]
- Berg, J.L.; Durant, J.; Banks, S.J.; Miller, J.B. Estimates of premorbid ability in a neurodegenerative disease clinic population: Comparing the Test of Premorbid Functioning and the Wide Range Achievement Test, 4th Edition. Clin. Neuropsychol. 2016, 30, 547–557. [Google Scholar] [CrossRef]
- Moore, T.M.; Di Sandro, A.; Scott, J.C.; Lopez, K.C.; Ruparel, K.; Njokweni, L.J.; Santra, S.; Conway, D.S.; Port, A.M.; D’Errico, L.; et al. Construction of a computerized adaptive test (CAT-CCNB) for efficient neurocognitive and clinical psychopathology assessment. J. Neurosci. Methods 2023, 386, 109795. [Google Scholar] [CrossRef]
- Pluck, G.; Ruales-Chieruzzi, C.B. Estimation of premorbid intelligence and executive cognitive functions with lexical reading tasks. Psychol. Neurosci. 2021, 14, 358–377. [Google Scholar] [CrossRef]
- Farah, M.J. Knowledge from text and pictures: A neuropsychological perspective. In Knowledge Acquisition from Text and Pictures: Advances in Psychology Vol 58; Mandl, H., Levin, J.R., Eds.; North-Holland: Amsterdam, The Netherlands, 1989; pp. 59–71. [Google Scholar]
- Testa, S.M.; Winicki, J.M.; Pearlson, G.D.; Gordon, B.; Schretlen, D.J. Accounting for estimated IQ in neuropsychological test performance with regression-based techniques. J. Int. Neuropsychol. Soc. 2009, 15, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Ibanez-Alfonso, J.A.; Company-Cordoba, R.; Garcia de la Cadena, C.; Simpson, I.C.; Rivera, D.; Sianes, A. Normative data for ten neuropsychological tests for the Guatemalan pediatric population updated to account for vulnerability. Brain Sci. 2021, 11, 842. [Google Scholar] [CrossRef]
- Mathur, S.; Sutton, J. Personalized medicine could transform healthcare. Biomed. Rep. 2017, 7, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.; Malloy, P.F. Frontal Systems Behavior Scale Professional Manual; Psychological Assessment Resources, Inc.: Lutz, FL, USA, 2001. [Google Scholar]
- McGlone, J.; Gupta, S.; Humphrey, D.; Oppenheimer, S.; Mirsen, T.; Evans, D.R. Screening for early dementia using memory complaints from patients and relatives. Arch. Neurol. 1990, 47, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Jorm, A.F.; Christensen, H.; Jacomb, P.A.; Korten, A.E.; Mackinnon, A.J. The cognitive decline scale of the psychogeriatric assessment scales (PAS): Longitudinal data on its validity. Int. J. Geriatr. Psychiatry 2001, 16, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Giannouli, V.; Stamovlasis, D.; Tsolaki, M. Exploring the role of cognitive factors in a new instrument for elders’ financial capacity assessment. J. Alzheimers Dis. 2018, 62, 1579–1594. [Google Scholar] [CrossRef]
- Giannouli, V.; Stamovlasis, D.; Tsolaki, M. Longitudinal study of depression on amnestic mild cognitive impairment and financial capacity. Clin. Gerontol. 2022, 45, 708–714. [Google Scholar] [CrossRef]
- Lichtenberg, P.A.; Campbell, R.; Hall, L.; Gross, E.Z. Context matters: Financial, psychological, and relationship insecurity around personal finance is associated with financial exploitation. Gerontologist 2020, 60, 1040–1049. [Google Scholar] [CrossRef]
- Dang, J.; King, K.M.; Inzlicht, M. Why are self-report and behavioral measures weakly correlated? Trends Cogn. Sci. 2020, 24, 267–269. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pluck, G. The Misguided Veneration of Averageness in Clinical Neuroscience: A Call to Value Diversity over Typicality. Brain Sci. 2023, 13, 860. https://doi.org/10.3390/brainsci13060860
Pluck G. The Misguided Veneration of Averageness in Clinical Neuroscience: A Call to Value Diversity over Typicality. Brain Sciences. 2023; 13(6):860. https://doi.org/10.3390/brainsci13060860
Chicago/Turabian StylePluck, Graham. 2023. "The Misguided Veneration of Averageness in Clinical Neuroscience: A Call to Value Diversity over Typicality" Brain Sciences 13, no. 6: 860. https://doi.org/10.3390/brainsci13060860
APA StylePluck, G. (2023). The Misguided Veneration of Averageness in Clinical Neuroscience: A Call to Value Diversity over Typicality. Brain Sciences, 13(6), 860. https://doi.org/10.3390/brainsci13060860