Cognitive Load Moderates the Effects of Total Sleep Deprivation on Working Memory: Evidence from Event-Related Potentials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Experimental Procedures
2.4. Data Analysis of Behavioral Experiments
2.5. EEG Recordings and Preprocessing
2.6. ERP Data Analysis
3. Results
3.1. Manipulation Checks
3.2. Behavioral Performance
3.3. ERP Results
3.3.1. N2 Component
3.3.2. P3 Component
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krause, A.J.; Simon, E.B.; Mander, B.A.; Greer, S.M.; Saletin, J.M.; Goldstein-Piekarski, A.N.; Walker, M.P. The sleep-deprived human brain. Nat. Rev. Neurosci. 2017, 18, 404–418. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. The episodic buffer: A new component of working memory? Trends Cogn. Sci. 2000, 4, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhang, L.; Zhu, J.; Guo, Z.; Lin, M.; Bai, L.; Zheng, P.; Liu, W.; Huang, J.; Liu, Z. Prefrontal cortex hemodynamics and functional connectivity changes during performance working memory tasks in older adults with sleep disorders. Brain Sci. 2023, 13, 497. [Google Scholar] [CrossRef] [PubMed]
- Frenda, S.J.; Fenn, K.M. Sleep less, think worse: The effect of sleep deprivation on working memory. J. Appl. Res. Mem. Cogn. 2016, 5, 463–469. [Google Scholar] [CrossRef]
- Rångtell, F.H.; Karamchedu, S.; Andersson, P.; Liethof, L.; Olaya Búcaro, M.; Lampola, L.; Benedict, C. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner. J. Sleep Res. 2018, 28, e12651. [Google Scholar] [CrossRef]
- Hennecke, E.; Lange, D.; Steenbergen, F.; Fronczek-Poncelet, J.; Elmenhorst, D.; Bauer, A.; Elmenhorst, E. Adverse interaction effects of chronic and acute sleep deficits on spatial working memory but not on verbal working memory or declarative memory. J. Sleep Res. 2020, 30, e13225. [Google Scholar] [CrossRef]
- Peng, Z.; Dai, C.; Ba, Y.; Zhang, L.; Shao, Y.; Tian, J. Effect of sleep deprivation on the working memory-related N2-P3 components of the Event-Related Potential Waveform. Front. Neurosci. 2020, 14, 469. [Google Scholar] [CrossRef]
- Chee, M.W.L.; Chuah, L.Y.M.; Venkatraman, V.; Chan, W.Y.; Philip, P.; Dinges, D.F. Functional imaging of working memory following normal sleep and after 24 and 35 h of sleep deprivation: Correlations of fronto-parietal activation with performance. NeuroImage 2006, 31, 419–428. [Google Scholar] [CrossRef]
- Dai, C.; Zhang, Y.; Cai, X.; Peng, Z.; Zhang, L.; Shao, Y.; Wang, C. Effects of sleep deprivation on working memory: Change in functional connectivity between the dorsal attention, default mode, and fronto-parietal networks. Front. Hum. Neurosci. 2020, 14, 360. [Google Scholar] [CrossRef]
- Yeung, M.K.; Lee, T.L.; Cheung, W.K.; Chan, A.S. Frontal underactivation during working memory processing in adults with acute partial sleep deprivation: A near-infrared spectroscopy study. Front. Psychol. 2018, 9, 742. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, Y.; Liu, Z.; Li, C.; Chen, Y.; Zhou, Q. Decreased information replacement of working memory after sleep deprivation: Evidence from an event-related potential study. Front. Neurosci. 2019, 13, 408. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wu, H.; Dai, C.; Peng, Z.; Song, T.; Xu, L.; Xu, M.; Shao, Y.; Li, S.; Fu, W. Dynamic hippocampal functional connectivity responses to varying working memory loads following total sleep deprivation. J. Sleep Res. 2022, 32, e13797. [Google Scholar] [CrossRef] [PubMed]
- Stickgold, R. Sleep-dependent memory consolidation. Nature 2005, 437, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.J.; Baddeley, A.D.; Hitch, G.J. Is the binding of visual features in working memory resource-demanding? J. Exp. Psychol. Gen. 2006, 135, 298–313. [Google Scholar] [CrossRef]
- Morey, C.C.; Cowan, N. When visual and verbal memories compete: Evidence of cross-domain limits in working memory. Psychon. Bull. Rev. 2004, 11, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Allred, S.R.; Crawford, L.E.; Duffy, S.; Smith, J. Working memory and spatial judgments: Cognitive load increases the central tendency bias. Psychon. Bull. Rev. 2016, 23, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Mishory, A.; Johnson, K.A.; Nahas, Z.; Kozel, F.A.; Yamanaka, K.; George, M.S. Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep 2005, 28, 433–436. [Google Scholar] [CrossRef]
- Nahas, Z.; Johnson, K.A.; Yamanaka, K.; Mishory, A.; Koola, J.; George, M.S. Decreased cortical response to verbal working memory following sleep deprivation. Sleep 2005, 28, 55–67. [Google Scholar] [CrossRef]
- Choo, W.C.; Lee, W.W.; Venkatraman, V.; Sheu, F.S.; Chee, M.W.L. Dissociation of cortical regions modulated by both working memory load and sleep deprivation and by sleep deprivation alone. NeuroImage 2005, 25, 579–587. [Google Scholar] [CrossRef]
- Jaeggi, S.M.; Buschkuehl, M.; Perrig, W.J.; Meier, B. The concurrent validity of the N-back task as a working memory measure. Memory 2010, 18, 394–412. [Google Scholar] [CrossRef]
- Ecker, U.K.H.; Lewandowsky, S.; Oberauer, K.; Chee, A.E.H. The components of working memory updating: An experimental decomposition and individual differences. J. Exp. Psychol. Learn. Mem. Cogn. 2010, 36, 170–189. [Google Scholar] [CrossRef]
- Salmi, J.; Vilà-Balló, A.; Soveri, A.; Rostan, C.; Rodríguez-Fornells, A.; Lehtonen, M.; Laine, M. Working memory updating training modulates a cascade of event-related potentials depending on task load. Neurobiol. Learn. Mem. 2019, 166, 107085. [Google Scholar] [CrossRef] [PubMed]
- Vilà-Balló, A.; Salmi, J.; Soveri, A.; Rodríguez-Fornells, A.; Lehtonen, M.; Laine, M. Neural signatures for active maintenance and interference during working memory updating. Biol. Psychol. 2018, 132, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.A.; Albrecht, M.A.; Robinson, B.; Luck, S.J.; Gold, J.M. Impaired suppression of delay-period alpha and beta is associated with impaired working memory in schizophrenia. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Tsoneva, T.; Baldo, D.; Lema, V.; Garcia-Molina, G. EEG-rhythm dynamics during a 2-back working memory task and performance. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 3828–3831. [Google Scholar] [CrossRef]
- Chen, Y.-N.; Mitra, S.; Schlaghecken, F. Sub-processes of working memory in the N-back task: An investigation using ERPs. Clin. Neurophysiol. 2008, 119, 1546–1559. [Google Scholar] [CrossRef]
- Kusztor, A.; Raud, L.; Juel, B.E.; Nilsen, A.S.; Storm, J.F.; Huster, R.J. Sleep deprivation differentially affects subcomponents of cognitive control. Sleep 2019, 42, zsz016. [Google Scholar] [CrossRef]
- Peng, Z.; Dai, C.; Cai, X.; Zeng, L.; Li, J.; Xie, S.; Wang, Y. Total sleep deprivation impairs lateralization of spatial working memory in young men. Front. Neurosci. 2020, 14, 562035. [Google Scholar] [CrossRef]
- Song, T.; Xu, L.; Peng, Z.; Wang, L.; Dai, C.; Xu, M.; Shao, Y.; Wang, Y.; Li, S. Total sleep deprivation impairs visual selective attention and triggers a compensatory effect: Evidence from event-related potentials. Cogn. Neurodyn. 2022, 1–11. [Google Scholar] [CrossRef]
- Xu, L.; Yang, X.; Peng, Z.; Song, T.; Wang, L.; Dai, C.; Xu, M.; Shao, Y.; Lv, J. Modafinil ameliorates the decline in pronunciation-related working memory caused by 36-h acute total sleep deprivation: An ERP study. Neurobiol. Learn. Mem. 2022, 192, 107625. [Google Scholar] [CrossRef]
- Shuai, L.; Gong, T. Temporal relation between top-down and bottom-up processing in lexical tone perception. Front. Behav. Neurosci. 2014, 8, 97. [Google Scholar] [CrossRef]
- Jin, X.; Ye, E.; Qi, J.; Wang, L.; Lei, Y.; Chen, P.; Yang, Z. Recovery sleep reverses impaired response inhibition due to sleep restriction: Evidence from a visual event related potentials study. PLoS ONE 2015, 10, e0142361. [Google Scholar] [CrossRef] [PubMed]
- Kreusch, F.; Quertemont, E.; Vilenne, A.; Hansenne, M. Alcohol abuse and ERP components in go/no-go tasks using alcohol-related stimuli: Impact of alcohol avoidance. Int. J. Psychophysiol. 2014, 94, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Tillman, C.M.; Wiens, S. Behavioral and ERP indices of response conflict in Stroop and flanker tasks. Psychophysiology 2011, 48, 1405–1411. [Google Scholar] [CrossRef] [PubMed]
- Folstein, J.R.; Van Petten, C. Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 2007, 45, 152–170. [Google Scholar] [CrossRef]
- Johnson, R. On the neural generators of the P300 component of the event-related potential. Psychophysiology 2007, 30, 90–97. [Google Scholar] [CrossRef]
- Donchin, E.; Fabiani, M. The use of event-related brain potentials in the study of memory: Is P300 a measure of event distinctiveness? In Handbook of Cognitive Psychophysiology; Jennings, J.R., Coles, M., Eds.; Wiley: New York, NY, USA, 1991. [Google Scholar]
- Donchin, E.; Miller, G.A.; Farwell, L.A. The endogenous components of the event-related potential–A diagnostic tool? Prog. Brain Res. 1986, 70, 87–102. [Google Scholar]
- Matthyssen, D. Effects of Sleep Deprivation with 10 and 110-Minute Recovery Periods on the P300 in University Students. Ph.D. Thesis, Missouri State University, Springfield, MA, USA, 2013. Unpublished. [Google Scholar]
- Hietanen, J.K.; Kirjavainen, I.; Nummenmaa, L. Additive effects of affective arousal and top-down attention on the event-related brain responses to human bodies. Biol. Psychol. 2014, 103, 167–175. [Google Scholar] [CrossRef]
- Delorme, A.; Makeig, S. EEGLAB: An open-source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Lopez-Calderon, J.; Luck, S.J. ERPLAB: An open-source toolbox for the analysis of event-related potentials. Front. Hum. Neurosci. 2014, 8, 213. [Google Scholar] [CrossRef]
- Pion-Tonachini, L.; Kreutz-Delgado, K.; Makeig, S. ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. NeuroImage 2019, 198, 181–197. [Google Scholar] [CrossRef]
- McEvoy, L. Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cereb. Cortex 1998, 8, 563–574. [Google Scholar] [CrossRef]
- Bell-McGinty, S.; Habeck, C.; Hilton, H.J.; Rakitin, B.; Scarmeas, N.; Zarahn, E.; Flynn, J.; DeLaPaz, R.; Basner, R.; Stern, Y. Identification and differential vulnerability of a neural network in sleep deprivation. Cereb. Cortex 2004, 14, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Habeck, C.; Rakitin, B.C.; Moeller, J.; Scarmeas, N.; Zarahn, E.; Brown, T.; Stern, Y. An event-related fMRI study of the neurobehavioral impact of sleep deprivation on performance of a delayed-match-to-sample task. Cogn. Brain Res. 2004, 18, 306–321. [Google Scholar] [CrossRef] [PubMed]
- Massar, S.A.A.; Lim, J.; Sasmita, K.; Chee, M.W.L. Sleep deprivation increases the costs of attentional effort: Performance, preference and pupil size. Neuropsychologia 2019, 123, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Sullan, M.J.; Drummond, S.P.A.; Granholm, E. Sleep deprivation and compensatory cognitive effort on a visual information processing task. Sleep 2021, 44, zsaa177. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, A.; De Koninck, J.; Campbell, K.B. Total sleep deprivation and novelty processing: Implications for frontal lobe functioning. Clin. Neurophysiol. 2005, 116, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577. [Google Scholar] [CrossRef]
- Hoedlmoser, K.; Griessenberger, H.; Fellinger, R.; Freunberger, R.; Klimesch, W.; Gruber, W.; Schabus, M. Event-related activity and phase locking during a psychomotor vigilance task over the course of sleep deprivation. J. Sleep Res. 2010, 20, 377–385. [Google Scholar] [CrossRef]
- Witkowski, S.; Trujillo, L.T.; Sherman, S.M.; Carter, P.; Matthews, M.D.; Schnyer, D.M. An examination of the association between chronic sleep restriction and electrocortical arousal in college students. Clin. Neurophysiol. 2015, 126, 549–557. [Google Scholar] [CrossRef]
- Casement, M.D.; Broussard, J.L.; Mullington, J.M.; Press, D.Z. The contribution of sleep to improvements in working memory scanning speed: A study of prolonged sleep restriction. Biol. Psychol. 2006, 72, 208–212. [Google Scholar] [CrossRef]
- Wiggins, E.; Malayka, M.; Good, K.; Eggieston, S.; Stevens, C. 24-h sleep deprivation impairs early attentional modulation of neural processing: An event-related brain potential study. Neurosci. Lett. 2018, 677, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Brauer, K.A. Sleep Deprivation and Recovery: The Effects of P300 Three and Six Hours Post Recovery. Ph.D. Thesis, Missouri State University, Springfield, IL, USA, 2016. [Google Scholar]
Behavior | Baseline | TSD | ||
---|---|---|---|---|
One-Back | Two-Back | One-Back | Two-Back | |
RT (ms) | 569.36 ± 72.15 | 731.37 ± 143.45 | 617.38 ± 107.93 | 733.99 ± 176.86 |
Accuracy (%) | 82.57 ± 15.73 | 73.79 ± 15.24 | 80.17 ± 14.93 | 67.88 ± 19.51 |
Correct number/s | 1.78 ± 0.21 | 1.42 ± 0.29 | 1.66 ± 0.27 | 1.44 ± 0.35 |
Load | Baseline | TSD | ||
---|---|---|---|---|
Amplitude (μV) | Latency (ms) | Amplitude (μV) | Latency (ms) | |
One-back | −3.57 ± 3.33 | 268.00 ± 29.96 | −2.75 ± 3.79 | 265.20 ± 33.85 |
Two-back | −3.13 ± 1.92 | 267.40 ± 40.23 | −2.78 ± 3.09 | 275.80 ± 36.94 |
Load | Baseline | TSD | ||
---|---|---|---|---|
Amplitude (μV) | Latency (ms) | Amplitude (μV) | Latency (ms) | |
One-back | 0.86 ± 2.28 | 507.20 ± 80.94 | 1.49 ± 2.43 | 547.20 ± 73.52 |
Two-back | 0.63 ± 1.50 | 543.20 ± 89.98 | −0.92 ± 3.12 | 586.40 ± 67.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Y.; Chen, S.; Song, T.; Zhou, Q.; Shao, Y. Cognitive Load Moderates the Effects of Total Sleep Deprivation on Working Memory: Evidence from Event-Related Potentials. Brain Sci. 2023, 13, 898. https://doi.org/10.3390/brainsci13060898
Yin Y, Chen S, Song T, Zhou Q, Shao Y. Cognitive Load Moderates the Effects of Total Sleep Deprivation on Working Memory: Evidence from Event-Related Potentials. Brain Sciences. 2023; 13(6):898. https://doi.org/10.3390/brainsci13060898
Chicago/Turabian StyleYin, Ying, Shufang Chen, Tao Song, Qianxiang Zhou, and Yongcong Shao. 2023. "Cognitive Load Moderates the Effects of Total Sleep Deprivation on Working Memory: Evidence from Event-Related Potentials" Brain Sciences 13, no. 6: 898. https://doi.org/10.3390/brainsci13060898
APA StyleYin, Y., Chen, S., Song, T., Zhou, Q., & Shao, Y. (2023). Cognitive Load Moderates the Effects of Total Sleep Deprivation on Working Memory: Evidence from Event-Related Potentials. Brain Sciences, 13(6), 898. https://doi.org/10.3390/brainsci13060898