Association between Citrullinated Histone H3 and White Matter Lesions Burden in Patients with Ischemic Stroke
Abstract
:1. Introduction
2. Methods and Materials
2.1. Study Sample
2.2. Baseline Data Collection
2.3. CitH3 Levels Assessment
2.4. Image Acquisition and Analysis
2.5. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics
3.2. CitH3 Levels and WMLs Burden
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, K.; Yasuda, N.; Toyonaga, S.; Yamada, S.M.; Nakabayashi, H.; Nakasato, M.; Nakagomi, T.; Tsubosaki, E.; Shimizu, K. Significant association between leukoaraiosis and metabolic syndrome in healthy subjects. Neurology 2007, 69, 974–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazekas, F.; Kleinert, R.; Offenbacher, H.; Schmidt, R.; Kleinert, G.; Payer, F.; Radner, H.; Lechner, H. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology 1993, 43, 1683–1689. [Google Scholar] [CrossRef]
- Lawrence, A.; Chung, A.; Morris, R.; Markus, H.; Barrick, T. Structural network efficiency is associated with cognitive impairment in small-vessel disease. Neurology 2014, 83, 304–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.; Shi, Y.; Zhang, J. Structural network connectivity impairment and depressive symptoms in cerebral small vessel disease. J. Affect. Disord. 2017, 220, 8–14. [Google Scholar] [CrossRef]
- Verdelho, A.; Madureira, S.; Moleiro, C.; Ferro, J.M.; Santos, C.O.; Erkinjuntti, T.; Pantoni, L.; Fazekas, F.; Visser, M.; Waldemar, G.; et al. White matter changes and diabetes predict cognitive decline in the elderly: The LADIS study. Neurology 2010, 75, 160–167. [Google Scholar] [CrossRef]
- Arsava, E.M.; Rahman, R.; Rosand, J.; Lu, J.; Smith, E.E.; Rost, N.S.; Singhal, A.B.; Lev, M.H.; Furie, K.L.; Koroshetz, W.J.; et al. Severity of leukoaraiosis correlates with clinical outcome after ischemic stroke. Neurology 2009, 72, 1403–1410. [Google Scholar] [CrossRef] [Green Version]
- Röhrig, L.; Sperber, C.; Bonilha, L.; Rorden, C.; Karnath, H. Right hemispheric white matter hyperintensities improve the prediction of spatial neglect severity in acute stroke. Neuroimage Clin. 2022, 36, 103265. [Google Scholar] [CrossRef] [PubMed]
- Bonkhoff, A.K.; Hong, S.; Bretzner, M.; Schirmer, M.D.; Regenhardt, R.W.; Arsava, E.M.; Donahue, K.; Nardin, M.; Dalca, A.; Giese, A.-K.; et al. Association of Stroke Lesion Pattern and White Matter Hyperintensity Burden with Stroke Severity and Outcome. Neurology 2022, 99, e1364–e1379. [Google Scholar] [CrossRef]
- Palumbo, V.; Boulanger, J.; Hill, M.; Inzitari, D.; Buchan, A. Leukoaraiosis and intracerebral hemorrhage after thrombolysis in acute stroke. Neurology 2007, 68, 1020–1024. [Google Scholar] [CrossRef]
- Derraz, I.; Abdelrady, M.; Ahmed, R.; Gaillard, N.; Morganti, R.; Cagnazzo, F.; Dargazanli, C.; Lefevre, P.-H.; Riquelme, C.; Corti, L.; et al. Impact of White Matter Hyperintensity Burden on Outcome in Large-Vessel Occlusion Stroke. Radiology 2022, 304, 145–152. [Google Scholar] [CrossRef]
- Atchaneeyasakul, K.; Leslie-Mazwi, T.; Donahue, K.; Giese, A.K.; Rost, N.S. White Matter Hyperintensity Volume and Outcome of Mechanical Thrombectomy With Stentriever in Acute Ischemic Stroke. Stroke 2017, 48, 2892–2894. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Dąbrowska, D.; Jabłońska, E.; Garley, M.; Ratajczak-Wrona, W.; Iwaniuk, A. New Aspects of the Biology of Neutrophil Extracellular Traps. Scand. J. Immunol. 2016, 84, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, V.; Laube, B.; Abu Abed, U.; Goosmann, C.; Zychlinsky, A. Neutrophil extracellular traps: How to generate and visualize them. J. Vis. Exp. 2010, 36, 1724. [Google Scholar]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Deng, Q.; Pan, B.; Alam, H.B.; Liang, Y.; Wu, Z.; Liu, B.; Mor-Vaknin, N.; Duan, X.; Williams, A.M.; Tian, Y.; et al. Citrullinated Histone H3 as a Therapeutic Target for Endotoxic Shock in Mice. Front. Immunol. 2020, 10, 2957. [Google Scholar] [CrossRef] [Green Version]
- von Brühl, M.L.; Stark, K.; Steinhart, A.; Chandraratne, S.; Konrad, I.; Lorenz, M.; Khandoga, A.; Tirniceriu, A.; Coletti, R.; Köllnberger, M.; et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J. Exp. Med. 2012, 209, 819–835. [Google Scholar] [CrossRef] [PubMed]
- Traby, L.; Kollars, M.; Kussmann, M.; Karer, M.; Šinkovec, H.; Lobmeyr, E.; Hermann, A.; Staudinger, T.; Schellongowski, P.; Rössler, B.; et al. Extracellular Vesicles and Citrullinated Histone H3 in Coronavirus Disease 2019 Patients. Thromb. Haemost. 2022, 122, 113–122. [Google Scholar] [CrossRef]
- Mauracher, L.; Posch, F.; Martinod, K.; Grilz, E.; Däullary, T.; Hell, L.; Brostjan, C.; Zielinski, C.; Ay, C.; Wagner, D.D.; et al. Citrullinated histone H3, a biomarker of neutrophil extracellular trap formation, predicts the risk of venous thromboembolism in cancer patients. J. Thromb. Haemost. 2018, 16, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Vallés, J.; Santos, M.T.; Latorre, A.M.; Tembl, J.I.; Salom, J.B.; Nieves, C.; Lago, A.; Moscardó, A. Neutrophil extracellular traps are increased in patients with acute ischemic stroke: Prognostic significance. Thromb. Haemost. 2017, 117, 1919–1929. [Google Scholar] [CrossRef]
- Adams, H.J.; Bendixen, B.; Kappelle, L.; Biller, J.; Love, B.; Gordon, D. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993, 24, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Wardlaw, J.M.; Smith, E.E.; Biessels, G.J.; Cordonnier, C.; Fazekas, F.; Frayne, R.; Lindley, R.I.; O’Brien, J.T.; Barkhof, F.; Benavente, O.R.; et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013, 12, 822–838. [Google Scholar] [CrossRef] [Green Version]
- Fazekas, F.C.J.; Alavi, A.; Hurtig, H.I.; Zimmerman, R.A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 1987, 149, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.M.; Park, K.Y.; Avery, R.; Helenius, J.; Rost, N.; Rosand, J.; Rosen, B.; Ay, H. Extensive leukoaraiosis is associated with high early risk of recurrence after ischemic stroke. Stroke 2014, 45, 479–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Chen, Z.; Wang, Q.; Zhang, M.; Dong, G.; Zou, W.; Yao, T.; Xu, Y. Influence of white matter lesions on the prognosis of acute cardioembolic stroke without reperfusion therapy. BMC Neurol. 2021, 21, 364. [Google Scholar] [CrossRef]
- Xie, Y.; Zhuo, X.; Xing, K.; Huang, Z.; Guo, H.; Gong, P.; Zhang, X.; Li, Y. Circulating lipocalin-2 as a novel biomarker for early neurological deterioration and unfavorable prognosis after acute ischemic stroke. Brain Behav. 2023, 13, e2979. [Google Scholar] [CrossRef] [PubMed]
- Helenius, J.; Henninger, N. Leukoaraiosis Burden Significantly Modulates the Association Between Infarct Volume and National Institutes of Health Stroke Scale in Ischemic Stroke. Stroke 2015, 46, 1857–1863. [Google Scholar] [CrossRef] [Green Version]
- Durrleman, S.; Simon, R. Flexible regression models with cubic splines. Stat. Med. 1989, 8, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Ke, D.; Gong, P.; Yu, P.; Zhou, J.; Wang, M.; Zhang, X.; Wang, X.; Guo, M.; Xu, M.; et al. Serum YKL-40 Levels and White Matter Hyperintensities in Patients with Acute Ischemic Stroke. J. Inflamm. Res. 2023, 16, 311–319. [Google Scholar] [CrossRef]
- Yu, F.; Feng, X.; Li, X.; Luo, Y.; Wei, M.; Zhao, T.; Xia, J. Gut-Derived Metabolite Phenylacetylglutamine and White Matter Hyperintensities in Patients with Acute Ischemic Stroke. Front. Aging Neurosci. 2021, 13, 675158. [Google Scholar] [CrossRef]
- Suda, S.; Kanamaru, T.; Okubo, S.; Aoki, J.; Shimoyama, T.; Suzuki, K.; Nito, C.; Ishiwata, A.; Kimura, K. Urinary albumin-to-creatinine ratio is associated with white matter lesions severity in first-ever stroke patients. J. Neurol. Sci. 2017, 373, 258–262. [Google Scholar] [CrossRef]
- Wang, Y.; Li, M.; Stadler, S.; Correll, S.; Li, P.; Wang, D.; Hayama, R.; Leonelli, L.; Han, H.; Grigoryev, S.A.; et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 2009, 184, 205–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laridan, E.; Denorme, F.; Desender, L.; François, O.; Andersson, T.; Deckmyn, H.; Vanhoorelbeke, K.; De Meyer, S.F. Neutrophil extracellular traps in ischemic stroke thrombi. Ann. Neurol. 2017, 82, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Cao, Y.; Du, J.; Liu, H.; Chen, X.; Li, M.; Xiang, M.; Wang, C.; Wu, X.; Liu, L.; et al. Neutrophil extracellular traps contribute to tissue plasminogen activator resistance in acute ischemic stroke. FASEB J. 2021, 35, e21835. [Google Scholar] [CrossRef] [PubMed]
- Toya, T.; Sara, J.D.; Scharf, E.L.; Ahmad, A.; Nardi, V.; Ozcan, I.; Lerman, L.O.; Lerman, A. Impact of Peripheral Microvascular Endothelial Dysfunction on White Matter Hyperintensity. J. Am. Heart Assoc. 2021, 10, e021066. [Google Scholar] [CrossRef]
- Nezu, T.; Hosomi, N.; Aoki, S.; Kubo, S.; Araki, M.; Mukai, T.; Takahashi, T.; Maruyama, H.; Higashi, Y.; Matsumoto, M. Endothelial dysfunction is associated with the severity of cerebral small vessel disease. Hypertens. Res. 2015, 38, 291–297. [Google Scholar] [CrossRef]
- Pantoni, L.; Garcia, J. Pathogenesis of leukoaraiosis: A review. Stroke 1997, 28, 652–659. [Google Scholar] [CrossRef]
- De Meyer, S.; Denorme, F.; Langhauser, F.; Geuss, E.; Fluri, F.; Kleinschnitz, C. Thromboinflammation in Stroke Brain Damage. Stroke 2016, 47, 1165–1172. [Google Scholar] [CrossRef] [Green Version]
- Nagai, M.; Hoshide, S.; Kario, K. Association of prothrombotic status with markers of cerebral small vessel disease in elderly hypertensive patients. Am. J. Hypertens. 2012, 25, 1088–1094. [Google Scholar] [CrossRef] [Green Version]
- Bryk, A.H.; Prior, S.M.; Plens, K.; Konieczynska, M.; Hohendorff, J.; Malecki, M.T.; Butenas, S.; Undas, A. Predictors of neutrophil extracellular traps markers in type 2 diabetes mellitus: Associations with a prothrombotic state and hypofibrinolysis. Cardiovasc. Diabetol. 2019, 18, 49. [Google Scholar] [CrossRef]
Variable | 1st Quartile n = 80 | 2nd Quartile n = 81 | 3rd Quartile n = 80 | 4th Quartile n = 81 | p Value |
---|---|---|---|---|---|
Demographic characteristics | |||||
Age, years | 63.9 ± 10.8 | 64.8 ± 11.5 | 64.4 ± 12.4 | 65.6 ± 11.8 | 0.811 |
Male, n (%) | 39 (48.8) | 46 (56.8) | 48 (60.0) | 52 (64.2) | 0.239 |
Vascular risk factors, n (%) | |||||
Hypertension | 53 (66.3) | 59 (72.8) | 52 (65.0) | 69 (85.2) | 0.016 |
Diabetes mellitus | 35 (43.8) | 29 (35.8) | 29 (36.3) | 34 (42.0) | 0.653 |
Hyperlipidemia | 8 (10.0) | 10 (12.3) | 13 (16.3) | 7 (8.6) | 0.463 |
Coronary heart disease | 12 (15.0) | 17 (21.0) | 11 (13.8) | 14 (17.3) | 0.626 |
Smoking | 39 (48.8) | 33 (40.7) | 26 (32.5) | 33 (40.7) | 0.223 |
Clinical data | |||||
Previous statin therapy, n (%) | 20 (25.0) | 21 (25.9) | 27 (33.8) | 32 (39.5) | 0.149 |
Previous antiplatelet therapy, n (%) | 18 (22.5) | 27 (33.3) | 26 (32.5) | 30 (37.0) | 0.228 |
Systolic blood pressure, mmHg | 144.0 ± 23.8 | 137.4 ± 23.0 | 142.7 ± 25.2 | 140.5 ± 18.5 | 0.268 |
Diastolic blood pressure, mmHg | 83.7 ± 11.8 | 79.9 ± 13.5 | 83.3 ± 15.1 | 81.5 ± 9.8 | 0.213 |
Baseline NIHSS, score | 2.0 (0, 4.0) | 3.0 (0, 4.0) | 2.0 (0, 4.0) | 2.0 (0, 5.0) | 0.319 |
Severe white matter lesions | 25 (31.3) | 31 (38.3) | 38 (47.5) | 54 (66.7) | 0.001 |
Stroke etiology, n (%) | 0.007 | ||||
Large artery atherosclerosis | 29 (36.3) | 38 (46.9) | 40 (50.0) | 48 (59.3) | 0.034 |
Cardioembolic | 7 (8.8) | 13 (16.0) | 14 (17.5) | 12 (14.8) | 0.407 |
Small vessel occlusion | 34 (42.5) | 16 (19.8) | 19 (23.8) | 15 (18.5) | 0.001 |
Others | 10 (12.5) | 14 (17.3) | 7 (8.8) | 6 (7.4) | 0.197 |
Laboratory data | |||||
Total cholesterol, mmol/L | 3.8 ± 0.9 | 3.9 ± 0.8 | 3.8 ± 0.9 | 3.7 ± 1.0 | 0.464 |
Triglyceride, mmol/L | 1.4 (1.1, 2.1) | 1.3 (1.0, 1.9) | 1.4 (1.1, 2.2) | 1.4 (1.1, 2.0) | 0.468 |
Low density lipoprotein, mmol/L | 2.1 (1.4, 3.0) | 2.0 (1.8, 2.4) | 2.1 (0.9, 2.5) | 1.8 (1.4, 3.4) | 0.243 |
High density lipoprotein, mmol/L | 1.0 (0.9, 1.1) | 1.0 (0.9, 1.2) | 1.1 (0.9, 1.2) | 0.9 (0.8, 1.1) | 0.117 |
Homocysteine, mmol/L | 11.7 ± 3.1 | 13.7 ± 6.1 | 13.4 ± 4.3 | 15.5 ± 6.5 | 0.002 |
Baseline blood glucose, mmol/L | 7.4 ± 2.9 | 6.9 ± 2.6 | 6.7 ± 2.6 | 6.5 ± 2.4 | 0.185 |
Hs-CRP, mg/L | 2.3 (1.1, 4.4) | 5.7 (1.8, 13.2) | 4.7 (2.2, 7.9) | 13.1 (3.8, 21.0) | 0.001 |
Variables | Severe WMLs | p Value | |
---|---|---|---|
Yes, n =148 | No, n = 174 | ||
Demographic characteristics | |||
Age, years | 66.7 ± 12.5 | 63.0 ± 10.5 | 0.004 |
Male, n (%) | 89 (60.1) | 96 (55.2) | 0.369 |
Vascular risk factors, n (%) | |||
Hypertension | 113 (76.4) | 120 (69.0) | 0.140 |
Diabetes mellitus | 61 (41.2) | 66 (37.9) | 0.548 |
Hyperlipidemia | 17 (11.5) | 21 (12.1) | 0.872 |
Coronary heart disease | 30 (20.3) | 24 (13.8) | 0.121 |
Smoking | 61 (41.2) | 70 (40.2) | 0.857 |
Clinical data | |||
Previous statin therapy, n (%) | 48 (32.4) | 52 (29.9) | 0.622 |
Previous antiplatelet therapy, n (%) | 51 (34.5) | 50 (28.7) | 0.272 |
Systolic blood pressure, mmHg | 145.0 ± 24.4 | 137.9 ± 20.9 | 0.005 |
Diastolic blood pressure, mmHg | 83.4 ± 13.5 | 81.1 ± 11.9 | 0.106 |
Baseline NIHSS, score | 2.0 (0, 4.0) | 2.0 (0, 4.0) | 0.476 |
Stroke etiology, n (%) | 0.012 | ||
Large artery atherosclerosis | 81 (54.7) | 74 (42.5) | 0.029 |
Cardioembolic | 25 (16.9) | 21 (12.1) | 0.218 |
Small vessel occlusion | 32 (21.6) | 52 (29.9) | 0.092 |
Others | 10 (6.8) | 27 (15.5) | 0.014 |
Laboratory data | |||
Total cholesterol, mmol/L | 3.8 ± 0.9 | 3.9 ± 1.0 | 0.170 |
Triglyceride, mmol/L | 1.3 (1.0, 2.0) | 1.4 (1.1, 2.2) | 0.175 |
Low density lipoprotein, mmol/L | 1.9 (1.5, 2.5) | 2.1 (1.6, 2.6) | 0.147 |
High density lipoprotein, mmol/L | 1.0 (0.9, 1.2) | 1.0 (0.9, 1.2) | 0.278 |
Homocysteine, mmol/L | 15.1 ± 6.0 | 12.3 ± 4.3 | 0.001 |
Baseline blood glucose, mmol/L | 6.9 ± 2.3 | 6.8 ± 2.9 | 0.739 |
Hs-CRP, mg/L | 5.2 (2.6, 11.5) | 4.0 (1.3, 12.1) | 0.124 |
CitH3, ng/mL | 45.2 (17.8, 82.6) | 19.6 (10.3, 46.5) | 0.001 |
Variables | Unadjusted OR (95%CI) | p Value | Adjusted OR (95%CI) | p Value |
---|---|---|---|---|
Per 1-SD increase in CitH3 | 1.75 (1.34–2.27) | 0.001 | 1.67 (1.18–2.36) | 0.004 |
CitH3 quartiles | ||||
1st | Reference | Reference | ||
2nd | 1.364 (0.711–2.616) | 0.351 | 0.979 (0.380–2.526) | 0.965 |
3rd | 1.990 (1.044–3.794) | 0.036 | 1.807 (0.721–4.532) | 0.206 |
4th | 4.400 (2.272–8.522) | 0.001 | 3.311 (1.336–8.027) | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Li, Y.; Huang, Z.; Chen, S.; E, Y.; Zhang, Y.; Wang, Q.; Li, T. Association between Citrullinated Histone H3 and White Matter Lesions Burden in Patients with Ischemic Stroke. Brain Sci. 2023, 13, 991. https://doi.org/10.3390/brainsci13070991
Zhang X, Li Y, Huang Z, Chen S, E Y, Zhang Y, Wang Q, Li T. Association between Citrullinated Histone H3 and White Matter Lesions Burden in Patients with Ischemic Stroke. Brain Sciences. 2023; 13(7):991. https://doi.org/10.3390/brainsci13070991
Chicago/Turabian StyleZhang, Xiaohao, Yunzi Li, Zhenqian Huang, Shuaiyu Chen, Yan E, Yingdong Zhang, Qingguang Wang, and Tingting Li. 2023. "Association between Citrullinated Histone H3 and White Matter Lesions Burden in Patients with Ischemic Stroke" Brain Sciences 13, no. 7: 991. https://doi.org/10.3390/brainsci13070991
APA StyleZhang, X., Li, Y., Huang, Z., Chen, S., E, Y., Zhang, Y., Wang, Q., & Li, T. (2023). Association between Citrullinated Histone H3 and White Matter Lesions Burden in Patients with Ischemic Stroke. Brain Sciences, 13(7), 991. https://doi.org/10.3390/brainsci13070991