Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Demographic and History of Smoking and Alcohol Use Data
2.2. Brain Imaging Data
2.3. Regions of Interests (ROIs)
2.4. Statistical Methods
3. Results
3.1. Smoking Status Group Comparisons: Unadjusted GM Volumes
3.1.1. Active vs. Past Smokers in Unadjusted GM Volumes
3.1.2. Active vs. Never-Smokers in Unadjusted GM Volumes
3.1.3. Past vs. Never-Smokers in Unadjusted GM Volumes
3.2. Smoking Status Group Comparisons: Adjusted GM Volumes for Age and Intracranial Volume
3.2.1. Active vs. Past Smokers in Adjusted GM Volumes
3.2.2. Active vs. Never-Smokers in Adjusted GM Volumes
3.2.3. Past vs. Never-Smokers in Adjusted GM Volumes
3.3. Aging-Related Subcortical Region Volumetric Deficits
3.4. Alcohol Consumption and Subcortical Region Volumetric Deficits
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Centers for Disease Control and Prevention. National Center for Chronic Disease Prevention and Health Promotion Office on Smoking and Health, Department of Health and Human Services. Smoking and Tobacco Use—Fact Sheet: Health Effects of Cigarette Smoking. Updated January 2008. Available online: http://www.cdc.gov/tobacco/data_statistics/fact_sheets/health_effects/effects_cig_smoking/index.htm (accessed on 30 July 2023).
- Stead, L.; Perera, R.; Bullen, C.; Mant, D.; Lancaster, L. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst. Rev. 2008, 1. [Google Scholar] [CrossRef]
- Fiore, M.C.; Bailey, W.C.; Cohen, S.J.; Dorfman, S.F.; Goldstein, M.G.; Gritz, E.R.; Heyman, R.B.; Jaen, C.R.; Kottke, T.E.; Lando, H.E.; et al. Treating Tobacco Use and Dependence: Clinical Practice Guideline; U.S. Department of Health and Human Services, Public Health Service: Rockville, MD, USA, 2000. [Google Scholar]
- Vangeli, E.; Stapleton, J.; Smit, E.S.; Borland, R.; West, R. Predictors of attempts to stop smoking and their success in adult general population samples: A systematic review. Addiction 2011, 106, 2110–2121. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.F.; Loprinzi, P.D. Longitudinal examination of predictors of smoking cessation in a national sample of U.S. adolescent and young adult smokers. Nicotine Tob. Res. 2014, 16, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Campos, M.W.; Serebrisky, D.; Castaldelli-Maia, J.M. Smoking and Cognition. Curr. Drug Abus. Rev. 2016, 9, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Besson, M.; Forget, B. Cognitive Dysfunction, Affective States, and Vulnerability to Nicotine Addiction: A Multifactorial Perspective. Front. Psychiatry 2016, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Briggs, Z.; O’Connor, M.; Jollans, E.K.; O’Halloran, L.; Dymond, S.; Whelan, R. Flexible emotion-based decision-making behavior varies in current and former smokers. Addict. Behav. 2015, 45, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Nadar, M.S.; Hasan, A.M.; Alsaleh, M. The negative impact of chronic tobacco smoking on adult neuropsychological function: A cross-sectional study. BMC Public. Health 2021, 21, 1278. [Google Scholar] [CrossRef]
- Korponay, C.; Kosson, D.S.; Decety, J.; Kiehl, K.A.; Koenigs, M. Brain Volume Correlates with Duration of Abstinence from Substance Abuse in a Region-Specific and Substance-Specific Manner. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2017, 2, 626–635. [Google Scholar] [CrossRef]
- Ersche, K.D.; Jones, P.S.; Williams, G.B.; Turton, A.J.; Robbins, T.W.; Bullmore, E.T. Abnormal Brain Structure Implicated in Stimulant Drug Addiction. Science 2012, 335, 601–604. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.-H.; Kim, Y.-T.; Kim, S.; Baek, H.-M. Volumetric Reductions of Subcortical Structures and Their Localizations in Alcohol-Dependent Patients. Front. Neurol. 2019, 10, 247. [Google Scholar] [CrossRef]
- Regner, M.F.; Dalwani, M.; Yamamoto, D.; Perry, R.I.; Sakai, J.T.; Honce, J.M.; Tanabe, J. Sex Differences in Gray Matter Changes and Brain-Behavior Relationships in Patients with Stimulant Dependence. Radiology 2015, 277, 801–812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Király, A.; Szabó, N.; Tóth, E.; Csete, G.; Faragó, P.; Kocsis, K.; Must, A.; Vécsei, L.; Kincses, Z.T. Male brain ages faster: The age and gender dependence of subcortical volumes. Brain Imaging Behav. 2016, 10, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Bobo, J.K.; Husten, C. Sociocultural influences on smoking and drinking. Alcohol. Res. Health 2000, 24, 225–232. [Google Scholar] [PubMed]
- Fallon, J.H.; Keator, D.B.; Mbogori, J.; Taylor, D.; Potkin, S.G. Gender: A major determinant of brain response to nicotine. Int. J. Neuropsychopharmacol. 2005, 8, 17–26. [Google Scholar] [CrossRef]
- McHugh, R.K.; Votaw, V.R.; Sugarman, D.E.; Greenfield, S.F. Sex and gender differences in substance use disorders. Clin. Psychol. Rev. 2018, 66, 12–23. [Google Scholar] [CrossRef]
- Hanlon, C.A.; Owens, M.M.; Joseph, J.E.; Zhu, X.; George, M.S.; Brady, K.T.; Hartwell, K.J. Lower subcortical gray matter volume in both younger smokers and established smokers relative to non-smokers. Addict. Biol. 2016, 21, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, M.T.; Riedel, M.C.; Flannery, J.S.; Yanes, J.A.; Fox, P.T.; Stein, E.A.; Laird, A.R. Chronic cigarette smoking is linked with structural alterations in brain regions showing acute nicotinic drug-induced functional modulations. Behav. Brain Funct. 2016, 12, 16. [Google Scholar] [CrossRef] [Green Version]
- Brody, A.L.; Olmstead, R.E.; London, E.D.; Farahi, J.; Meyer, J.H.; Grossman, P.; Lee, G.S.; Huang, J.; Hahn, E.L.; Mandelkern, M.A. Smoking-induced ventral striatum dopamine release. Am. J. Psychiatry 2004, 161, 1211–1218. [Google Scholar] [CrossRef]
- Gallinat, J.; Meisenzahl, E.; Jacobsen, L.K.; Kalus, P.; Bierbrauer, J.; Kienast, T.; Witthaus, H.; Leopold, K.; Seifert, F.; Schubert, F.; et al. Smoking and structural brain deficits: A volumetric MR investigation. Eur. J. Neurosci. 2006, 24, 1744–1750. [Google Scholar] [CrossRef]
- Franklin, T.R.; Wetherill, R.R.; Jagannathan, K.; Johnson, B.; Mumma, J.; Hager, N.; Rao, H.; Childress, A.R. The Effects of Chronic Cigarette Smoking on Gray Matter Volume: Influence of Sex. PLoS ONE 2014, 9, e104102. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Cherbuin, N.; Anstey, K.J.; Sachdev, P.S.; Easteal, S. Lifetime cigarette smoking is associated with striatal volume measures. Addict. Biol. 2012, 17, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Elbejjani, M.; Auer, R.; Jacobs, D.R.; Haight, T.; Davatzikos, C.; Goff, D.C.; Bryan, R.N.; Launer, L.J. Cigarette smoking and gray matter brain volumes in middle age adults: The CARDIA Brain MRI sub-study. Transl. Psychiatry 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, T.C.; Meyerhoff, D.J.; Yoder, K.K.; Murray, D.E. Cigarette smoking is associated with amplified age-related volume loss in subcortical brain regions. Drug Alcohol Depend. 2017, 177, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Froeliger, B.; Kozink, R.; Rose, J.; Behm, F.; Salley, A.; McClernon, F.J. Hippocampal and striatal gray matter volume are associated with a smoking cessation treatment outcome: Results of an exploratory voxel-based morphometric analysis. Psychopharmacology 2010, 210, 577–583. [Google Scholar] [CrossRef]
- Qian, W.; Huang, P.; Shen, Z.; Wang, C.; Yang, Y.; Zhang, M. Brain Gray Matter Volume and Functional Connectivity Are Associated With Smoking Cessation Outcomes. Front. Hum. Neurosci. 2019, 13, 361. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, S.; Shen, Z.; Qian, W.; Jiaerken, Y.; Luo, X.; Li, K.; Zeng, Q.; Gu, Q.; Yang, Y.; et al. Increased thalamic volume and decreased thalamo-precuneus functional connectivity are associated with smoking relapse. NeuroImage Clin. 2020, 28, 102451. [Google Scholar] [CrossRef]
- Victor, R.G.; Haley, R.W.; Willett, D.L.; Peshock, R.M.; Vaeth, P.C.; Leonard, D.; Basit, M.; Cooper, R.S.; Iannacchione, V.G.; Visscher, W.A.; et al. The Dallas Heart Study: A population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health. Am. J. Cardiol. 2004, 93, 1473–1480. [Google Scholar] [CrossRef]
- King, K.S.; Peshock, R.M.; Rossetti, H.C.; McColl, R.W.; Ayers, C.R.; Hulsey, K.M.; Das, S.R. Effect of Normal Aging Versus Hypertension, Abnormal Body Mass Index, and Diabetes Mellitus on White Matter Hyperintensity Volume. Stroke 2014, 45, 255–257. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, T.K.; Kerr, W.C. Alcohol measurement methodology in epidemiology: Recent advances and opportunities. Addiction 2008, 103, 1082–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, M.; King, K.S.; Srinivasa, R.; Weiner, M.F.; Hulsey, K.; Ayers, C.R.; Whittemore, A.; McColl, R.W.; Rossetti, H.C.; Peshock, R.M. Association of 3.0-T Brain Magnetic Resonance Imaging Biomarkers With Cognitive Function in the Dallas Heart Study. JAMA Neurol. 2015, 72, 170–175. [Google Scholar] [CrossRef]
- Lucarelli, R.T.; Peshock, R.M.; McColl, R.; Hulsey, K.; Ayers, C.; Whittemore, A.R.; King, K.S. MR Imaging of Hippocampal Asymmetry at 3T in a Multiethnic, Population-Based Sample: Results from the Dallas Heart Study. Am. J. Neuroradiol. 2013, 34, 752–757. [Google Scholar] [CrossRef] [Green Version]
- Koshiyama, D.; Fukunaga, M.; Okada, N.; Yamashita, F.; Yamamori, H.; Yasuda, Y.; Fujimoto, M.; Ohi, K.; Fujino, H.; Watanabe, Y.; et al. Role of subcortical structures on cognitive and social function in schizophrenia. Sci. Rep. 2018, 8, 1183. [Google Scholar] [CrossRef] [Green Version]
- Woolrich, M.W.; Jbabdi, S.; Patenaude, B.; Chappell, M.; Makni, S.; Behrens, T.; Beckmann, C.; Jenkinson, M.; Smith, S.M. Bayesian analysis of neuroimaging data in FSL. Neuroimage 2009, 45, S173–S186. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.F.; Behrens, T.E.; Johansen-Berg, H.; Bannister, P.R.; De Luca, M.; Drobnjak, I.; Flitney, D.E.; et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004, 23 (Suppl. S1), S208–S219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hulsey, K.M.; Gupta, M.; King, K.S.; Peshock, R.M.; Whittemore, A.R.; McColl, R.W. Automated quantification of white matter disease extent at 3 T: Comparison with volumetric readings. J. Magn. Reson. Imaging 2012, 36, 305–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, T.M.F. Post-Stratification. J. R. Stat. Society. Ser. D (Stat.) 1991, 40, 315–323. [Google Scholar] [CrossRef]
- Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–802. [Google Scholar] [CrossRef]
- Hafkemeijer, A.; Altmann-Schneider, I.; de Craen, A.J.; Slagboom, P.E.; van der Grond, J.; Rombouts, S.A. Associations between age and gray matter volume in anatomical brain networks in middle-aged to older adults. Aging Cell 2014, 13, 1068–1074. [Google Scholar] [CrossRef]
- Walhovd, K.B.; Fjell, A.M.; Reinvang, I.; Lundervold, A.; Dale, A.M.; Eilertsen, D.E.; Quinn, B.T.; Salat, D.; Makris, N.; Fischl, B. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol. Aging 2005, 26, 1261–1270. [Google Scholar] [CrossRef]
- Resnick, S.M.; Pham, D.L.; Kraut, M.A.; Zonderman, A.B.; Davatzikos, C. Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 3295–3301. [Google Scholar] [CrossRef] [Green Version]
- Scahill, R.I.; Frost, C.; Jenkins, R.; Whitwell, J.L.; Rossor, M.N.; Fox, N.C. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 2003, 60, 989–994. [Google Scholar] [CrossRef] [Green Version]
- Lundervold, A.J.; Vik, A.; Lundervold, A. Lateral ventricle volume trajectories predict response inhibition in older age-A longitudinal brain imaging and machine learning approach. PLoS ONE 2019, 14, e0207967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Wang, X.; Lin, J.; Sun, Y.; Huang, Y.; Yang, T.; Zheng, S.; Fan, M.; Zhang, J. Reduced Regional Gray Matter Volume in Patients with Chronic Obstructive Pulmonary Disease: A Voxel-Based Morphometry Study. Am. J. Neuroradiol. 2013, 34, 334–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espeland, M.A.; Bryan, R.N.; Goveas, J.S.; Robinson, J.G.; Siddiqui, M.S.; Liu, S.; Hogan, P.E.; Casanova, R.; Coker, L.H.; Yaffe, K.; et al. Influence of Type 2 Diabetes on Brain Volumes and Changes in Brain Volumes: Results from the Women’s Health Initiative Magnetic Resonance Imaging Studies. Diabetes Care 2013, 36, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, S.P.; Grabowski, J.; Hoffman, C.; Ng, S.P.; Zelikoff, J.T. Early life insult from cigarette smoke may be predictive of chronic diseases later in life. Biomarkers 2009, 14 (Suppl. S1), 97–101. [Google Scholar] [CrossRef]
- Boksa, P. Smoking, psychiatric illness and the brain. J. Psychiatry Neurosci. 2017, 42, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, T.C.; Pennington, D.L.; Schmidt, T.P.; Meyerhoff, D.J. Effects of cigarette smoking history on neurocognitive recovery over 8 months of abstinence in alcohol-dependent individuals. Alcohol. Clin. Exp. Res. 2014, 38, 2816–2825. [Google Scholar] [CrossRef] [Green Version]
- Kalman, D.; Kim, S.; DiGirolamo, G.; Smelson, D.; Ziedonis, D. Addressing tobacco use disorder in smokers in early remission from alcohol dependence: The case for integrating smoking cessation services in substance use disorder treatment programs. Clin. Psychol. Rev. 2010, 30, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Grant, B.F.; Hasin, D.S.; Chou, S.P.; Stinson, F.S.; Dawson, D.A. Nicotine dependence and psychiatric disorders in the United States: Results from the national epidemiologic survey on alcohol and related conditions. Arch. Gen. Psychiatry 2004, 61, 1107–1115. [Google Scholar] [CrossRef]
- Bullock, K.; Cservenka, A.; Ray, L.A. Severity of alcohol dependence is negatively related to hypothalamic and prefrontal cortical gray matter density in heavy drinking smokers. Am. J. Drug Alcohol. Abus. 2017, 43, 281–290. [Google Scholar] [CrossRef] [Green Version]
- Hersch, J. Gender, Income Levels, and the Demand for Cigarettes. J. Risk Uncertain. 2000, 21, 263–282. [Google Scholar] [CrossRef]
- Molarius, A.; Seidell, J.C.; Kuulasmaa, K.; Dobson, A.J.; Sans, S. Smoking and relative body weight: An international perspective from the WHO MONICA Project. J. Epidemiol. Community Health 1997, 51, 252–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Females (n = 1160) | Males (n = 799) | |||||
---|---|---|---|---|---|---|---|
Active Smokers (n = 214) | Past Smokers (n = 227) | Never-Smokers (n = 719) | Active Smokers (n = 188) | Past Smokers (n = 224) | Never-Smokers (n = 387) | ||
Age (years) *,+,×,∇ | Mean ± SD | 49.20 ± 9.33 | 53.87 ± 10.40 | 48.91 ± 10.97 | 48.08 ± 9.95 | 53.96 ± 10.24 | 48.64 ± 10.19 |
Body Mass Index (kg/m2) *,∆,×,◊ | Mean ± SD | 28.87 ± 6.19 | 30.67 ± 6.26 | 30.42 ± 6.22 | 27.69 ± 5.22 | 29.36 ± 4.43 | 29.14 ± 4.47 |
Race/ethnicity | |||||||
White | n (%) | 61 (28.50%) | 108 (47.58%) | 221 (30.74%) | 62 (32.98%) | 103 (45.98%) | 167 (43.15%) |
African Americans | n (%) | 131 (61.21%) | 90 (39.65%) | 371 (51.60%) | 98 (52.13%) | 78 (34.82%) | 147 (37.98%) |
Hispanics | n (%) | 22 (10.28%) | 26 (11.45%) | 113 (15.72%) | 23 (12.23%) | 37 (16.52%) | 57 (14.73%) |
Other race | n (%) | - | 3 (1.32%) | 14 (1.95%) | 5 (2.66%) | 6 (2.68%) | 16 (4.13%) |
Income (USD) *,∆,+,×,◊ | Mean ± SD | 36,926 ± 25,309 | 45,114 ± 27,056 | 49,399 ± 27,542 | 42,042 ± 24,881 | 53,871 ± 27,606 | 57,777 ± 28,162 |
Alcohol consumption (QFI) 1,*,∆,×,◊ | Mean ± SD | 126.67 ± 248.96 | 55.08 ± 112.35 | 43.61 ± 106.53 | 203.34 ± 313.75 | 136.11 ± 256.96 | 125.96 ± 232.58 |
Intracranial volume (mL) *,+,× | Mean ± SD | 973,833 ± 138,377 | 1,020,970 ± 148,629 | 989,591 ± 148,629 | 1,281,107 ± 213,437 | 1,327,927 ± 215,539 | 1,312,488 ± 227,339 |
Smoking duration (years) *,× | Mean ± SD | 30.44 ± 11.69 | 35.16 ± 12.54 | --- | 31.03 ± 11.45 | 36.48 ± 11.88 | ---- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Cook, R.; Filbey, F.M.; Nguyen, H.; McColl, R.; Jeon-Slaughter, H. Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data. Brain Sci. 2023, 13, 1164. https://doi.org/10.3390/brainsci13081164
Chen X, Cook R, Filbey FM, Nguyen H, McColl R, Jeon-Slaughter H. Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data. Brain Sciences. 2023; 13(8):1164. https://doi.org/10.3390/brainsci13081164
Chicago/Turabian StyleChen, Xiaofei, Riley Cook, Francesca M. Filbey, Hang Nguyen, Roderick McColl, and Haekyung Jeon-Slaughter. 2023. "Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data" Brain Sciences 13, no. 8: 1164. https://doi.org/10.3390/brainsci13081164
APA StyleChen, X., Cook, R., Filbey, F. M., Nguyen, H., McColl, R., & Jeon-Slaughter, H. (2023). Sex Difference in Cigarette-Smoking Status and Its Association with Brain Volumes Using Large-Scale Community-Representative Data. Brain Sciences, 13(8), 1164. https://doi.org/10.3390/brainsci13081164