Characterizing Topological Properties of Brain Functional Networks Using Multi-Threshold Derivative for End-Stage Renal Disease with Mild Cognitive Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Date Acquisition and Processing
2.2. Research Framework
2.3. Construction of Dynamic Brain Function Network
2.4. MTD Feature Extraction and Feature Selection
2.5. Model Construction
3. Results
3.1. Parameters Selection
3.2. Selection of Threshold Range and Threshold Step Size
3.3. Analysis of MTD Features
3.4. Classification Performance
3.5. Feature Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Ma, X.; Huang, R.; Li, M.; Tian, J.Z.; Wen, H.; Lin, C.L.; Wang, T.Y.; Zhan, W.F.; Fang, J.; et al. Abnormal degree centrality in neurologically asymptomatic patients with end-stage renal disease: A resting-state fMRI study. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2016, 127, 602–609. [Google Scholar] [CrossRef]
- De Deyn, P.P.; Saxena, V.K.; Abts, H.; Borggreve, F.; D’Hooge, R.; Marescau, B.; Crols, R. Clinical and pathophysiological aspects of neurological complications in renal failure. Acta Neurol. Belg. 1992, 92, 191–206. [Google Scholar]
- Ma, X.F.; Jiang, G.H.; Li, S.M.; Wang, J.H.; Zhan, W.F.; Zeng, S.Q.; Tian, J.Z.; Xu, Y.K. Aberrant functional connectome in neurologically asymptomatic patients with end-stage renal disease. PLoS ONE 2015, 10, e0121085. [Google Scholar] [CrossRef] [Green Version]
- Tamura, M.K.; Yaffe, K. Dementia and cognitive impairment in ESRD: Diagnostic and therapeutic strategies. Kidney Int. 2011, 79, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Chilcot, J.; Wellsted, D.; Silva-Gane, M.D.; Farrington, K. Depression on dialysis. Nephron Clin. Pract. 2008, 108, C256–C264. [Google Scholar] [CrossRef]
- Brouns, R.; De Deyn, P.P. Neurological complications in renal failure: A review. Clin. Neurol. Neurosurg. 2004, 107, 1–16. [Google Scholar] [CrossRef]
- Karunaratne, K.; Taube, D.; Khalil, N.; Perry, R.; Malhotra, P.A. Neurological complications of renal dialysis and transplantation. Pract. Neurol. 2018, 18, 115–125. [Google Scholar] [CrossRef]
- Raphael, K.L.; Wei, G.; Greene, T.; Baird, B.C.; Beddhu, S. Cognitive function and the risk of death in chronic kidney disease. Am. J. Nephrol. 2012, 35, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Zhang, Y.; Li, Y.J.; Jia, W.J.; Liu, F.Y.; Yang, M.M.; Zhang, Y.D. Single slice based detection for Alzheimer’s disease via wavelet entropy and multilayer perceptron trained by biogeography-based optimization. Multimed. Tools Appl. 2018, 77, 10393–10417. [Google Scholar] [CrossRef]
- Xi, Z.T.; Liu, T.Q.; Shi, H.F.; Jiao, Z.Q. Hypergraph representation of multimodal brain networks for patients with end-stage renal disease associated with mild cognitive impairment. Math. Biosci. Eng. 2023, 20, 1882–1902. [Google Scholar] [CrossRef]
- Peng, C.; Luo, T.Y.; Yang, H. Immediate abnormal intrinsic brain activity patterns in patients with end-stage renal disease during a single dialysis session: A resting-state functional MR imaging study. Chinese Imaging Society of Integrative Medicine. Chin. Imaging Soc. Integr. Med. 2021, 31, 373–381. [Google Scholar]
- Dong, J.W.; Ma, X.F.; Lin, W.H.; Liu, M.C.; Fu, S.S.; Yang, L.H.; Jiang, G.H. Aberrant cortical thickness in neurologically asymptomatic patients with end-stage renal disease. Neuropsychiatr. Dis. Treat. 2018, 14, 1929–1939. [Google Scholar] [CrossRef] [Green Version]
- Drew, D.A.; Koo, B.B.; Bhadelia, R.; Weiner, D.E.; Duncan, S.; la Garza, M.M.D.; Gupta, A.; Tighiouart, H.; Scott, T.; Sarnak, M.J. White matter damage in maintenance hemodialysis patients: A diffusion tensor imaging study. BMC Nephrol. 2017, 18, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.L.; Wen, J.Q.; Zhang, L.J.; Zheng, G.; Li, X.; Zhang, Z.; Liu, Y.; Zheng, L.J.; Wu, L.; Chen, H.J.; et al. Cerebral blood flow changes in hemodialysis and peritoneal dialysis patients: An arterial-spin labeling MR imaging. Metab. Brain Dis. 2016, 31, 929–936. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, Y.; Chen, S.; Kong, X.C.; Liu, Y.; You, C.Q.; Wan, C.; Philip ABondzie Su, H.; Zhang, C.; He, F.F. Evaluation of Mental Disorders Using Proton Magnetic Resonance Spectroscopy in Dialysis and Predialysis Patients. Kidney Blood Press. Res. 2017, 42, 686–696. [Google Scholar] [CrossRef] [PubMed]
- Polinder-Bos, H.A.; Elting, J.W.J.; Aries, M.J.; García, D.V.; Willemsen, A.T.; van Laar, P.J.; Kuipers, J.; Krijnen, W.P.; Slart, R.H.; Luurtsema, G.; et al. Changes in cerebral oxygenation and cerebral blood flow during hemodialysis-A simultaneous near-infrared spectroscopy and positron emission tomography study. J. Cereb. Blood Flow Metab. 2020, 40, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Z.Q.; Ji, Y.X.; Zhang, J.H.; Shi, H.F.; Wang, C. Constructing dynamic functional networks via weighted regularization and tensor low-rank approximation for early mild cognitive impairment classification. Front. Cell Dev. Biol. 2021, 8, 610569. [Google Scholar] [CrossRef]
- Jiao, Z.Q.; Ji, Y.X.; Gao, P.; Wang, S.H. Extraction and analysis of brain functional statuses for early mild cognitive impairment using variational auto-encoder. J. Ambient Intell. Humaniz. Comput. 2023, 14, 5439–5450. [Google Scholar] [CrossRef]
- Bullmore, E.; Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009, 10, 186–198. [Google Scholar] [CrossRef]
- Jie, B.; Zhang, D.Q.; Wee, C.Y.; Shen, D.G. Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum. Brain Mapp. 2014, 35, 2876–2897. [Google Scholar] [CrossRef] [Green Version]
- Dai, G.Y.; Yang, C.; Liu, Y.J.; Jiang, T.B.; Mgaya, G.B. A dynamic multi-reduction algorithm for brain functional connection pathways analysis. Symmetry 2019, 11, 701. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Bian, C.Y.; Chen, D.D.; Meng, X.L.; Luo, H.R.; Liang, H.; Shen, L.; Alzheimer’s Disease Neuroimaging Initiative. Effect of APOE ε4 on multimodal brain connectomic traits: A persistent homology study. BMC Bioinform. 2020, 28, 535. [Google Scholar] [CrossRef] [PubMed]
- Xi, Z.T.; Song, C.F.; Zheng, J.H.; Shi, H.F.; Jiao, Z.Q. Brain functional networks with dynamic hypergraph manifold regularization for classification of end-stage renal disease associated with mild cognitive impairment. Comput. Model. Eng. Sci. 2023, 135, 2243–2266. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Xi, Z.T.; Zheng, J.H.; Shi, H.F.; Jiao, Z.Q. GWLS: A Novel Model for Predicting Cognitive Function Scores in Patients with End-Stage Renal Disease. Front. Aging Neurosci. 2022, 14, 834331. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.J.; Zhang, Y.J.; Cheng, Z.N.; Liu, T.Q.; Pang, C.J.; Shi, H.F.; Xu, L.F. Evaluation of cognitive impairment by voxel incoherent motor imaging in patients with end-stage renal disease. Chin. J. Behav. Med. Brain Sci. 2021, 30, 415–419. [Google Scholar]
- Xu, C.Y.; Chen, C.C.; Guo, Q.W.; Lin, Y.W.; Meng, X.Y.; Qiu, G.Z.; Zhu, F.Q. A comparative study of MOCA-B and MES scales in the recognition of amnestic mild cognitive impairment. J. Alzheimer’s Dis. Relat. Disord. 2021, 4, 33–36. [Google Scholar]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef]
- Tzourio-Mazoyer, N.; Landeau, B.; Papathanassiou, D.; Crivello, F.; Etard, O.; Delcroix, N.; Mazoyer, B.; Joliot, M. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002, 15, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Lei, B.Y.; Yu, S.Z.; Zhao, X.; Frangi, A.F.; Tan, E.L.; Elazab, A.; Wang, T.F.; Wang, S.Q. Diagnosis of early Alzheimer’s disease based on dynamic high order networks. Brain Imaging Behav. 2021, 15, 276–287. [Google Scholar] [CrossRef]
- Li, W.K.; Wang, Z.X.; Zhang, L.M.; Qiao, L.S.; Shen, D.G. Remodeling Pearson’s Correlation for Functional Brain Network Estimation and Autism Spectrum Disorder Identification. Front. Neuroinform. 2017, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.J.; Zhao, X.H.; Wang, X.B.; Liu, H.; Qi, H.H. A resting state fMRI study of abnormal interactions between brain networks in patients with Alzheimer’s disease. J. Tongji Univ. Med. 2019, 40, 68–72. [Google Scholar]
- Luppi, A.I.; Craig, M.M.; Pappas, I.; Finoia, P.; Williams, G.B.; Allanson, J.; Pickard, J.D.; Owen, A.M.; Naci, L.; Menon, D.K.; et al. Consciousness-specific dynamic interactions of brain integration and functional diversity. Nat. Commun. 2019, 10, 4616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverman, R.A. Functional Data Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Graves, S.E.A. Functional Data Analysis with R and MATLAB; Springer: New York, NY, USA, 2009. [Google Scholar]
- Zhang, Y.D.; Wang, S.H.; Dong, Z.C. Classification of Alzheimer Disease Based on Structural Magnetic Resonance Imaging by Kernel Support Vector Machine Decision Tree. Prog. Electromagn. Res. 2014, 144, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Bi, X.A.; Xie, Y.; Wu, H.; Xu, L.Y. Identification of differential brain regions in MCI progression via clustering-evolutionary weighted SVM ensemble algorithm. Front. Comput. Sci. 2021, 15, 156903. [Google Scholar] [CrossRef]
- Zhang, Y.D.; Wang, S.H.; Sui, Y.X.; Yang, M.; Liu, B.; Cheng, H.; Sun, J.D.; Jia, W.J.; Phillips, P.; Gorriz, J.M. Multivariate approach for Alzheimer’s disease detection using stationary Wavelet entropy and predator-prey particle swarm optimization. J. Alzheimer’s Dis. 2018, 65, 855–869. [Google Scholar] [CrossRef]
- Sheng, Q.; Zhang, Y.T.; Shi, H.F.; Jiao, Z.Q. Global iterative optimization framework for predicting cognitive function statuses of patients with end-stage renal disease. Int. J. Imaging Syst. Technol. 2023, 33, 837–852. [Google Scholar] [CrossRef]
- Lv, X.; Mu, X.D.; Zhang, J.; Wang, Z. Chaotic sparrow search optimization algorithm. J. Beihang Univ. 2021, 47, 1712–1720. [Google Scholar]
- Li, Y.; Liu, J.Y.; Gao, X.Q.; Jie, B.; Minjeong, K.; Pew-Thian, Y. Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification. Med. Image Anal. 2018, 52, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.Q.; Xia, Z.W.; Ming, X.L.; Cheng, C. Multi-scale feature combination of brain functional network for eMCI classification. IEEE Access 2019, 7, 74263–74273. [Google Scholar] [CrossRef]
- Shao, W.; Peng, Y.; Zu, C.; Wang, M.L.; Zhang, D.Q. Hypergraph based multi-task feature selection for multimodal classification of Alzheimer’s disease. Comput. Med. Imaging Graph. 2020, 80, 101663. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wang, J.H.; Wu, Q.Z.; Kuang, W.H.; Huang, X.Q.; He, Y.; Gong, Q.Y. Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Brain Imaging Behav. 2018, 12, 1279–1288. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.G. Changes of Brain Function and DTI in Patients with Renal Failure; Southern Medical University: Guangzhou, China, 2016. [Google Scholar]
- Wang, S.H. Detection of Alzheimer’s disease by three-dimensional displacement field estimation in structural magnetic resonance imaging. J. Alzheimer’s Dis. 2016, 50, 233–248. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E.T.; Cheng, W.; Feng, J. Brain dynamics: The temporal variability of connectivity, and differences in schizophrenia and ADHD. Transl. Psychiatry 2021, 70, 11. [Google Scholar] [CrossRef] [PubMed]
- Parente, F.; Colosimo, A. Functional connections between and within brain subnetworks under resting-state. Sci. Rep. 2020, 10, 3438. [Google Scholar] [CrossRef] [Green Version]
Items | ESRDaMCI Group (n = 51) | HC Group (n = 39) | t | p-Value |
---|---|---|---|---|
Age () | 50.05 ± 7.86 | 48.37 ± 6.59 | 1.079 | 0.251 |
Sex (male/female) | 24/27 | 24/15 | 0.341 | 0.536 |
Education () | 11.25 ± 3.15 | 9.73 ± 3.85 | 0.973 | 0.771 |
MoCA score () | 21.30 ± 2.75 | 27.27 ± 1.24 | −13.728 | 0.000 |
Parameters | ACC (%) | SEN (%) | SPE (%) | AUC |
---|---|---|---|---|
L = 10, s = 1 | 69.8145 ± 2.9756 | 71.2636 ± 4.3215 | 57.1225 ± 5.0852 | 0.6796 ± 0.0249 |
L = 20, s = 1 | 71.5749 ± 2.6566 | 70.3181 ± 3.9787 | 72.9815 ± 4.6674 | 0.7773 ± 0.0237 |
L = 30, s = 1 | 72.9857 ± 2.2747 | 74.5969 ± 3.3198 | 64.8148 ± 4.1679 | 0.7567 ± 0.0172 |
L = 40, s = 1 | 74.7921 ± 2.5568 | 77.1198 ± 4.1764 | 65.3048 ± 3.4141 | 0.7815 ± 0.0176 |
L = 50, s = 3 | 78.8728 ± 3.4125 | 80.0218 ± 4.1765 | 70.0854 ± 6.0286 | 0.8221 ± 0.0313 |
L = 60, s = 2 | 79.9497 ± 2.0519 | 80.0065 ± 2.4059 | 74.5783 ± 4.3582 | 0.8557 ± 0.0203 |
L = 70, s = 5 | 83.6330 ± 1.8352 | 83.3115 ± 2.4281 | 79.1737 ± 4.0828 | 0.8845 ± 0.0146 |
L = 80, s = 3 | 85.9828 ± 2.9149 | 86.1002 ± 4.1113 | 81.5384 ± 4.2663 | 0.9351 ± 0.0161 |
L = 90, s = 2 | 77.5066 ± 1.8927 | 79.6666 ± 2.7604 | 74.8689 ± 4.6902 | 0.8077 ± 0.0200 |
L = 100, s = 8 | 73.0201 ± 2.3719 | 71.8301 ± 2.9657 | 70.9527 ± 4.1789 | 0.7670 ± 0.0203 |
Parameters | ACC (%) | SEN (%) | SPE (%) | AUC |
---|---|---|---|---|
0.01–0.2 | 74.0740 ± 2.3162 | 78.4313 ± 3.1987 | 56.4102 ± 4.0162 | 0.6907 ± 0.0138 |
0.01–0.35 | 85.9828 ± 2.9149 | 86.1002 ± 4.1113 | 81.5384 ± 4.2663 | 0.9351 ± 0.0161 |
0.01–0.5 | 78.8648 ± 2.7561 | 76.5882 ± 3.6924 | 79.4615 ± 3.1972 | 0.8261 ± 0.0182 |
0.01–0.65 | 70.8899 ± 2.3752 | 72.5490 ± 4.9238 | 66.1538 ± 4.8692 | 0.6626 ± 0.0152 |
0.01–0.8 | 66.0714 ± 2.2366 | 62.5490 ± 3.1365 | 70.4615 ± 4.2534 | 0.5184 ± 0.0212 |
Features | ACC (%) | SEN (%) | SPE (%) | AUC |
---|---|---|---|---|
Connections | 60.6029 ± 3.3321 | 64.2048 ± 4.4825 | 57.8063 ± 5.4026 | 0.5913 ± 0.0311 |
Mtd-Lp | 72.3982 ± 3.1392 | 79.5425 ± 4.5174 | 71.4758 ± 6.1055 | 0.7096 ± 0.0318 |
Mtd-Elocal | 75.7744 ± 3.0562 | 76.9935 ± 4.4751 | 73.8120 ± 5.4223 | 0.7905 ± 0.0375 |
Mtd-Eglobal | 76.5015 ± 3.0517 | 77.9956 ± 4.2267 | 79.1823 ± 5.6347 | 0.7857 ± 0.0321 |
Mtd-cc | 83.7527 ± 2.5289 | 84.1656 ± 3.4824 | 78.6838 ± 4.2664 | 0.9159 ± 0.0172 |
Mtd-Fused | 85.9828 ± 2.9150 | 87.1678 ± 4.1113 | 81.5385 ± 4.2664 | 0.9352 ± 0.0161 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Fu, X.; Song, C.; Shi, H.; Jiao, Z. Characterizing Topological Properties of Brain Functional Networks Using Multi-Threshold Derivative for End-Stage Renal Disease with Mild Cognitive Impairment. Brain Sci. 2023, 13, 1187. https://doi.org/10.3390/brainsci13081187
Zhang R, Fu X, Song C, Shi H, Jiao Z. Characterizing Topological Properties of Brain Functional Networks Using Multi-Threshold Derivative for End-Stage Renal Disease with Mild Cognitive Impairment. Brain Sciences. 2023; 13(8):1187. https://doi.org/10.3390/brainsci13081187
Chicago/Turabian StyleZhang, Rupu, Xidong Fu, Chaofan Song, Haifeng Shi, and Zhuqing Jiao. 2023. "Characterizing Topological Properties of Brain Functional Networks Using Multi-Threshold Derivative for End-Stage Renal Disease with Mild Cognitive Impairment" Brain Sciences 13, no. 8: 1187. https://doi.org/10.3390/brainsci13081187
APA StyleZhang, R., Fu, X., Song, C., Shi, H., & Jiao, Z. (2023). Characterizing Topological Properties of Brain Functional Networks Using Multi-Threshold Derivative for End-Stage Renal Disease with Mild Cognitive Impairment. Brain Sciences, 13(8), 1187. https://doi.org/10.3390/brainsci13081187