The Association between Pesticide Exposure and the Development of Fronto-Temporal Dementia-Cum-Dissociative Disorders: A Review
Abstract
1. Introduction
1.1. Mental Disorders and Pesticide Poisoning
1.1.1. Frontotemporal Dementia (FTD)
Front Variant
Primary Progressive Aphasia
Semantic Dementia
Relationship FDT Variants with Pesticides
1.1.2. Parkinson’s Disease (PD)
Pesticide Classification | Type of Pesticide | Relationship with PD | Type of Study | References |
---|---|---|---|---|
Organochlorines | Dieldrin | Acted as dopaminergic toxin in mesencephalic cultures. | Review | [27] |
Reduced brain dopamine levels, increased ROS in nigral dopaminergic neurons, inhibited mitochondrial oxidative phosphorylation, altered mitochondrial membrane potential, and caused cytochrome C release. | Review | [21] | ||
There were increased concentrations of these insecticides in the substantia nigra, which may be directly related to reduced dopamine concentrations | Post mortem study | [23] | ||
Lindane | There were increased concentrations of these insecticides in the substantia nigra, which may be directly related to reduced dopamine concentrations | Post mortem study | [23] | |
Others | They were neurotoxic, produced oxidative stress, and damaged the dopaminergic system. | Animal model | [24] | |
OPs | Dichlorvos | Produced nigrostriatal dopaminergic degeneration, reduced levels of striatal dopamine and tyrosine hydroxylase. | Animal model | [25] |
Malathion | Increased levels of α-synuclein protein and mRNA in striatal tissue | Animal model | [26] | |
Others | Were neurotoxic, and produced oxidative stress and damage to the dopaminergic system | Animal model | [24] | |
Pyrethroids | Cypermethrin | Interfered with cholinergic and dopaminergic neurotransmission mechanisms | Review | [27] |
Deltamethrin | Reduced dopamine levels | Review | [27] | |
Others | Rotenone | Were selectively toxic to dopaminergic neurons | Human brain spheroid model from induced pluripotent stem cells | [31] |
Mitochondrial toxin | Case-control studies | [32,33] | ||
Reduced tyrosine hydroxylase-positive neurons in the substantia nigra, induced loss of striatal dopamine, and accumulation of α-synuclein and polyubiquitin-positive aggregates in the remaining dopaminergic neurons | Animal model | [30] | ||
Paraquat | Damaged dopaminergic neurons due to oxidative stress | Case-control studies | [27] | |
Caused cellular toxicity due to oxidative stress to dopaminergic neurons. | Animal model | [28] | ||
Led to loss of dopaminergic neurons due to oxidative stress. | Review | [29] |
1.1.3. Dissociative Disorders
Dissociative Amnesia
Dissociative Identity Disorder (DID)
Depersonalization/De-Realization (DD)
2. Discussion
Organelle/Organ/Neurotransmitter | Pesticide | Mechanism | Effects Related to DA, DID and DD | Reference |
---|---|---|---|---|
Mitochondria | Rotenone | Inhibition of the electron transport chain | Production of mitochondrial and neuronal ROS, resulting in neuroinflammation | [52] |
DDT | Alteration oxidative phosphorylation | |||
GABA | Fenilpirazol fipronil | Blockage of ionotropic γ-aminobutyric acid (GABA) receptors in the central nervous system | Central nervous system overexcitation, seizure, and death | [54] |
Dopamine | Stimulation of the production of amyloid peptides Aβ42/Aβ43 | Alzheimer’s disease | [55] | |
Dopamine | Dieldrin | Crossing of the blood-brain barrier, selective toxicity to dopaminergic neurons | Apoptosis of dopaminergic neurons | [21] |
Rotenone | Mitochondrial toxicity due to production of ROS | |||
Paraquat | Production of ROS when taken up by the dopamine transporter | |||
Acetylcholine | OPs | AChE inhibition | Alteration of the cholinergic system | [44] |
Mitochondria/axons | Disruption of mitochondrial function and axonal transport | Neurological disorders | [56] | |
Cell membranes | Rotenone | Exacerbation of lipid peroxidation | Oxidative stress | [53] |
Mitochondria | Glyphosate | Loss of the active site for oxidative phosphorylation | Oxidative stress and inhibition of oxidative phosphorylation | [60] |
Hippocampal | Permethrin | Hippocampal dysfunction and amygdala impairment | Panic disorder, alteration in the morphology of the hippocampus and attention deficit | [61] |
Hippocampal ER | Deltamethrin | Apoptosis in SK-N-AS neuroblastoma cells, increased levels of C/EBP homologous protein, glucose-regulated protein 78 caspase-12, activated caspase-3, and decreased BrdU-positive cells | Stress, learning deficits, and impaired hippocampal neurogenesis | [62] |
Hippocampus | Paraquat | Alteration of levels of the Wnt pathway genes in neural progenitor cells | Oxidative stress and inhibition of cell viability and proliferation | [66] |
Dopamine | Rotenone | Alteration of levels of the Wnt pathway genes in neural progenitor cells | Changes in locomotor behavior and alteration in gene expression in dopaminergic neurons | [67] |
Brain | Chlorpyrifo | AChE inhibition | Impaired memory and motor function | [63] |
OPs | AChE inhibition | Brain damage from cholinergic neuronal dysfunction and excitotoxicity | [65] |
Disorder | Neurological Alteration | Pesticide | Reference |
---|---|---|---|
DA | Alteration in frontal cortex, temporal lobes and diencephalon. Changes in levels of dopamine, serotonin, ACh and norepinephrine | Glufosinate ammonium Parathion | [6,68] |
DID | Peripheral neuropathy and behavioral disturbance | OPs | [73] |
DD | Intracellular accumulation of calcium through stimulation of anti-N-methyl-D-aspartate (NMDA) receptors and ROS production | Dieldrin OPs | [43,74] |
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- La Vanguardia Los Plaguicidas Provocan 200.000 Muertes al año. 2017. Available online: https://www.lavanguardia.com/natural/20170309/42701670609/plaguicidas-herbicidas-insecticidas-muertes-intoxicacion-onu.html (accessed on 2 August 2023).
- Marrero, S.; González, S.; Guevara, H.; Eblen, A. Evaluación de la exposición a organofosforados y carbamatos en traba-jadores de una comunidad agraria. Comunidad Salud 2017, 15, 30–41. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1690-32932017000100005 (accessed on 2 August 2023).
- Robb, E.L.; Baker, M.B. Toxicidad Organofosforada; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Vásquez, M.O. Intoxicación por organofosforados. Rev. Medica Sinerg. 2020, 5, e558. [Google Scholar] [CrossRef]
- Fernández, D.G.; Mancipe, L.C.; Fernández, D.C. Intoxicación por organofosforados. Rev. Med. 2010, 18, 84–92. [Google Scholar] [CrossRef]
- Morales Ovalles, Y.; Miranda de Contreras, L.; Di Bernardo Navas, M.L. Neurotoxicidad de los plaguicidas como agentes disruptores endocrinos: Una revisión. Rev. Inst. Nac. Hig. Rafael Rangel 2014, 45, 96–119. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0798-04772014000200007 (accessed on 25 February 2023).
- INFOCOP. La Demencia: Una Prioridad de Salud Pública, Según la OMS. 2018. Available online: http://www.infocop.es/view_article.asp?id=7204 (accessed on 2 August 2023).
- Moneo Troncoso, A.I.; Pérez Lancho, M.C. Demencias Corticales. Caracterización Psicoconductual y Neurobiológica. 2022. Available online: http://hdl.handle.net/10662/15661 (accessed on 2 August 2023).
- Rodríguez-Leyva, I.; Oliva-Barrios, J.E.; Cueli-Barcena, S.; Carrizales-Rodríguez, J.; Chi-Ahumada, E.; Jiménez-Capdeville, M.E. Demencia frontotemporal: Revisión y nuestro punto de vista. Rev. Mex. Neurocienc. 2019, 19. [Google Scholar] [CrossRef]
- Charro-Gajate, C.; Diéguez-Perdiguero, E.; González-Martínez, L.A. La Demencia Más Psiquiátrica: Demencia Frontotemporal, Variante Frontal. Psicogeriatría 2010, 2, 227–232. Available online: https://www.viguera.com/sepg/pdf/revista/0204/0204_0227_0232.pdf (accessed on 4 April 2023).
- Toloza-Ramírez, D.; Méndez-Orellana, C.; Martella, D. Diagnóstico neuropsicológico diferencial en enfermedad de Alzheimer y demencia frontotemporal: Una revisión sistemática cualitativa. Neurol. Perspect. 2021, 1, 82–97. [Google Scholar] [CrossRef]
- Iragorri, Á.M. Demencia Frontotemporal. Rev. Colomb. Psiquiatr. 2007, 36, 139–156. Available online: http://www.scielo.org.co/scielo.php?pid=S0034-74502007000500012&script=sci_arttext (accessed on 15 March 2023).
- Cano, M.L.; Fernández MD, R.; Fernández, A. Impacto del Cuidado de Pacientes Crónicos, en la Salud de las Personas Cuidadoras. En Calidad de Vida, Cuidadores e Intervención Para la Mejora de la Salud en el Envejecimiento; Asociación Universitaria de Educación y Psicología (ASUNIVEP), Servicio Andaluz de Salud (España), Andaluz, España. 2015, Volume III, pp. 355–359. Available online: https://www.formacionasunivep.com/files/publicaciones/calidad-vida-envejecimiento-vol3.pdf#page=356 (accessed on 17 March 2023).
- Snowden, J.S.; Neary, D.; Mann, D.M.A.; Goulding, P.J.; Testa, H.J. Progressive language disorder due to lobar atrophy. Ann. Neurol. 1992, 31, 174–183. [Google Scholar] [CrossRef]
- Mesulam, M.-M. Primary Progressive Aphasia—A Language-Based Dementia. N. Engl. J. Med. 2003, 349, 1535–1542. [Google Scholar] [CrossRef]
- Snowden, J.S.; Bathgate, D.; Varma, A.; Blackshaw, A.; Gibbons, Z.C.; Neary, D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J. Neurol. Neurosurg. Psychiatry 2001, 70, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, G.G.; Moisés, F.P.P.; Macías-Islas, M.Á.; Jiménez-Gil, F.J.; Miranda-Díaz, A.G.; Flores-Alvarado, L.J.; Bitzer-Quintero, O.K. Toxicidad de plaguicidas y su asociación con la enfermedad de Parkinson. Arch. Neurocienc. 2011, 16, 33–39. Available online: https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=30120 (accessed on 2 August 2023).
- Villate, A. Nuevos Aspectos de la Etiopatogénesis y Diagnostico de la Enfermedad de Parkinson (EP) y Futuras Dianas Tera-péuticas. 2019. Available online: https://addi.ehu.es/bitstream/handle/10810/31074/TFG_Villate_Castillo_Rev.pdf?sequence=1&isAllowed=y (accessed on 15 March 2023).
- Corrales, F.S. Enfermedad de Párkinson. Master’s Thesis, Universidad Oberta de Catalunya, Barcelona, Spain, 2018. [Google Scholar]
- Beltré Casado, J.; Tapia García, L. Sobrecarga del Cuidador de Pacientes con Enfermedades Neurodegenerativas, que Asisten a la Consulta de Neurología del Hospital Doctor Salvador Bienvenido Gautier. 2020. Available online: https://repositorio.unphu.edu.do/handle/123456789/3623 (accessed on 11 July 2023).
- Chin-Chan, M.; Navarro-Yepes, J.; Quintanilla-Vega, B. Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front. Cell. Neurosci. 2015, 9, 124. [Google Scholar] [CrossRef] [PubMed]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Steur, E.N.J.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Corrigan, F.M.; Wienburg, C.L.; Shore, R.F.; Daniel, S.E.; Mann, D. Organochlorine insecticides in substantia nigra in Parkinson’s disease. J. Toxicol. Environ. Health Part A 2000, 59, 229–234. [Google Scholar] [CrossRef]
- Quesada, C.M.S.; Rivera, D.A. Presencia de pesticidas en la dieta como factor de riesgo para el parkinson esporádico. Rev. Médica Univ. Costa Rica 2014, 7. [Google Scholar] [CrossRef][Green Version]
- Bk, B.; Bal, A.; Kandimalla, R.J.; Gill, K.D. Nigrostriatal neuronal death following chronic dichlorvos exposure: Crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes. Mol. Brain 2010, 3, 35. [Google Scholar] [CrossRef]
- Mohammadzadeh, L.; Rahbardar, M.G.; Razavi, B.M.; Hosseinzadeh, H. Crocin Protects Malathion-Induced Striatal Biochemical Deficits by Inhibiting Apoptosis and Increasing α-Synuclein in Rats’ Striatum. J. Mol. Neurosci. 2022, 72, 983–993. [Google Scholar] [CrossRef]
- Baltazar, M.T.; Dinis-Oliveira, R.J.; de Lourdes Bastos, M.; Tsatsakis, A.M.; Duarte, J.A.; Carvalho, F. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases—A mechanistic approach. Toxicol. Lett. 2014, 230, 85–103. [Google Scholar] [CrossRef]
- Rappold, P.M.; Cui, M.; Chesser, A.S.; Tibbett, J.; Grima, J.C.; Duan, L.; Sen, N.; Javitch, J.A.; Tieu, K. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc. Natl. Acad. Sci. USA 2011, 108, 20766–20771. [Google Scholar] [CrossRef]
- Vaccari, C.; El Dib, R.; Gomaa, H.; Lopes, L.C.; De Camargo, J.L. Paraquat and Parkinson’s disease: A systematic review and meta-analysis of observational studies. J. Toxicol. Environ. Health Part B 2019, 22, 172–202. [Google Scholar] [CrossRef] [PubMed]
- Drolet, R.E.; Cannon, J.R.; Montero, L.; Greenamyre, J.T. Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol. Dis. 2009, 36, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Pamies, D.; Block, K.; Lau, P.; Gribaldo, L.; Pardo, C.A.; Barreras, P.; Smirnova, L.; Wiersma, D.; Zhao, L.; Harris, G.; et al. Rotenone exerts developmental neurotoxicity in a human brain spheroid model. Toxicol. Appl. Pharmacol. 2018, 354, 101–114. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Tarbutton, G.L.; Levin, J.L.; Plotkin, G.M.; Lowry, L.K.; Nalbone, J.T.; Shepherd, S. Pesticide/Environmental Exposures and Parkinson's Disease in East Texas. J. Agromed. 2008, 13, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Tanner, C.M.; Kamel, F.; Ross, G.W.; Hoppin, J.A.; Goldman, S.M.; Korell, M.; Marras, C.; Bhudhikanok, G.S.; Kasten, M.; Chade, A.R.; et al. Rotenone, Paraquat, and Parkinson’s Disease. Environ. Health Perspect. 2011, 119, 866–872. [Google Scholar] [CrossRef]
- Domínguez, B.; Espejo Díaz, G.; Silverio, J.; Avilez, V. Mecanismos Subyacentes al Trastorno Orgánico. 2019. Available online: https://repositorio.unphu.edu.do/bitstream/handle/123456789/3577/La%20complejidad%20del%20cerebro-Facultad%20de%20Humanidades%20y%20educacion-Escuela%20de%20psicolog%c3%ada-Enero-Abril-2019-Volumen%20XVMecanis-mos%20subyacentes%20al%20trastorno%20org%c3%a1nico..pdf?sequence=1&isAllowed=y (accessed on 25 March 2023).
- Robles García, R.; Garibay Rico, S.E.; Páez Agráz, F. Evaluación de trastornos disociativos en población psiquiátrica mexicana: Prevalencia, comorbilidad y características psicométricas de la Escala de Experiencias Disociativas. Salud Ment. 2006, 29, 38–43. [Google Scholar]
- Schlozman, S.C.; Nonacs, R.M. Trastornos disociativos. In Tratado de Psiquiatría Clínica Massachusetts General Hospital, 2nd ed; Elsevier: Barcelona, Spain, 2017. [Google Scholar]
- Cuesta, C.; Cossini, F.C.; Politis, D.G. Las bases neurales de la Amnesia Disociativa (AD): Una revisión sistemática de la bibliografía. Vertex Rev. Argent. Psiquiatr. 2021, 32, 11–16. [Google Scholar] [CrossRef]
- Sarto, A.C.G.; Garrigós, N.S.; Chocán, N.B.; Valles, N.L.; Palacios, B.M.; Bueno, M.T.B. Trastorno de Identidad Disociativo. Rev. Sanit. Investig. 2022, 3, 75. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=8569905 (accessed on 4 April 2023).
- Rubio, J.C.; García, M.O. Trastornos disociativos. Med. Programa Form. Médica Contin. Acreditado 2019, 12, 4938–4946. [Google Scholar] [CrossRef]
- Alvarado, C.D. El trastorno de despersonalización y desrealización desde el punto de vista de la psicoterapia fenomenológica-existencial. Organización de un taller en el aula de Educación Infantil 5 Proyecto de Implementación del enfoque de Inteligencias Múltiples para la innovación educativa en la etapa infantil 11. Publicaciones Didácticas 2017, 86, 180–196. Available online: https://core.ac.uk/download/pdf/235855536.pdf (accessed on 7 April 2023).
- Yang, J.; Millman, L.S.M.; David, A.S.; Hunter, E.C. The Prevalence of Depersonalization-Derealization Disorder: A Systematic Review. J. Trauma Dissociation 2023, 24, 8–41. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.M. Adaptación y validación al castellano de la Escala de Despersonalización de Cambridge. Ph.D. Thesis, Universidad de Córdoba, Córdoba, Spain, 2008. [Google Scholar]
- Pinilla-Monsalve, G.D.; Manrique-Hernández, E.F.; Caballero-Carvajal, A.J.; Gómez-Rodríguez, E.; Marín-Hernández, L.R.; Portilla-Portillas, Á.; Sierra-Avendaño, J.A.; Prieto-Serrano, H.J.; Oviedo-Pastrana, D.F.; Gamboa-Toloza, N. Neurotoxicología de plaguicidas prevalentes en la región Andina Colombiana. Medicas UIS 2014, 27, 57–67. Available online: http://www.scielo.org.co/scielo.php?pid=S0121-03192014000300007&script=sci_arttext (accessed on 25 February 2023).
- Saborío Cervantes, I.E.; Mora Valverde, M.; Durán Monge, M.D.P. Intoxicación por organofosforados. Med. Leg. Costa Rica 2019, 36, 110–117. Available online: https://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S1409-00152019000100110 (accessed on 7 April 2023).
- Slavica, V.; Dubravko, B.; Milan, J. Acute organophosphate poisoning: 17 years of experience of the National Poison Control Center in Serbia. Toxicology 2018, 409, 73–79. [Google Scholar] [CrossRef]
- Jokanović, M.; Oleksak, P.; Kuca, K. Multiple neurological effects associated with exposure to organophosphorus pesticides in man. Toxicology 2023, 484, 153407. [Google Scholar] [CrossRef]
- Camacho-Pérez, M.R.; Covantes-Rosales, C.E.; Toledo-Ibarra, G.A.; Mercado-Salgado, U.; Ponce-Regalado, M.D.; Díaz-Resendiz, K.J.G.; Girón-Pérez, M.I. Organophosphorus Pesticides as Modulating Substances of Inflammation through the Cholinergic Pathway. Int. J. Mol. Sci. 2022, 23, 4523. [Google Scholar] [CrossRef]
- Narang, U.; Narang, P.; Gupta, O. Organophosphorus poisoning: A social calamity. J. Mahatma Gandhi Inst. Med. Sci. 2015, 20, 46. [Google Scholar] [CrossRef]
- Naughton, S.X.; Terry, A.V. Neurotoxicity in acute and repeated organophosphate exposure. Toxicology 2018, 408, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Won, J.-H.; Park, S.; Hong, S.; Son, S.; Yu, J.-W. Rotenone-induced Impairment of Mitochondrial Electron Transport Chain Confers a Selective Priming Signal for NLRP3 Inflammasome Activation. J. Biol. Chem. 2015, 290, 27425–27437. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S.E.; La Merrill, M.A. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.L. Neuropathological Mechanisms Associated with Pesticides in Alzheimer’s Disease. Toxics 2020, 8, 21. [Google Scholar] [CrossRef] [PubMed]
- Avcı, B.; Günaydın, C.; Güvenç, T.; Yavuz, C.K.; Kuruca, N.; Bilge, S.S. Idebenone Ameliorates Rotenone-Induced Parkinson’s Disease in Rats Through Decreasing Lipid Peroxidation. Neurochem. Res. 2020, 46, 513–522. [Google Scholar] [CrossRef]
- Souders, C.L.; Rushin, A.; Sanchez, C.L.; Toth, D.; Adamovsky, O.; Martyniuk, C.J. Mitochondrial and transcriptome responses in rat dopaminergic neuronal cells following exposure to the insecticide fipronil. Neurotoxicology 2021, 85, 173–185. [Google Scholar] [CrossRef]
- Cam, M.; Durieu, E.; Bodin, M.; Manousopoulou, A.; Koslowski, S.; Vasylieva, N.; Barnych, B.; Hammock, B.D.; Bohl, B.; Koch, P.; et al. Induction of Amyloid-β42 Production by Fipronil and Other Pyrazole Insecticides. J. Alzheimer's Dis. 2018, 62, 1663–1681. [Google Scholar] [CrossRef] [PubMed]
- Moller, A.; Bauer, C.S.; Cohen, R.N.; Webster, C.P.; De Vos, K.J. Amyotrophic lateral sclerosis-associated mutant SOD1 inhibits anterograde axonal transport of mitochondria by reducing Miro1 levels. Hum. Mol. Genet. 2017, 26, 4668–4679. [Google Scholar] [CrossRef] [PubMed]
- Farkhondeh, T.; Mehrpour, O.; Forouzanfar, F.; Roshanravan, B.; Samarghandian, S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: A review. Environ. Sci. Pollut. Res. 2020, 27, 24799–24814. [Google Scholar] [CrossRef]
- Sisó, S.; Hobson, B.A.; Harvey, D.J.; Bruun, D.A.; Rowland, D.J.; Garbow, J.R.; Lein, P.J. Editor’s Highlight: Spatiotemporal Progression and Remission of Lesions in the Rat Brain Following Acute Intoxication with Diisopropylfluorophosphate. Toxicol. Sci. 2017, 157, 330–341. [Google Scholar] [CrossRef]
- Chen, Y. Organophosphate-induced brain damage: Mechanisms, neuropsychiatric and neurological consequences, and potential therapeutic strategies. Neurotoxicology 2012, 33, 391–400. [Google Scholar] [CrossRef]
- McCully, K.S. Environmental Pollution, Oxidative Stress and Thioretinaco Ozonide: Effects of Glyphosate, Fluoride and Electromagnetic Fields on Mitochondrial Dysfunction in Carcinogenesis, Atherogenesis and Aging. Ann. Clin. Lab. Sci. 2020, 50, 408–411. [Google Scholar] [PubMed]
- Nasuti, C.; Fattoretti, P.; Carloni, M.; Fedeli, D.; Ubaldi, M.; Ciccocioppo, R.; Gabbianelli, R. Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J. Neurodev. Disord. 2014, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; DiCicco-Bloom, E.; Richardson, J.R. Hippocampal ER Stress and Learning Deficits Following Repeated Pyrethroid Exposure. Toxicol. Sci. 2015, 143, 220–228. [Google Scholar] [CrossRef]
- Singh, S.; Prakash, A.; Kaur, S.; Ming, L.C.; Mani, V.; Majeed, A.B.A. The role of multifunctional drug therapy as an antidote to combat experimental subacute neurotoxicity induced by organophosphate pesticides. Environ. Toxicol. 2016, 31, 1017–1026. [Google Scholar] [CrossRef]
- Hayden, K.M.; Norton, M.C.; Darcey, D.; Ostbye, T.; Zandi, P.P.; Breitner, J.C.S.; Welsh-Bohmer, K.A. Occupational exposure to pesticides increases the risk of incident AD: The Cache County Study. Neurology 2010, 74, 1524–1530. [Google Scholar] [CrossRef] [PubMed]
- Androutsopoulos, V.P.; Hernandez, A.F.; Liesivuori, J.; Tsatsakis, A.M. A mechanistic overview of health associated effects of low levels of organochlorine and organophosphorous pesticides. Toxicology 2013, 307, 89–94. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, M.; Wang, X.; Xiong, G.; Wu, C.; Wang, Z.; Zhou, Z.; Chang, X. Modification of Wnt signaling pathway on paraquat-induced inhibition of neural progenitor cell proliferation. Food Chem. Toxicol. 2018, 121, 311–325. [Google Scholar] [CrossRef]
- Stephano, F.; Nolte, S.; Hoffmann, J.; El-Kholy, S.; von Frieling, J.; Bruchhaus, I.; Fink, C.; Roeder, T. Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson’s disease model. Sci. Rep. 2018, 8, 2372. [Google Scholar] [CrossRef]
- Apolo, S.G.; Garzón, A.O.; Lanchi, G.D.; Toledo, J.M.; Cherrez, P.J.; Ribera, K.E. Factores que incrementan la discapacidad de tipo mental en los trastornos del espectro autista. Medicina 2023, 12, 03. [Google Scholar] [CrossRef]
- Slotkin, T.A.; Levin, E.D.; Seidler, F.J. Developmental neurotoxicity of parathion: Progressive effects on serotonergic systems in adolescence and adulthood. Neurotoxicol. Teratol. 2009, 31, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.D.; Timofeeva, O.A.; Yang, L.; Petro, A.; Ryde, I.T.; Wrench, N.; Seidler, F.J.; Slotkin, T.A. Early postnatal parathion exposure in rats causes sex-selective cognitive impairment and neurotransmitter defects which emerge in aging. Behav. Brain Res. 2010, 208, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Jokanović, M. Neurotoxic effects of organophosphorus pesticides and possible association with neurodegenerative diseases in man: A review. Toxicology 2018, 410, 125–131. [Google Scholar] [CrossRef] [PubMed]
- de Plaguicidas, N.P.D.M. Memoria Congreso Nacional: Impacto de Plaguicidas en Ambiente, Salud Trabajo y Agricultura; Marena, Managua 1997; p. 490. ID: Lil-309487. Available online: https://pesquisa.bvsalud.org/portal/resource/pt/lil-309487 (accessed on 29 June 2023).
- Garcia, Y.D.C.L. Determinacion de Sintomas de Neurotoxicidad Secundaria a Intoxicacion por Plaguicidas Organofosforados, Universidad de San Carlos de Guatemala. 2020. Available online: https://biblioteca.medicina.usac.edu.gt/tesis/pre/2000/081.pdf (accessed on 11 July 2023).
- Briz, V.; Suñol, C. La Exposición Prolongada a Dieldrín Reduce la Funcionalidad de los Receptores NMDA y Metabotropicos de Glutamato de Tipo-I en Cultivos Primarios de Neuronas Corticales de Ratón. 2008. Available online: http://hdl.handle.net/10261/83406 (accessed on 29 June 2023).
Variant | Symptomatology | Anatomical Lesion |
---|---|---|
Behavioral/frontal | Changes in personality and behavior (loss of emotionality, increased consumption of sweet foods, lack of interest in activities previously carried out, and neglect of personal care) | Bilateral orbitofrontal cortex |
Primary progressive aphasia | Non-fluent aphasia, altered. expression, but preserved comprehension. | Perisylvian area |
Semantic dementia | Fluent anomic aphasia with impaired comprehension and loss of meaning. | Bilateral or left inferolateral temporal cortex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flores-Gutierrez, C.A.; Torres-Sanchez, E.D.; Reyes-Uribe, E.; Torres-Jasso, J.H.; Reyna-Villela, M.Z.; Rojas-Bravo, D.; Salazar-Flores, J. The Association between Pesticide Exposure and the Development of Fronto-Temporal Dementia-Cum-Dissociative Disorders: A Review. Brain Sci. 2023, 13, 1194. https://doi.org/10.3390/brainsci13081194
Flores-Gutierrez CA, Torres-Sanchez ED, Reyes-Uribe E, Torres-Jasso JH, Reyna-Villela MZ, Rojas-Bravo D, Salazar-Flores J. The Association between Pesticide Exposure and the Development of Fronto-Temporal Dementia-Cum-Dissociative Disorders: A Review. Brain Sciences. 2023; 13(8):1194. https://doi.org/10.3390/brainsci13081194
Chicago/Turabian StyleFlores-Gutierrez, Carlos Alfonso, Erandis Dheni Torres-Sanchez, Emmanuel Reyes-Uribe, Juan Heriberto Torres-Jasso, Mireya Zoila Reyna-Villela, Daniel Rojas-Bravo, and Joel Salazar-Flores. 2023. "The Association between Pesticide Exposure and the Development of Fronto-Temporal Dementia-Cum-Dissociative Disorders: A Review" Brain Sciences 13, no. 8: 1194. https://doi.org/10.3390/brainsci13081194
APA StyleFlores-Gutierrez, C. A., Torres-Sanchez, E. D., Reyes-Uribe, E., Torres-Jasso, J. H., Reyna-Villela, M. Z., Rojas-Bravo, D., & Salazar-Flores, J. (2023). The Association between Pesticide Exposure and the Development of Fronto-Temporal Dementia-Cum-Dissociative Disorders: A Review. Brain Sciences, 13(8), 1194. https://doi.org/10.3390/brainsci13081194