Task and Resting-State Functional Connectivity Predict Driving Violations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Driving Behavior and Personality Measures
2.4. Procedure
2.5. fMRI Data Acquisition
2.6. Data Preprocessing
2.7. Functional Connectivity Construction
2.8. Connectome-Based Prediction
3. Results
3.1. Behavioral Data Analysis
3.2. Functional Connectivity Predicts Driving Violations
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosenberg, M.D.; Finn, E.S.; Scheinost, D.; Papademetris, X.; Shen, X.; Constable, R.T.; Chun, M.M. A neuromarker of sustained attention from whole-brain functional connectivity. Nat. Neurosci. 2016, 19, 165–171. [Google Scholar] [CrossRef]
- Rosenberg, M.D.; Scheinost, D.; Greene, A.S.; Avery, E.W.; Kwon, Y.H.; Finn, E.S.; Ramani, R.; Qiu, M.; Constable, R.T.; Chun, M.M. Functional connectivity predicts changes in attention observed across minutes, days, and months. Proc. Natl. Acad. Sci. USA 2020, 117, 3797–3807. [Google Scholar] [CrossRef]
- Song, H.; Rosenberg, M.D. Predicting attention across time and contexts with functional brain connectivity. Curr. Opin. Behav. Sci. 2021, 40, 33–44. [Google Scholar] [CrossRef]
- Beaty, R.E.; Kenett, Y.N.; Christensen, A.P.; Rosenberg, M.D.; Benedek, M.; Chen, Q.; Fink, A.; Qiu, J.; Kwapil, T.R.; Kane, M.J.; et al. Robust prediction of individual creative ability from brain functional connectivity. Proc. Natl. Acad. Sci. USA 2018, 115, 1087–1092. [Google Scholar] [CrossRef]
- Speer, S.P.H.; Smidts, A.; Boksem, M.A.S. Individual differences in (dis)honesty are represented in the brain’s functional connectivity at rest. NeuroImage 2022, 246, 118761. [Google Scholar] [CrossRef]
- Lin, J.; Li, L.; Pan, N.; Liu, X.; Zhang, X.; Suo, X.; Kemp, G.J.; Wang, S.; Gong, Q. Neural correlates of neuroticism: A coordinate-based meta-analysis of resting-state functional brain imaging studies. Neurosci. Biobehav. Rev. 2023, 146, 105055. [Google Scholar] [CrossRef]
- Baldassarre, A.; Lewis, C.M.; Committeri, G.; Snyder, A.Z.; Romani, G.L.; Corbetta, M. Individual variability in functional connectivity predicts performance of a perceptual task. Proc. Natl. Acad. Sci. USA 2012, 109, 3516–3521. [Google Scholar] [CrossRef]
- Avery, E.W.; Yoo, K.; Rosenberg, M.D.; Greene, A.S.; Gao, S.; Na, D.L.; Scheinost, D.; Constable, T.R.; Chun, M.M. Distributed Patterns of Functional Connectivity Predict Working Memory Performance in Novel Healthy and Memory-impaired Individuals. J. Cogn. Neurosci. 2020, 32, 241–255. [Google Scholar] [CrossRef]
- Kwak, S.; Kim, H.; Kim, H.; Youm, Y.; Chey, J. Distributed functional connectivity predicts neuropsychological test performance among older adults. Hum. Brain Mapp. 2021, 42, 3305–3325. [Google Scholar] [CrossRef]
- Omidi, L.; Mousavi, S.; Moradi, G.; Taheri, F. Traffic climate, driver behaviour and dangerous driving among taxi drivers. Int. J. Occup. Saf. Ergon. 2022, 28, 1482–1489. [Google Scholar] [CrossRef]
- Zelinková, J.; Shaw, D.J.; Mareček, R.; Mikl, M.; Urbánek, T.; Peterková, L.; Zámečník, P.; Brázdil, M. Superior temporal sulcus and social cognition in dangerous drivers. NeuroImage 2013, 83, 1024–1030. [Google Scholar] [CrossRef]
- Vorobyev, V.; Kwon, M.S.; Moe, D.; Parkkola, R.; Hämäläinen, H. Risk-Taking Behavior in a Computerized Driving Task: Brain Activation Correlates of Decision-Making, Outcome, and Peer Influence in Male Adolescents. PLoS ONE 2015, 10, e0129516. [Google Scholar] [CrossRef]
- Megías, A.; Navas, J.F.; Petrova, D.; Cándido, A.; Maldonado, A.; Garcia-Retamero, R.; Catena, A. Neural mechanisms underlying urgent and evaluative behaviors: An fMRI study on the interaction of automatic and controlled processes. Hum. Brain Mapp. 2015, 36, 2853–2864. [Google Scholar] [CrossRef]
- Gonzalez-Castillo, J.; Bandettini, P.A. Task-based dynamic functional connectivity: Recent findings and open questions. NeuroImage 2018, 180, 526–533. [Google Scholar] [CrossRef]
- Perera, D.; Wang, Y.-K.; Lin, C.-T.; Nguyen, H.; Chai, R. Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators. Sensors 2022, 22, 6230. [Google Scholar] [CrossRef]
- Cynthia, A.; Patricia, G.; Nisrine, J.; Mahmoud, H.; Sandy, R. A new system for detecting fatigue and sleepiness using brain connectivity: EEG based estimation of fatigue, vigilance and sleepiness for drivers. In Proceedings of the 2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 19–21 October 2017; pp. 1–4. [Google Scholar]
- Ahmadi, A.; Bazregarzadeh, H.; Kazemi, K. Automated detection of driver fatigue from electroencephalography through wavelet-based connectivity. Biocybern. Biomed. Eng. 2021, 41, 316–332. [Google Scholar] [CrossRef]
- Nostro, A.D.; Müller, V.I.; Varikuti, D.P.; Pläschke, R.N.; Hoffstaedter, F.; Langner, R.; Patil, K.R.; Eickhoff, S.B. Predicting personality from network-based resting-state functional connectivity. Brain Struct. Funct. 2018, 223, 2699–2719. [Google Scholar] [CrossRef]
- Snyder, A.Z. Intrinsic brain activity and resting state networks. In Neuroscience in the 21st Century: From Basic to Clinical; Pfaff, D.W., Volkow, N.D., Rubenstein, J.L., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1939–1990. [Google Scholar] [CrossRef]
- Cho, E.; Park, S.; Oh, C. Analysis of Intrinsic Factors Leading to Aggressive Driving Behavior to Derive Safety Policy Implications for Bus Drivers. Transp. Res. Rec. 2022, 2676, 664–675. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Jiang, L. The effects of situational factors and impulsiveness on drivers’ intentions to violate traffic rules: Difference of driving experience. Accid. Anal. Prev. 2014, 62, 54–62. [Google Scholar] [CrossRef]
- Sârbescu, P.; Maricuţoiu, L. Are you a “bad driver” all the time? Insights from a weekly diary study on personality and dangerous driving behavior. J. Res. Pers. 2019, 80, 30–37. [Google Scholar] [CrossRef]
- Precht, L.; Keinath, A.; Krems, J.F. Effects of driving anger on driver behavior—Results from naturalistic driving data. Transp. Res. Part F Traffic Psychol. Behav. 2017, 45, 75–92. [Google Scholar] [CrossRef]
- Parker, D.; Reason, J.T.; Manstead, A.S.R.; Stradling, S.G. Driving errors, driving violations and accident involvement. Ergonomics 1995, 38, 1036–1048. [Google Scholar] [CrossRef] [PubMed]
- Lucidi, F.; Giannini, A.M.; Sgalla, R.; Mallia, L.; Devoto, A.; Reichmann, S. Young novice driver subtypes: Relationship to driving violations, errors and lapses. Accid. Anal. Prev. 2010, 42, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Koppel, S.; Stephens, A.N.; Charlton, J.L.; Di Stefano, M.; Darzins, P.; Odell, M.; Marshall, S. The Driver Behaviour Questionnaire for older drivers: Do errors, violations and lapses change over time? Accid. Anal. Prev. 2018, 113, 171–178. [Google Scholar] [CrossRef]
- Mallia, L.; Lazuras, L.; Violani, C.; Lucidi, F. Crash risk and aberrant driving behaviors among bus drivers: The role of personality and attitudes towards traffic safety. Accid. Anal. Prev. 2015, 79, 145–151. [Google Scholar] [CrossRef]
- Rimmö, P.-A.; Åberg, L. On the distinction between violations and errors: Sensation seeking associations. Transp. Res. Part F Traffic Psychol. Behav. 1999, 2, 151–166. [Google Scholar] [CrossRef]
- Bıçaksız, P.; Özkan, T. Impulsivity and driver behaviors, offences and accident involvement: A systematic review. Transp. Res. Part F Traffic Psychol. Behav. 2016, 38, 194–223. [Google Scholar] [CrossRef]
- Čubranić-Dobrodolac, M.; Lipovac, K.; Čičević, S.; Antić, B. A model for traffic accidents prediction based on driver personality traits assessment. Promet Traffic Transp. 2017, 29, 631–642. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, X.; Tao, D.; Xue, H. The association between sensation seeking and driving outcomes: A systematic review and meta-analysis. Accid. Anal. Prev. 2019, 123, 222–234. [Google Scholar] [CrossRef]
- Shen, X.; Finn, E.S.; Scheinost, D.; Rosenberg, M.D.; Chun, M.M.; Papademetris, X.; Constable, R.T. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 2017, 12, 506–518. [Google Scholar] [CrossRef]
- Power, J.D.; Cohen, A.L.; Nelson, S.M.; Wig, G.S.; Barnes, K.A.; Church, J.A.; Vogel, A.C.; Laumann, T.O.; Miezin, F.M.; Schlaggar, B.L. Functional network organization of the human brain. Neuron 2011, 72, 665–678. [Google Scholar] [CrossRef]
- Singh, A.; Kim, Y. What has contributed to the large sex differentials in lifespan variation and life expectancy in South Korea? J. Biosoc. Sci. 2021, 53, 396–406. [Google Scholar] [CrossRef]
- Reason, J.; Manstead, A.; Stradling, S.; Baxter, J.; Campbell, K. Errors and violations on the roads: A real distinction? Ergonomics 1990, 33, 1315–1332. [Google Scholar] [CrossRef]
- Zuckerman, M. Behavioral Expressions and Biosocial Bases of Sensation Seeking; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1994. [Google Scholar]
- Patton, J.H.; Stanford, M.S.; Barratt, E.S. Factor structure of the barratt impulsiveness scale. J. Clin. Psychol. 1995, 51, 768–774. [Google Scholar] [CrossRef]
- Heo, S.; Oh, J.; Kim, J. The Korean version of the Barratt Impulsiveness Scale, 11th version: Its reliability and validity. Korean J. Psychol. Gen. 2012, 31, 769–782. [Google Scholar]
- Yoo, J.; Kang, P. Structural validly of the Modified Sensation Seeking Scale (MSSS) and discriminant analysis on the sports activity participation. Korean J. Sport Psychol. 2003, 14, 249–264. [Google Scholar]
- Whitfield-Gabrieli, S.; Nieto-Castanon, A. Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012, 2, 125–141. [Google Scholar] [CrossRef]
- Finn, E.S.; Shen, X.; Scheinost, D.; Rosenberg, M.D.; Huang, J.; Chun, M.M.; Papademetris, X.; Constable, R.T. Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nat. Neurosci. 2015, 18, 1664–1671. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Yamagata, B.; Hirano, J.; Ueda, R.; Yoshitake, H.; Negishi, K.; Yamagishi, M.; Kimura, M.; Kamiya, K.; Shino, M.; et al. Regional Gray Matter Volume Identifies High Risk of Unsafe Driving in Healthy Older People. Front. Aging Neurosci. 2020, 12, 592979. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Hirano, J.; Ueda, R.; Yoshitake, H.; Yamagishi, M.; Kimura, M.; Kamiya, K.; Shino, M.; Mimura, M.; Yamagata, B. White matter alterations in the dorsal attention network contribute to a high risk of unsafe driving in healthy older people. Psychiatry Clin. Neurosci. Rep. 2022, 1, e45. [Google Scholar] [CrossRef]
- Corbetta, M.; Shulman, G.L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 2002, 3, 201–215. [Google Scholar] [CrossRef] [PubMed]
- DiQuattro, N.E.; Sawaki, R.; Geng, J.J. Effective Connectivity During Feature-Based Attentional Capture: Evidence against the Attentional Reorienting Hypothesis of TPJ. Cereb. Cortex 2013, 24, 3131–3141. [Google Scholar] [CrossRef] [PubMed]
- Majerus, S.; Péters, F.; Bouffier, M.; Cowan, N.; Phillips, C. The Dorsal Attention Network Reflects Both Encoding Load and Top–down Control during Working Memory. J. Cogn. Neurosci. 2018, 30, 144–159. [Google Scholar] [CrossRef] [PubMed]
- Desco, M.; Navas-Sanchez, F.J.; Sanchez-González, J.; Reig, S.; Robles, O.; Franco, C.; Guzmán-De-Villoria, J.A.; García-Barreno, P.; Arango, C. Mathematically gifted adolescents use more extensive and more bilateral areas of the fronto-parietal network than controls during executive functioning and fluid reasoning tasks. NeuroImage 2011, 57, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Wen, T.; Zhang, J.; Chang, L.; Wang, Y.; Liu, M.; Ding, C.; Yan, F. An Evaluation of Executive Control Function and Its Relationship with Driving Performance. Sensors 2021, 21, 1763. [Google Scholar] [CrossRef] [PubMed]
- Cruz, K.G.; Leow, Y.N.; Le, N.M.; Adam, E.; Huda, R.; Sur, M. Cortical-subcortical interactions in goal-directed behavior. Physiol. Rev. 2023, 103, 347–389. [Google Scholar] [CrossRef] [PubMed]
- An, N.; Sun, L.; Wei, Z. Adaptation and validity of the reckless driving habits scale in young Chinese drivers. Transp. Res. Part F Traffic Psychol. Behav. 2023, 93, 174–181. [Google Scholar] [CrossRef]
- Verster, J.C.; Bervoets, A.C.; de Klerk, S.; Roth, T. Lapses of attention as outcome measure of the on-the-road driving test. Psychopharmacology 2014, 231, 283–292. [Google Scholar] [CrossRef]
- Hausman, H.K.; Hardcastle, C.; Albizu, A.; Kraft, J.N.; Evangelista, N.D.; Boutzoukas, E.M.; Langer, K.; O’Shea, A.; Van Etten, E.J.; Bharadwaj, P.K.; et al. Cingulo-opercular and frontoparietal control network connectivity and executive functioning in older adults. GeroScience 2022, 44, 847–866. [Google Scholar] [CrossRef]
- Eysenck, M.W.; Moser, J.S.; Derakshan, N.; Hepsomali, P.; Allen, P. A neurocognitive account of attentional control theory: How does trait anxiety affect the brain’s attentional networks? Cogn. Emot. 2023, 37, 220–237. [Google Scholar] [CrossRef]
- Papantoniou, P.; Yannis, G.; Christofa, E. Which factors lead to driving errors? A structural equation model analysis through a driving simulator experiment. IATSS Res. 2019, 43, 44–50. [Google Scholar] [CrossRef]
- Schweizer, T.; Kan, K.; Hung, Y.; Tam, F.; Naglie, G.; Graham, S. Brain activity during driving with distraction: An immersive fMRI study. Front. Hum. Neurosci. 2013, 7, 53. [Google Scholar] [CrossRef]
- Forward, S.E. The intention to commit driving violations—A qualitative study. Transp. Res. Part F Traffic Psychol. Behav. 2006, 9, 412–426. [Google Scholar] [CrossRef]
- Angelides, N.H.; Gupta, J.; Vickery, T.J. Associating resting-state connectivity with trait impulsivity. Soc. Cogn. Affect. Neurosci. 2017, 12, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Wan, Z.; Rolls, E.T.; Cheng, W.; Feng, J. Sensation-seeking is related to functional connectivities of the medial orbitofrontal cortex with the anterior cingulate cortex. NeuroImage 2020, 215, 116845. [Google Scholar] [CrossRef] [PubMed]
- Ju, U.; Wallraven, C. Relationship between virtual reality balloon analogue risk task and risky decision-making. PLoS ONE 2023, 18, e0282097. [Google Scholar] [CrossRef] [PubMed]
- Greene, A.S.; Gao, S.; Scheinost, D.; Constable, R.T. Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 2018, 9, 2807. [Google Scholar] [CrossRef]
- Finn, E.S. Is it time to put rest to rest? Trends Cogn. Sci. 2021, 25, 1021–1032. [Google Scholar] [CrossRef]
- Zhao, W.; Makowski, C.; Hagler, D.J.; Garavan, H.P.; Thompson, W.K.; Greene, D.J.; Jernigan, T.L.; Dale, A.M. Task fMRI paradigms may capture more behaviorally relevant information than resting-state functional connectivity. NeuroImage 2023, 270, 119946. [Google Scholar] [CrossRef]
Condition/Behavioral Measure | Network 1 | Network 2 | Contribution of Connections (%) |
---|---|---|---|
rsFC/driving violations | Dorsal attention | Salience | 1.39 |
Frontal-parietal | Frontal-parietal | 0.91 | |
Cingulo-opercular | Subcortical | 0.79 | |
risk-rating tbFC/driving violations | Default mode | Dorsal attention | 1.15 |
Subcortical | Ventral attention | 1.01 | |
Frontal-parietal | Somato-motor | 0.99 | |
rsFC/lapses | Cingulo-opercular | Subcortical | 1.01 |
Cingulo-opercular | Default mode | 0.63 | |
Dorsal attention | Visual | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, U. Task and Resting-State Functional Connectivity Predict Driving Violations. Brain Sci. 2023, 13, 1236. https://doi.org/10.3390/brainsci13091236
Ju U. Task and Resting-State Functional Connectivity Predict Driving Violations. Brain Sciences. 2023; 13(9):1236. https://doi.org/10.3390/brainsci13091236
Chicago/Turabian StyleJu, Uijong. 2023. "Task and Resting-State Functional Connectivity Predict Driving Violations" Brain Sciences 13, no. 9: 1236. https://doi.org/10.3390/brainsci13091236
APA StyleJu, U. (2023). Task and Resting-State Functional Connectivity Predict Driving Violations. Brain Sciences, 13(9), 1236. https://doi.org/10.3390/brainsci13091236