Landmark Distance Impacts the Overshadowing Effect in Spatial Learning Using a Virtual Water Maze Task with Healthy Adults
Abstract
:1. Introduction
2. Experiment 1: Testing the Salience of the Cues
2.1. Methods
2.1.1. Participants
2.1.2. Spatial Navigation Task
2.1.3. Procedure
2.1.4. Ethical Considerations & Data Analysis
2.2. Results
3. Experiment 2: Testing the Overshadowing Effect
3.1. Methods
3.1.1. Participants
3.1.2. Spatial Navigation Task
3.1.3. Procedure
3.2. Results
3.2.1. Learning Phase
3.2.2. Recall Phase
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coughlan, G.; Laczó, J.; Hort, J.; Minihane, A.M.; Hornberger, M. Spatial navigation deficits—Overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 2018, 14, 496–506. [Google Scholar] [CrossRef] [PubMed]
- Tolman, E. Cognitive maps in rats and men. Psychol. Rev. 1948, 55, 189–208. [Google Scholar] [CrossRef]
- O’Keefe, J.; Nadel, L. The Hippocampus as a Cognitive Map; Oxford University Press: Oxford, UK, 1978. [Google Scholar]
- Casini, G.; Fontanesi, G.; Bingman, V.P.; Jones, T.J.; Gagliardo, A.; Ioal, P.; Bagnoli, P. The neuroethology of cognitive maps: Contributions from research on the hippocampus and homing pigeon navigation. Arch. Ital. Biol. 1997, 135, 73–92. [Google Scholar]
- Bennett, A.T. Do animals have cognitive maps? J. Exp. Biol. 1996, 199, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Dhein, K. The cognitive map debate in insects: A historical perspective on what is at stake. Stud. Hist. Philos. Sci. 2023, 98, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Lisman, J.; Buzsáki, G.; Eichenbaum, H.; Nadel, L.; Ranganath, C.; Redish, A.D. Viewpoints: How the hippocampus contributes to memory, navigation and cognition. Nat. Neurosci. 2017, 20, 1434–1447. [Google Scholar] [CrossRef]
- Miller, N.Y.; Shettleworth, S.J. Learning about environmental geometry: An associative model. J. Exp. Psychol. Anim. Behav. Process. 2007, 33, 191–212. [Google Scholar] [CrossRef]
- Chamizo, V.D.; Rodrigo, T.; Peris, J.M.; Grau, M. The influence of landmark salience in a navigation task: An additive effect between its components. J. Exp. Psychol. Anim. Behav. Process. 2006, 32, 339–344. [Google Scholar] [CrossRef]
- Farina, F.R.; Burke, T.; Coyle, D.; Jeter, K.; McGee, M.; O’Connell, J.; Taheny, D.; Commins, S. Learning efficiency: The influence of cue salience during spatial navigation. Behav. Process. 2015, 116, 17–27. [Google Scholar] [CrossRef]
- Cheng, K.; Collett, T.S.; Pickhard, A.; Wehner, R. The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal. J. Comp. Physiol. A 1987, 161, 469–475. [Google Scholar] [CrossRef]
- Bennett, A.T.D. Spatial memory in a food storing corvid. J. Comp. Physiol. A 1993, 173, 193–207. [Google Scholar] [CrossRef]
- Chamizo, V.D.; Rodrigo, T. Effect of absolute spatial proximity between a landmark and a goal. Learn. Motiv. 2004, 35, 102–114. [Google Scholar] [CrossRef]
- Hébert, M.; Bulla, J.; Vivien, D.; Agin, V. Are distal and proximal visual cues equally important during spatial learning in mice? A pilot study of overshadowing in the spatial domain. Front. Behav. Neurosci. 2017, 11, 109. [Google Scholar] [CrossRef]
- Artigas, A.A.; Aznar-Casanova, J.A.; Chamizo, V.D. Effects of absolute proximity between landmark and platform in a virtual Morris pool task with humans. Int. J. Comp. Psychol. 2005, 18, 225–239. [Google Scholar] [CrossRef]
- Chamizo, V.D.; Artigas, A.A.; Sansa, J.; Banterla, F. Gender differences in landmark learning for virtual navigation: The role of distance to a goal. Behav. Process. 2011, 88, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Pavlov, I.P.; Anrep, G.V. Conditioned Reflexes: An Investigation of the Physiological Activity of the Cerebral Cortex; Oxford University Press: Oxford, UK, 1927. [Google Scholar]
- Kamin, L.J.; A Church, R.M.; Campbell, B.A. Predictability, surprise, attention, and conditioning. In Punishment and Aversive Behavior; Appleton-Century Crofts: New York, NY, USA, 1969; pp. 279–296. [Google Scholar]
- Schmidt, J.R.; De Houwer, J. Cue competition and incidental learning: No blocking or overshadowing in the colour-word contingency learning procedure without instructions to learn. Collabra Psychol. 2019, 5, 1. [Google Scholar] [CrossRef]
- Stahlman, W.D.; McWaters, M.; Christian, E.; Knapp, E.; Fritch, A.; Mailloux, J.R. Overshadowing between visual and tactile stimulus elements in an object recognition task. Behav. Process. 2018, 157, 102–105. [Google Scholar] [CrossRef]
- Schooler, J.W. Turning the lens of science on itself. Perspect. Psychol. Sci. 2014, 9, 579–584. [Google Scholar] [CrossRef]
- Prados, J. Blocking and overshadowing in human geometry learning. J. Exp. Psychol. Anim. Behav. Process. 2011, 37, 121–126. [Google Scholar] [CrossRef]
- Vandorpe, S.; de Houwer, J. A comparison of forward blocking and reduced overshadowing in human causal learning. Psychon. Bull. Rev. 2005, 12, 945–949. [Google Scholar] [CrossRef]
- Spetch, M.L. Overshadowing in landmark learning: Touch-screen studies with pigeons and humans. J. Exp. Psychol. Anim. Behav. 1995, 21, 166–181. [Google Scholar] [CrossRef]
- Sánchez-Moreno, J.; Rodrigo, T.; Chamizo, V.D.; Mackintosh, N.J. Overshadowing in the spatial domain. Anim. Learn. Behav. 1999, 27, 391–398. [Google Scholar] [CrossRef]
- Horne, M.R.; Iordanova, M.D.; Pearce, J.M. Spatial learning based on boundaries in rats is hippocampus-dependent and prone to overshadowing. Behav. Neurosci. 2010, 124, 623–632. [Google Scholar] [CrossRef]
- Rodríguez, C.A.; Chamizo, V.D.; Mackintosh, N.J. Overshadowing and blocking between landmark learning and shape learning: The importance of sex differences. Learn. Behav. 2011, 39, 324–335. [Google Scholar] [CrossRef]
- Sansa, J.; Aznar-Casanova, J.A.; Rodríguez, C.A.; Chamizo, V.D. Generalisation decrement and not overshadowing by associative competition among pairs of landmarks in a navigation task with humans. Q. J. Exp. Psychol. 2019, 72, 251–262. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Huttenlocher, J.; Newcombe, N.S. 25 years of research on the use of geometry in spatial reorientation: A current theoretical perspective. Psychon. Bull. Rev. 2013, 20, 1033–1054. [Google Scholar] [CrossRef]
- Buckley, M.G.; Austen, J.M.; Myles, L.A.M.; Smith, S.; Ihssen, N.; Lew, A.R.; McGregor, A. The effects of spatial stability and cue type on spatial learning: Implications for theories of parallel memory systems. Cognition 2021, 214, 104802. [Google Scholar] [CrossRef]
- Redhead, E.S.; Hamilton, D.A.; Parker, M.O.; Chan, W.; Allison, C. Overshadowing of geometric cues by a beacon in a spatial navigation task. Learn. Behav. 2013, 41, 179–180. [Google Scholar] [CrossRef]
- Wilson, P.N.; Alexander, T. Enclosure shape influences cue competition effects and goal location learning. Q. J. Exp. Psychol. 2010, 63, 1552–1567. [Google Scholar] [CrossRef]
- Herrera, E.; Alcalá, J.A.; Tazumi, T.; Buckley, M.G.; Prados, J.; Urcelay, G.P. Temporal and spatial contiguity are necessary for competition between events. J. Exp. Psychol. Learn. Mem. Cogn. 2022, 48, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Commins, S.; Duffin, J.; Chaves, K.; Leahy, D.; Corcoran, K.; Caffrey, M.; Keenan, L.; Finan, D.; Thornberry, C. Navwell: A simplified virtual-reality platform for spatial navigation and memory experiments. Behav. Res. Methods 2019, 52, 1189–1207. [Google Scholar] [CrossRef] [PubMed]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Strickland-Hughes, C.M.; Dillon, K.E.; West, R.L.; Ebner, N.C. Own-age bias in face-name associations: Evidence from memory and visual attention in younger and older adults. Cognition 2020, 200, 104253. [Google Scholar] [CrossRef]
- Rapaport, D. The new Army individual test of general mental ability. Psychol. Bull. 1944, 41, 532–538. [Google Scholar] [CrossRef]
- Reitan, R.M.; Wolfson, D. Neuropsychological Evaluation of Older Children; Neuropsychology Press: Tucson, AZ, USA, 1992. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Theory and Interpretation; Neuropsychology Press: Tucson, AZ, USA, 1985. [Google Scholar]
- Pearce, J.M. A model for stimulus generalization in Pavlovian conditioning. Psychol. Rev. 1987, 94, 61–73. [Google Scholar] [CrossRef]
- Pearce, J.M. Similarity and discrimination: A selective review and a connectionist model. Psychol. Rev. 1994, 101, 587–607. [Google Scholar] [CrossRef]
- Rodrigo, T.; Chamizo, V.D.; McLaren, I.P.; Mackintosh, N.J. Blocking in the spatial domain. J. Exp. Psychol. Anim. Behav. Process. 1997, 23, 110–118. [Google Scholar] [CrossRef]
- Commins, S. Efficiency: An underlying principle of learning? Rev. Neurosci. 2018, 29, 183–197. [Google Scholar] [CrossRef] [PubMed]
Group | N | Age | M/F/Not Reported | TMTb-a |
---|---|---|---|---|
Light–Square/Light | 21 | 22.5 (1.6) | 4/15 | 21.1 (2.6) |
Light–Square/Square | 24 | 23.2 (1.01) | 6/17 | 21.7 (2.0) |
Light/Light | 23 | 22.5 (1.7) | 10/13 | 24.8 (5.9) |
Square/Square | 23 | 19.9 (0.35) | 4/19 | 16.2 (2.4) |
Light–Square/Light–Square | 22 | 19.9 (0.3) | 3/17/2 | 16.6 (1.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deery, R.; Commins, S. Landmark Distance Impacts the Overshadowing Effect in Spatial Learning Using a Virtual Water Maze Task with Healthy Adults. Brain Sci. 2023, 13, 1287. https://doi.org/10.3390/brainsci13091287
Deery R, Commins S. Landmark Distance Impacts the Overshadowing Effect in Spatial Learning Using a Virtual Water Maze Task with Healthy Adults. Brain Sciences. 2023; 13(9):1287. https://doi.org/10.3390/brainsci13091287
Chicago/Turabian StyleDeery, Róisín, and Seán Commins. 2023. "Landmark Distance Impacts the Overshadowing Effect in Spatial Learning Using a Virtual Water Maze Task with Healthy Adults" Brain Sciences 13, no. 9: 1287. https://doi.org/10.3390/brainsci13091287
APA StyleDeery, R., & Commins, S. (2023). Landmark Distance Impacts the Overshadowing Effect in Spatial Learning Using a Virtual Water Maze Task with Healthy Adults. Brain Sciences, 13(9), 1287. https://doi.org/10.3390/brainsci13091287