Association between Daytime Sleepiness, Fatigue and Autonomic Responses during Head-Up Tilt Test in Multiple Sclerosis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Fatigue and Excessive Daytime Sleepiness Questionnaires
2.3. Statistical Analysis
3. Results
3.1. Patient-Reported Sleep and Fatigue Symptoms
3.2. Relationships between Daily Sleepiness, Fatigue Symptoms, Clinical, Demographic, and Cardiovascular Autonomic Parameters at Rest, and in Response to Orthostatic Challenges
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Patejdl, R.; Zettl, U.K. The pathophysiology of motor fatigue and fatigability in multiple sclerosis. Front. Neurol. 2022, 13, 891415. [Google Scholar] [CrossRef]
- Martinez, M.W.; Kim, J.H.; Shah, A.B.; Phelan, D.; Emery, M.S.; Wasfy, M.M.; Fernandez, A.B.; Bunch, T.J.; Dean, P.; Danielian, A.; et al. Exercise-induced cardiovascular adaptations and approach to exercise and cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2021, 8, 1453–1470. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J. 2017, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kanjwal, K.; Saeed, B.; Karabin, B.; Kanjwal, Y.; Grubb, B.P. Comparative clinical profile of postural orthostatic tachycardia patients with and without joint hypermobility syndrome. Indian. Pacing Electrophysiol. J. 2010, 10, 73–78. [Google Scholar]
- Racosta, J.M.; Kimpinski, K. Autonomic dysfunction, immune regulation, and multiple sclerosis. Clin. Auton. Res. 2015, 26, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Flachenecker, P.; Rufer, A.; Bihler, I.; Hippel, C.; Reiners, K.; Toyka, K.V.; Kesselring, J. Fatigue in MS is related to sympathetic vasomotor dysfunction. Neurology 2003, 61, 851–853. [Google Scholar] [CrossRef]
- Thijs, R.D.; Brignole, M.; Falup-Pecurariu, C.; Fanciulli, A.; Freeman, R.; Guaraldi, P.; Jordan, J.; Habek, M.; Hilz, M.; Traon, A.P.; et al. Recommendations for tilt table testing and other provocative cardiovascular autonomic tests in conditions that may cause transient loss of consciousness: Consensus statement of the European Federation of Autonomic Societies (EFAS) endorsed by the American Autonomic Society (AAS) and the European Academy of Neurology (EAN). Clin. Auton. Res. 2021, 31, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Adamec, I.; Habek, M. Autonomic dysfunction in multiple sclerosis. Clin. Neurol. Neurosurg. 2013, 115, S73–S78. [Google Scholar] [CrossRef]
- Adamec, I.; Crnosija, L.; Junakovic, A.; Krbot Skoric, M.; Habek, M. Progressive multiple sclerosis patients have a higher burden of autonomic dysfunction compared to relapsing remitting phenotype. Clin. Neurophysiol. 2018, 129, 1588–1594. [Google Scholar] [CrossRef]
- Zawadka-Kunikowska, M.; Rzepiński, Ł.; Newton, J.L.; Zalewski, P.; Słomko, J. Cardiac Autonomic Modulation Is Different in Terms of Clinical Variant of Multiple Sclerosis. J. Clin. Med. 2020, 9, 3176. [Google Scholar] [CrossRef]
- Rzepiński, Ł.; Zawadka-Kunikowska, M.; Newton, J.L.; Zalewski, P.; Słomko, J. Cardiovascular autonomic dysfunction in multiple sclerosis-findings and relationships with clinical outcomes and fatigue severity. Neurol. Sci. 2022, 43, 4829–4839. [Google Scholar] [CrossRef]
- Keselbrener, L.; Akselrod, S.; Ahiron, A.; Eldar, M.; Barak, Y.; Rotstein, Z. Is fatigue in patients with multiple sclerosis related to autonomic dysfunction? Clin. Auton. Res. 2000, 10, 169–175. [Google Scholar] [CrossRef]
- Sparasci, D.; Gobbi, C.; Castelnovo, A.; Riccitelli, G.C.; Disanto, G.; Zecca, C.; Manconi, M. Fatigue, sleepiness and depression in multiple sclerosis: Defining the overlaps for a better phenotyping. J. Neurol. 2022, 269, 4961–4971. [Google Scholar] [CrossRef]
- Penner, I.K.; Bechtel, N.; Raselli, C.; Stöcklin, M.; Opwis, K.; Kappos, L.; Calabrese, P. Fatigue in multiple sclerosis: Relation to depression, physical impairment, personality and action control. Mult. Scler. 2007, 13, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Popp, R.F.; Fierlbeck, A.K.; Knüttel, H.; König, N.; Rupprecht, R.; Weissert, R.; Wetter, T.C. Daytime sleepiness versus fatigue in patients with multiple sclerosis: A systematic review on the Epworth sleepiness scale as an assessment tool. Sleep. Med. Rev. 2017, 32, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Merkelbach, S.; Schulz, H.; Fatigue Collaborative Study Group. What have fatigue and sleepiness in common? J. Sleep. Res. 2006, 15, 105–106. [Google Scholar] [CrossRef]
- Merkelbach, S.; Schulz, H.; Kölmel, H.W.; Gora, G.; Klingelhöfer, J.; Dachsel, R.; Hoffmann, F.; Polzer, U. Fatigue, sleepiness, and physical activity in patients with multiple sclerosis. J. Neurol. 2011, 258, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Sguigna, P.V.; Toranian, S.; Tardo, L.M.; Blackburn, K.M.; Horton, L.A.; Conger, D.; Meltzer, E.; Hogan, R.N.; McCreary, M.C.; Zee, P.C.; et al. Disease associations of excessive daytime sleepiness in multiple sclerosis: A prospective study. Mult. Scler. J. Exp. Transl. Clin. 2023, 9, 20552173231159560. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Hirotsu, C.; Haba-Rubio, J.; Betta, M.; Bernardi, G.; Siclari, F.; Waeber, G.; Vollenweider, P.; Marques-Vidal, P.; Heinzer, R. Risk factors of excessive daytime sleepiness in a prospective population-based cohort. J. Sleep. Res. 2021, 30, e13069. [Google Scholar] [CrossRef]
- Boden-Albala, B.; Roberts, E.T.; Bazil, C.; Moon, Y.; Elkind, M.S.; Rundek, T.; Paik, M.C.; Sacco, R.L. Daytime sleepiness and risk of stroke and vascular disease: Findings from the Northern Manhattan Study (NOMAS). Circ. Cardiovasc. Qual. Outcomes 2012, 5, 500–507. [Google Scholar] [CrossRef]
- Maestri, M.; Romigi, A.; Schirru, A.; Fabbrini, M.; Gori, S.; Bonuccelli, U.; Bonanni, E. Excessive daytime sleepiness and fatigue in neurological disorders. Sleep Breath. 2020, 24, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Dubessy, A.L.; Tezenas du Montcel, S.; Viala, F.; Assouad, R.; Tiberge, M.; Papeix, C.; Lubetzki, C.; Clanet, M.; Arnulf, I.; Stankoff, B. Association of Central Hypersomnia and Fatigue in Patients With Multiple Sclerosis: A Polysomnographic Study. Neurology 2021, 97, e23–e33. [Google Scholar] [CrossRef] [PubMed]
- Kaynak, H.; Altintas, A.; Kaynak, D.; Uyanik, O.; Saip, S.; Agaoglu, J.; Önder, G.; Siva, A. Fatigue and sleep disturbance in multiple sclerosis. Eur. J. Neurol. 2006, 13, 1333e9. [Google Scholar] [CrossRef]
- Donadio, V.; Liguori, R.; Vetrugno, R.; Contin, M.; Elam, M.; Wallin, B.G.; Karlsson, T.; Bugiardini, E.; Baruzzi, A.; Montagna, P. Daytime sympathetic hyperactivity in OSAS is related to excessive daytime sleepiness. J. Sleep Res. 2007, 16, 327–332. [Google Scholar] [CrossRef]
- Taranto-Montemurro, L.; Floras, J.S.; Picton, P.; Kasai, T.; Alshaer, H.; Gabriel, J.M.; Bradley, T.D. Relationship of heart rate variability to sleepiness in patients with obstructive sleep apnea with and without heart failure. J. Clin. Sleep Med. 2014, 10, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Rodrigues, D.; Tran, Y.; Guest, R.; Middleton, J. Daytime sleepiness and its relationships to fatigue and autonomic dysfunction in adults with spinal cord injury. J. Psychosom. Res. 2018, 112, 90–98. [Google Scholar] [CrossRef]
- Eckhardt, C.; Fanciulli, A.; Högl, B.; Heidbreder, A.; Eschlböck, S.; Raccagni, C.; Krismer, F.; Leys, F.; Kiechl, S.; Ransmayr, G.; et al. Analysis of sleep, daytime sleepiness, and autonomic function in multiple system atrophy and Parkinson disease: A prospective study. J. Clin. Sleep Med. 2023, 19, 63–71. [Google Scholar] [CrossRef]
- Ziemssen, T.; Siepmann, T. The Investigation of the Cardiovascular and Sudomotor Autonomic Nervous System-A Review. Front. Neurol. 2019, 10, 53. [Google Scholar] [CrossRef]
- Stewart, J.M. Mechanisms of sympathetic regulation in orthostatic intolerance. J. Appl. Physiol. 2012, 113, 1659–1668. [Google Scholar] [CrossRef]
- Feng, Y.; Zou, Y.; Zheng, Y.; Levin, N.W.; Wang, L. The value of non-invasive measurement of cardiac output and total peripheral resistance to categorize significant changes of intradialytic blood pressure: A prospective study. BMC Nephrol. 2018, 19, 310. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Lublin, F.D. New multiple sclerosis phenotypic classification. Eur. Neurol. 2014, 72 (Suppl. 1), 1–5. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444. [Google Scholar] [CrossRef] [PubMed]
- Kalincik, T.; Cutter, G.; Spelman, T.; Jokubaitis, V.; Havrdova, E.; Horakova, D.; Trojano, M.; Izquierdo, G.; Girard, M.; Duquette, P.; et al. Defining reliable disability outcomes in multiple sclerosis. Brain 2015, 138, 3287–3298. [Google Scholar] [CrossRef]
- Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment clinical autonomic testing report of the therapeutics and technology subcommittee of the American Academy of Neurology. Neurology 1996, 46, 873–880. [Google Scholar]
- Fortin, J.; Klinger, T.; Wagner, C.; Sterner, H.; Madritsch, C.; Grüllenberger, R.; Hacker, A.; Habenbacher, W.; Skrabal, F. The task force monitor—A non-invasive beat-to beat monitor for hemodynamic and autonomic function of the human body. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1 November 1998; Volume 66, pp. 63–151. [Google Scholar]
- Gratze, G.; Fortin, J.; Holler, A.; Grasenick, K.; Pfurtscheller, G.; Wach, P.; Schönegger, J.; Kotanko, P.; Skrabal, F. A software package for non-invasive, real-time beat-to-beat monitoring of stroke volume, blood pressure, total peripheral resistance and for assessment of autonomic function. Comput. Biol. Med. 1998, 28, 121–142. [Google Scholar] [CrossRef] [PubMed]
- Parati, G.; Di Rienzo, M.; Mancia, G. How to measure baroreflex sensitivity: From the cardiovascular laboratory to daily life. J. Hypertens. 2000, 18, 7–19. [Google Scholar] [CrossRef]
- Bianchi, A.M.; Mainardi, L.; Meloni, C.; Chierchiu, S.; Cerutti, S. Continuous monitoring of the sympatho-vagal balance through spectral analysis. IEEE Eng. Med. Biol. Mag. 1997, 16, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Stauss, H.M. Identification of blood pressure control mechanisms by power spectral analysis. Clin. Exp. Pharmacol. Physiol. 2007, 34, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://www.itl.nist.gov/div898/handbook/.2012/01/20 (accessed on 21 August 2020).
- Craig, J. The Chalder Fatigue Scale (CFQ 11). Occupational Medicine 2015, 65, 86. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Fois, M.; Maule, S.V.; Giudici, M.; Valente, M.; Ridolfi, L.; Scarsoglio, S. Cardiovascular Response to Posture Changes: Multiscale Modeling and in vivo Validation During Head-Up Tilt. Front. Physiol. 2022, 13, 826989. [Google Scholar] [CrossRef]
- Ramirez-Marrero, F.A.; Charkoudian, N. Hart EC, Schroeder D, Zhong L, Eisenach JH, Joyner MJ. Cardiovascular dynamics in healthy subjects with differing heart rate responses to tilt. J. Appl. Physiol. 2008, 105, 1448–1453. [Google Scholar] [CrossRef]
- Adamec, I.; Lovrić, M.; Žaper, D.; Barušić, A.K.; Bach, I.; Junaković, A.; Mišmaš, A.; Habek, M. Postural orthostatic tachycardia syndrome associated with multiple sclerosis. Auton. Neurosci. 2013, 173, 65–68. [Google Scholar] [CrossRef]
- Adamec, I.; Bach, I.; Barušić, A.K.; Mišmaš, A.; Habek, M. Assessment of prevalence and pathological response to orthostatic provocation in patients with multiple sclerosis. J. Neurol. Sci. 2013, 324, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Habek, M.; Krbot Skori’c, M.; Crnošija, L.; Adamec, I. Brainstem dysfunction protects against syncope in multiple sclerosis. J. Neurol. Sci. 2015, 357, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Jay, O.; Davis, S.L. Autonomic dysfunction in multiple sclerosis: Implications for exercise. Auton. Neurosci. 2015, 188, 82–85. [Google Scholar] [CrossRef]
- Low, P.; Singer, W. The arterial baroreflex in neurogenic orthostatic hypotension. Clin. Auton. Res. 2023, 33, 81–82. [Google Scholar] [CrossRef] [PubMed]
- Koutsouraki, E.; Theodoros, K.; Eleni, G.; Marianna, K.; Areti, N.; Ariadni, K.; Dimitrios, M. Autonomic nervous system disorders in multiple sclerosis. J. Neurol. 2023, 270, 3703–3713. [Google Scholar] [CrossRef]
- Garis, G.; Haupts, M.; Duning, T.; Hildebrandt, H. Heart rate variability and fatigue in MS: Two parallel pathways representing disseminated inflammatory processes? Neurol. Sci. 2023, 44, 83–98. [Google Scholar] [CrossRef]
- Crnošija, L.; Moštak, I.; Višnjić, N.; Junaković, A.; Karić, A.; Adamec, I.; Krbot Skorić, M.; Habek, M. Blood pressure variability is altered in secondary progressive multiple sclerosis but not in patients with a clinically isolated syndrome. Neurophysiol. Clin. 2022, 52, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Studer, V.; Rocchi, C.; Motta, C.; Lauretti, B.; Perugini, J.; Brambilla, L.; Pareja-Gutierrez, L.; Camera, G.; Barbieri, F.R.; Marfia, G.A.; et al. Heart rate variability is differentially altered in multiple sclerosis: Implications for acute, worsening and progressive disability. Mult. Scler. J. Exp. Transl. Clin. 2017, 3, 2055217317701317. [Google Scholar] [CrossRef]
- Gervasoni, E.; Bove, M.; Sinatra, M.; Grosso, C.; Rovaris, M.; Cattaneo, D.; Merati, G. Cardiac autonomic function during postural changes and exercise in people with multiple sclerosis: A cross-sectional study. Mult. Scler. Relat. Disord. 2018, 24, 85–90. [Google Scholar] [CrossRef]
- Ohayon, M.M. From wakefulness to excessive sleepiness: What we know and still need to know. Sleep Med. Rev. 2008, 12, 129–141. [Google Scholar] [CrossRef]
- Braley, T.J.; Chervin, R.D. Segal BM. Fatigue, tiredness, lack of energy, and sleepiness in multiple sclerosis patients referred for clinical polysomnography. Mult. Scler. Int. 2012, 2012, 673936. [Google Scholar] [CrossRef]
- Pokryszko-Dragan, A.; Bilińska, M.; Gruszka, E.; Biel, Ł.; Kamińska, K.; Konieczna, K. Sleep disturbances in patients with multiple sclerosis. Neurol. Sci. 2013, 34, 1291–1296. [Google Scholar] [CrossRef]
- Kasai, T.; Taranto-Montemurro, L.; Yumino, D.; Wang, H.; Floras, J.S.; Newton, G.E.; Mak, S.; Ruttanaumpawan, P.; Parker, J.D.; Bradley, T.D. Inverse relationship of subjective daytime sleepiness to mortality in heart failure patients with sleep apnoea. ESC Heart Fail. 2020, 7, 2448–2454. [Google Scholar] [CrossRef] [PubMed]
MS | HCs | p-Value | |
---|---|---|---|
Number of subjects | 58 | 30 | |
Sex, female n (%) | 47 (81.03) | 16 (53.33) | 0.006 |
Age, mean (years) | 47.45 ± 11.90 | 40.53 ± 14.20 | 0.079 |
Age at onset, mean (years) | 35.55 ± 10.37 | ||
Disease duration MS (years), mean (range) | 9.90 ± 6.94 (0.5–28) | ||
EDDS | 3.51 ± 1.84 (0.5–7.00) | ||
Mild (≤3.5), n (%) | 29 (50.00) | ||
Moderate (4–5.5) n (%) | 20 (34.48) | ||
Severe (>6.0) n (%) | 9 (15.52) | ||
MS variant, n (%) | |||
RRMS | 34 (58.62) | ||
SPMS | 16 (27.59) | ||
PPMS | 8 (13.79) | ||
Localization of the First Demyelinating Lesions, n (%) | |||
Supratentorial + optic nerves | 40 (68.97) | ||
Spinal cord | 14 (24.14 | ||
Cerebellum | 3 (5.17) | ||
Brainstem | 1 (1.72 | ||
Type of DMD n (%) | |||
Interferon-beta | 8 (13.79) | ||
Glatiramer acetate | 4 (6.89) | ||
Dimethyl fumarate | 2 (3.44) | ||
Natalizumab | 1 (1.72) | ||
CFQ, mean (score) | 17.81 ± 6.08 | 12.63 ± 5.91 | <0.001 |
RRMS | 17.03 ± 5.98 | ||
PMS | 18.92 ± 6.18 | ||
ESS, mean (score) | 5.62 ± 4.25 | 5.60 ± 3.73 | 0.999 |
RRMS | 5.68 ± 4.37 | ||
PMS | 5.54 ± 14.7 | ||
Daily sleepiness, n (%) | 11 (18.97) | 3 (10) | 0.275 |
RRMS | 8 (23.83) | ||
PMS | 3 (12.50) | ||
Fatigue symptoms, n (%) | 55 (94.83) | 25 (83.33) | 0.075 |
RRMS | 32 (55.17) | ||
PMS | 23 (39.66) |
Variables | Group | Baseline | 1.20 Phase I | 3.20 min Phase II | 5.20 min Phase III | 7.20 Phase 4 |
---|---|---|---|---|---|---|
HR [1/min] | MS | 66.61 ± 0.93 | 75.10 ± 1.28 | 80.29 ± 1.38 | 80.14 ± 1.32 | 81.59 ± 1.37 |
Control | 63.87 ± 1.77 | 71.90 ± 2.17 | 77.27 ± 2.14 | 77.28 ± 1.71 | 78.82 ± 2.25 | |
sBP [mmHg] | MS | 112.67 ± 1.53 | 123.22 ± 2.19 | 125.34 ± 2.20 | 125.16 ± 2.14 | 124.64 ± 1.97 |
Control | 110.84 ± 2.10 | 125.74 ± 3.13 | 129.64 ± 2.39 | 127.17 ± 2.64 | 124.91 ± 2.42 | |
dBP [mmHg] | MS | 73.02 ± 1.17 | 90.52 ± 1.90 | 91.68 ± 1.76 | 89.10 ± 1.71 | 87.60 ± 1.57 |
Control | 69.76 ± 1.99 | 93.75 ± 2.72 | 97.44 ± 2.21 | 92.84 ± 2.42 | 88.47 ± 2.40 | |
mBP [mmHg] | MS | 89.69 ± 1.27 | 104.28 ± 1.93 | 105.84 ± 1.85 | 104.25 ± 1.79 | 103.06 ± 1.66 |
Control | 86.74 ± 1.97 | 106.70 ± 2.72 | 110.65 ± 2.08 | 106.79 ± 2.35 | 103.13 ± 2.28 | |
CI [L/(min·m2)] | MS | 3.45 ± 0.13 | 2.94 ± 0.09 | 2.88 ± 0.08 | 2.87 ± 0.08 | 2.91 ± 0.09 |
Control | 3.20 ± 0.12 | 2.93 ± 0.10 | 2.92 ± 0.10 | 2.91 ± 0.10 | 2.93 ± 0.10 | |
TPRI [dyn·s·m2/cm5] | MS | 2272.01 ± 138.87 | 3006.57 ± 146.91 | 3078.56 ± 132.68 | 3021.80 ± 123.70 | 2959.50 ± 125.04 |
Control | 2222.31 ± 123.18 | 3025.78 ± 180.03 | 3131.44 ± 180.25 | 3023.11 ± 173.12 | 2890.67 ± 163.24 | |
LFnu-RRI [%] | MS | 62.85 ± 2.06 | 62.84 ± 1.93 | 72.35 ± 1.80 | 75.87 ± 1.55 | 76.10 ± 1.57 |
Control | 62.54 ± 2.55 | 64.70 ± 3.11 | 73.93 ± 2.86 | 79.52 ± 2.57 | 78.71 ± 2.35 | |
HFnu-RRI [%] | MS | 37.24 ± 2.05 | 37.16 ± 1.93 | 27.65 ± 1.80 | 24.13 ± 1.55 | 23.90 ± 1.57 |
Control | 37.46 ± 2.55 | 35.30 ± 3.11 | 26.07 ± 2.86 | 20.48 ± 2.57 | 21.29 ± 2.35 | |
PSD-RRI [ms2] | MS | 1684.21 ± 214.16 | 1654.46 ± 247.71 | 1046.81 ± 139.50 | 702.05 ± 91.00 | 647.44 ± 112.41 |
Control | 2379.92 ± 322.34 | 2184.37 ± 460.47 | 1452.78 ± 245.27 | 1272 ± 182.64 | 998.87 ± 129.32 | |
LF/HF-RRI [1] | MS | 2.51 ± 0.26 | 2.33 ± 0.21 | 4.28 ± 0.48 | 4.99 ± 0.50 | 4.99 ± 0.61 |
Control | 2.20 ± 0.22 | 2.86 ± 0.50 | 4.76 ± 0.73 | 6.24 ± 0.88 | 6.07 ± 0.93 | |
LF/HF [1] | MS | 1.60 ± 0.15 | 1.34 ± 0.10 | 2.52 ± 0.28 | 3.23 ± 0.33 | 3.42 ± 0.40 |
Control | 1.37 ± 0.11 | 1.61 ± 0.25 | 2.84 ± 0.41 | 4.20 ± 0.63 | 4.19 ± 0.57 | |
LFnu-dBP [%] | MS | 43.58 ± 1.62 | 39.22 ± 1.46 | 44.47 ± 1.59 | 50.33 ± 1.83 | 53.36 ± 1.90 |
Control | 42.70 ± 1.72 | 39.81 ± 1.54 | 47.15 ± 1.83 | 53.64 ± 2.11 | 57.62 ± 2.13 | |
HFnu-dBP [%] | MS | 9.77 ± 0.62 | 10.09 ± 0.83 | 10.50 ± 0.79 | 10.48 ± 0.58 | 11.37 ± 0.79 |
Control | 12.25 ± 1.54 | 11.67 ± 1.38 | 11.80 ± 1.21 | 12.39 ± 1.15 | 12.86 ± 1.16 | |
PSD-dBP [mmHg2] | MS | 8.21 ± 0.65 | 8.00 ± 0.67 | 6.93 ± 0.61 | 6.35 ± 0.56 | 6.26 ± 0.58 |
Control | 11.45 ± 1.80 | 12.84 ± 2.22 | 9.52 ± 1.39 | 10.06 ± 1.74 | 9.74 ± 1.68 | |
LFnu-sBP [%] | MS | 41.78 ± 1.54 | 41.59 ± 1.44 | 47.78 ± 1.48 | 51.87 ± 1.76 | 52.80 ± 1.87 |
Control | 39.92 ± 1.59 | 39.64 ± 1.61 | 47.13 ± 1.89 | 53.61 ± 2.22 | 56.48 ± 2.30 | |
HFnu-sBP [%] | MS | 11.87 ± 0.90 | 13.45 ± 1.01 | 14.43 ± 1.06 | 15.11 ± 1.13 | 16.08 ± 1.24 |
Control | 11.79 ± 1.15 | 13.72 ± 1.15 | 14.65 ± 1.11 | 15.02 ± 1.04 | 15.56 ± 1.05 | |
PSD-sBP [mmHg2] | MS | 13.55 ± 1.26 | 11.95 ± 1.10 | 10.51 ± 0.99 | 9.92 ± 0.95 | 9.76 ± 1.01 |
Control | 18.25 ± 2.84 | 16.06 ± 2.75 | 13.95 ± 2.29 | 12.98 ± 2.06 | 12.65 ± 1.96 | |
BRS [ms/mmHg] | MS | 15.78 ± 1.57 | 9.16 ± 0.74 | 8.59 ± 1.07 | 7.11 ± 0.43 | 7.61 ± 0.54 |
Control | 17.69 ± 1.85 | 12.25 ± 1.29 | 10.11 ± 1.22 | 9.11 ± 0.76 | 8.89 ± 0.81 |
Variables | Group | Δ1.20 Phase1-Baseline | 3.20 min Phase2-Baseline | 5.20 min Phase3-Baseline | 7.20-Phase4-Baseline |
---|---|---|---|---|---|
HR [1/min] | MS | 6.70 [2.04; 16.10] | 13.01 [5.14; 25.87] | 12.45 [7.37; 17.01] | 13.17 [9.65; 19.16] |
HCs | 7.99 [2.48; 11.08] | 14.54 [7.67; 18.78] | 14.29 [8.73; 18.05] | 14.78 [9.34; 19.11] | |
sBP [mmHg] | MS | 12.70 [−7.56; 21.78] | 13.65 [−2.66; 24.89] * | 14.83 [7.40; 20.72] | 12.09 [6.52; 18.97] |
HCs | 15.79 [6.27; 24,28] | 19.06 [11.63; 26.59] | 15.86 [8.91; 24.61] | 12,29 [6.22; 19.39] | |
dBP [mmHg] | MS | 17.50 [2.84; 31.99] * | 20.21 [3.84; 31.08] *** | 17.93 [11.12; 24.20] * | 15.28 [8.40; 21.91] |
HCs | 22.41 [16.97; 28.47] | 26.92 [21.51; 33.62] | 19.44 [15.65; 29.59] | 17.51 [14.18; 21.11] | |
mBP [mmHg] | MS | 14.59 [1.66; 25.35] | 17.91 [3.22; 27.99] ** | 16.32 [9.34; 23.10] | 13.46 [7.89; 19.88] |
HCs | 18.32 [11.65; 26.16] | 23.71 [18.72; 31.43] | 17.58 [12.18; 25.94] | −2.28 [8.75; 18.09] | |
CI [L/(min·m2)] | MS | −0.52 [−1.34; −0.32] * | −0.57 [−1.48; 0.36] * | −0.70 [−0.95; −0.18] * | −0.62 [−0.95; −0.18] * |
HCs | −0.27 [−0.54; 0.06] | −0.26 [−0.59; 0.07] | −0.26 [−0.53; 0.09] | −1.55 [−0.63; 0.10] | |
TPRI [dyn·s·m2/cm5] | MS | 737.78 [55.51; 1404.70] | 869.46 [7.54; 1737.64] | 850.65 [403.19; 1193.66] | 689.10 [401.66; 1075.18] |
HCs | 874.28 [367.95; 1132.58] | 835.74 [525.85; 1171.54] | 707.14 [423.84; 1169.55] | 596.28 [329.06; 943.47] | |
LFnu-RRI [%] | MS | 0.38 [−6.07; 4.49] | 9.15 [−5.76; 26.23] | 10.16 [2.47; 23.63] | 12.47 [1.90; 24.03] |
HCs | 2.68 [−2.26; 8.69] | 10.70 [1.26; 18.13] | 17.27 [7.30; 25.61] | 18.44 [9.17; 24.63] | |
HFnu-RRI [%] | MS | −0.49 [−10.09; 9.54] | −9.15 [−26.36; 5.76] | −10.16 [−23.63; −2.47] | −12.47 [−24.03, −1.90] |
HCs | −2.68 [−8.69; 2.26] | −10.70 [−18.13; −1.26) | −17.27 [ −25.61; −7.30] | −18.44 [−24.63; −9.17] | |
PSD-RRI [ms2] | MS | −73.79 [−1252.38; 486.99] | −240.83 [−2659.36; 409.77] | −543.85 [−1491.81; −101.39] | −527.51 [−1732.01; −170.71] |
HCs | −79.26 [−0.43; 1.00] | −527.27 [−1262.40; −66.46] | −929.83 [ −1778.30; −167.37] | −1081.45 [−2655.62; −298.57] | |
LF/HF-RRI [1] | MS | −0.01 [−1.06; 0.81] | 0.81 [−0.87; 5.09] | 1.90 [0.61; 4.19] | 1.16 [0.19; 3.04] |
HCs | 0.23 [−0.43; 1.00] | 1.71 [−0.10; 3.24] | 2.91 [ 0.87; 5.96] | 2.82 [0.77; 5.48] | |
LF/HF [1] | MS | −0.10 [−0.81; 0.21] * | 0.44 [−0.64; 3.06] | 1.15 [0.28; 2.52] | 1.04 [0.18; 2.39] * |
HCs | −0.04 [−0.30; 0.40] | 0.91 [0.13; 1.91] | 2.02 [0.66; 3.27] | 1.65 [1.28; 4.63] | |
LFnu-dBP [%] | MS | −3.37 [−13.85; 3.69] | 0.85 [−8.62; 10.06] | 7.27 [1.14; 11.49] * | 10.06 [3.73; 15.86] |
HCs | −2.17 [−6.47; 2.38] | 3.50 [−0.69; 7.71] | 8.46 [ 2.17; 18.98] | 14.86 [5.89; 23.73] | |
HFnu-dBP [%] | MS | −0,18 [−1.83; 2.37] | 0.41 [−2.05; 3.65] | 0.54 [−0.50; 2.10] | 0.88 [−0.52; 2.67] |
HCs | −0.46 [−1.87; 0.89] | 0.40 [−1.81; 1.88] | 0.98 [−1.92; 3.09] | 1.54 [−1.44; 3.20] | |
PSD-dBP [mmHg2] | MS | −0.40 [−2.04; 1.39] | −1.09 [−3.92; 0.48] | −1.70 [−2.56; −0.71] | −1.88 [−3.14; −0.72] |
HCs | 0.08 [−1.13; 1.10) | −1.27 [−3.16; −0.51] | −1.77 [−2.79; −0.37] | −1.91 [−2.92; −0.74] | |
LFnu-sBP [%] | MS | −0.67 [−9.04; 5.51] | 4.75 [5.21; 17.41] | 8.47 [2.12; 17.11] | 10.09 [2.27; 18.34] |
HCs | −0.45 [−4.56; 3.88] | 6.33 [−0.01; 13.26] | 13.95 [3.43; 20.50] | 17.43 [5.86; 23.81 | |
HFnu-sBP [%] | MS | 0.66 [−0.64; 3.71] | 1.77 [−1.21; 7.14] | 2.35 [0.16; 5.45] | 2.29 [0.18; 7.60] |
HCs | 1.51 [−0.43; 3.45] | 2.69 [0.70; 4.31] | 3.17 [0.54; 5.68 | 4.03 [0.65; 5.75] | |
PSD-sBP [mmHg2] | MS | −1.18 [−5.05; 0.15] | −2.68 [−7.89; 0.07] | −3,27 [−4.90; −1.25] | −3.36 [−5.62; −1.39] |
HCs | −1.63 [−3.69; −0.71] | −3.00 [−5.95; −1.50] | −2.71 [−6.00; −1.88] | −3.21 [−5.85; −1.87] | |
BRS [ms/mmHg] | MS | −4.93 [−28.72; 3.77] | −4.92 [−24.30; 5.13] | −6.60 [−12.99; −0.44] | −6.39 [−12.10; −0.72] |
HCs | −5.13 [−10.68; −1.30] | −7.12 [−10.81; −2.07] | −8.12 [−11.92; −1.79] | −7.96 [−12.66; −2.60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zawadka-Kunikowska, M.; Rzepiński, Ł.; Cieślicka, M.; Klawe, J.J.; Tafil-Klawe, M. Association between Daytime Sleepiness, Fatigue and Autonomic Responses during Head-Up Tilt Test in Multiple Sclerosis Patients. Brain Sci. 2023, 13, 1342. https://doi.org/10.3390/brainsci13091342
Zawadka-Kunikowska M, Rzepiński Ł, Cieślicka M, Klawe JJ, Tafil-Klawe M. Association between Daytime Sleepiness, Fatigue and Autonomic Responses during Head-Up Tilt Test in Multiple Sclerosis Patients. Brain Sciences. 2023; 13(9):1342. https://doi.org/10.3390/brainsci13091342
Chicago/Turabian StyleZawadka-Kunikowska, Monika, Łukasz Rzepiński, Mirosława Cieślicka, Jacek J. Klawe, and Małgorzata Tafil-Klawe. 2023. "Association between Daytime Sleepiness, Fatigue and Autonomic Responses during Head-Up Tilt Test in Multiple Sclerosis Patients" Brain Sciences 13, no. 9: 1342. https://doi.org/10.3390/brainsci13091342
APA StyleZawadka-Kunikowska, M., Rzepiński, Ł., Cieślicka, M., Klawe, J. J., & Tafil-Klawe, M. (2023). Association between Daytime Sleepiness, Fatigue and Autonomic Responses during Head-Up Tilt Test in Multiple Sclerosis Patients. Brain Sciences, 13(9), 1342. https://doi.org/10.3390/brainsci13091342