Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review
Abstract
:1. Introduction
2. Overview of Physiological Arousal
2.1. Physiological Correlates of Arousal
2.2. Neural Correlates of Physiological Arousal
3. Abnormal Arousal in Depression
3.1. Behavior Characteristics
3.2. Physiological Evidence
3.2.1. Autonomic Function Indices
3.2.2. Hyperactivity of HPA Axis
3.2.3. Hyperactivity of Noradrenergic System (LC)
3.2.4. Hyperstable Arousal Regulation as Indexed by EEG Vigilance
4. Thalamocortical Circuits Possibly Account for Abnormal Arousal in Depression
5. Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- McCormick, D.A.; Nestvogel, D.B.; He, B.J. Neuromodulation of Brain State and Behavior. Annu. Rev. Neurosci. 2020, 43, 391–415. [Google Scholar] [CrossRef] [PubMed]
- Hegerl, U.; Sander, C.; Olbrich, S.; Schoenknecht, P. Are Psychostimulants a Treatment Option in Mania? Pharmacopsychiatry 2009, 42, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Hegerl, U.; Hensch, T. The Vigilance Regulation Model of Affective Disorders and ADHD. Neurosci. Biobehav. Rev. 2014, 44, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Hegerl, U.; Wilk, K.; Olbrich, S.; Schoenknecht, P.; Sander, C. Hyperstable Regulation of Vigilance in Patients with Major Depressive Disorder. World J. Biol. Psychiatry 2012, 13, 436–446. [Google Scholar] [CrossRef] [PubMed]
- Olbrich, S.; Sander, C.; Minkwitz, J.; Chittka, T.; Mergl, R.; Hegerl, U.; Himmerich, H. EEG Vigilance Regulation Patterns and Their Discriminative Power to Separate Patients with Major Depression from Healthy Controls. Neuropsychobiology 2012, 65, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Ulke, C.; Tenke, C.E.; Kayser, J.; Sander, C.; Böttger, D.; Wong, L.Y.X.; Alvarenga, J.E.; Fava, M.; McGrath, P.J.; Deldin, P.J.; et al. Resting EEG Measures of Brain Arousal in a Multisite Study of Major Depression. Clin. EEG Neurosci. 2019, 50, 3–12. [Google Scholar] [CrossRef]
- Armitage, R. Sleep and Circadian Rhythms in Mood Disorders. Acta Psychiatr. Scand. Suppl. 2007, 115, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Tsuno, N.; Besset, A.; Ritchie, K. Sleep and Depression. J. Clin. Psychiatry 2005, 66, 1254–1269. [Google Scholar] [CrossRef]
- Laureys, S. The Neural Correlate of (Un)Awareness: Lessons from the Vegetative State. Trends Cogn. Sci. 2005, 9, 556–559. [Google Scholar] [CrossRef]
- Owen, A.M. Improving Diagnosis and Prognosis in Disorders of Consciousness. Brain 2020, 143, 1050–1053. [Google Scholar] [CrossRef]
- Sulaman, B.A.; Wang, S.; Tyan, J.; Eban-Rothschild, A. Neuro-Orchestration of Sleep and Wakefulness. Nat. Neurosci. 2023, 26, 196–212. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef] [PubMed]
- Goodale, S.E.; Ahmed, N.; Zhao, C.; de Zwart, J.A.; Özbay, P.S.; Picchioni, D.; Duyn, J.; Englot, D.J.; Morgan, V.L.; Chang, C. fMRI-Based Detection of Alertness Predicts Behavioral Response Variability. eLife 2021, 10, e62376. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, J.; Loughnane, G.M.; Newman, D.P.; Kelly, S.P.; Thiele, A.; O’Connell, R.G.; Bellgrove, M.A. Behavioural and Neural Signatures of Perceptual Decision-Making Are Modulated by Pupil-Linked Arousal. eLife 2019, 8, e42541. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Wen, R.; Fu, S.; Cheng, X.; Ren, S.; Lu, M.; Qian, L.; Luo, F.; Wang, Y.; Xiao, Q.; et al. Spatial Memory Requires Hypocretins to Elevate Medial Entorhinal Gamma Oscillations. Neuron, 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Foucher, J.R.; Otzenberger, H.; Gounot, D. Where Arousal Meets Attention: A Simultaneous fMRI and EEG Recording Study. Neuroimage 2004, 22, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Motelow, J.E.; Li, W.; Zhan, Q.; Mishra, A.M.; Sachdev, R.N.S.; Liu, G.; Gummadavelli, A.; Zayyad, Z.; Lee, H.S.; Chu, V.; et al. Decreased Subcortical Cholinergic Arousal in Focal Seizures. Neuron 2015, 85, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Salomon, R.; Bleich-Cohen, M.; Hahamy-Dubossarsky, A.; Dinstien, I.; Weizman, R.; Poyurovsky, M.; Kupchik, M.; Kotler, M.; Hendler, T.; Malach, R. Global Functional Connectivity Deficits in Schizophrenia Depend on Behavioral State. J. Neurosci. 2011, 31, 12972–12981. [Google Scholar] [CrossRef]
- Bonnet, M.H.; Arand, D.L. Hyperarousal and Insomnia: State of the Science. Sleep Med. Rev. 2010, 14, 9–15. [Google Scholar] [CrossRef]
- Riemann, D.; Spiegelhalder, K.; Feige, B.; Voderholzer, U.; Berger, M.; Perlis, M.; Nissen, C. The Hyperarousal Model of Insomnia: A Review of the Concept and Its Evidence. Sleep Med. Rev. 2010, 14, 19–31. [Google Scholar] [CrossRef]
- Arora, I.; Bellato, A.; Ropar, D.; Hollis, C.; Groom, M.J. Is Autonomic Function during Resting-State Atypical in Autism: A Systematic Review of Evidence. Neurosci. Biobehav. Rev. 2021, 125, 417–441. [Google Scholar] [CrossRef]
- Stetler, C.; Miller, G.E. Depression and Hypothalamic-Pituitary-Adrenal Activation: A Quantitative Summary of Four Decades of Research. Psychosom. Med. 2011, 73, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M.; Lightman, S.L. The HPA Axis in Major Depression: Classical Theories and New Developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Seki, K.; Yoshida, S.; Jaiswal, M.K. Molecular Mechanism of Noradrenaline during the Stress-Induced Major Depressive Disorder. Neural Regen. Res. 2018, 13, 1159–1169. [Google Scholar] [PubMed]
- Bayne, T.; Hohwy, J.; Owen, A.M. Are There Levels of Consciousness? Trends Cogn. Sci. 2016, 20, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Poudel, G.R.; Innes, C.R.H.; Jones, R.D. Temporal Evolution of Neural Activity and Connectivity during Microsleeps When Rested and Following Sleep Restriction. Neuroimage 2018, 174, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Waschke, L.; Tune, S.; Obleser, J. Local Cortical Desynchronization and Pupil-Linked Arousal Differentially Shape Brain States for Optimal Sensory Performance. eLife 2019, 8, e51501. [Google Scholar] [CrossRef]
- Podvalny, E.; King, L.E.; He, B.J. Spectral Signature and Behavioral Consequence of Spontaneous Shifts of Pupil-Linked Arousal in Human. eLife 2021, 10, e68265. [Google Scholar] [CrossRef]
- Huang, J.; Ulke, C.; Strauss, M. Brain Arousal Regulation and Depressive Symptomatology in Adults with Attention-Deficit/Hyperactivity Disorder (ADHD). BMC Neurosci. 2019, 20, 43. [Google Scholar] [CrossRef]
- Yi, L.; Wang, Q.; Song, C.; Han, Z.R. Hypo- or Hyperarousal? The Mechanisms Underlying Social Information Processing in Autism. Child Dev. Perspect. 2022, 16, 215–222. [Google Scholar] [CrossRef]
- Satpute, A.B.; Kragel, P.A.; Barrett, L.F.; Wager, T.D.; Bianciardi, M. Deconstructing Arousal into Wakeful, Autonomic and Affective Varieties. Neurosci. Lett. 2019, 693, 19–28. [Google Scholar] [CrossRef]
- Meneguzzo, P.; Tsakiris, M.; Schioth, H.B.; Stein, D.J.; Brooks, S.J. Subliminal versus Supraliminal Stimuli Activate Neural Responses in Anterior Cingulate Cortex, Fusiform Gyrus and Insula: A Meta-Analysis of fMRI Studies. BMC Psychol. 2014, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, W.J.; Klerman, E.B. Circadian Neurobiology and the Physiologic Regulation of Sleep and Wakefulness. Neurol. Clin. 2019, 37, 475–486. [Google Scholar] [CrossRef] [PubMed]
- da Estrela, C.; McGrath, J.; Booij, L.; Gouin, J.-P. Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Ann. Behav. Med. 2021, 55, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Gold, J.I. Pupil Size as a Window on Neural Substrates of Cognition. Trends Cogn. Sci. 2020, 24, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Posada-Quintero, H.F.; Bolkhovsky, J.B.; Qin, M.; Chon, K.H. Human Performance Deterioration Due to Prolonged Wakefulness Can Be Accurately Detected Using Time-Varying Spectral Analysis of Electrodermal Activity. Hum. Factors 2018, 60, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Meissner, S.N.; Bächinger, M.; Kikkert, S.; Imhof, J.; Missura, S.; Carro Dominguez, M.; Wenderoth, N. Self-Regulating Arousal via Pupil-Based Biofeedback. Nat. Hum. Behav. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Saper, C.B.; Fuller, P.M.; Pedersen, N.P.; Lu, J.; Scammell, T.E. Sleep State Switching. Neuron 2010, 68, 1023–1042. [Google Scholar] [CrossRef]
- Saper, C.B.; Chou, T.C.; Scammell, T.E. The Sleep Switch: Hypothalamic Control of Sleep and Wakefulness. Trends Neurosci. 2001, 24, 726–731. [Google Scholar] [CrossRef]
- Parvizi, J.; Damasio, A. Consciousness and the Brainstem. Cognition 2001, 79, 135–160. [Google Scholar] [CrossRef]
- West, C.H.K.; Ritchie, J.C.; Boss-Williams, K.A.; Weiss, J.M. Antidepressant Drugs with Differing Pharmacological Actions Decrease Activity of Locus Coeruleus Neurons. Int. J. Neuropsychopharmacol. 2009, 12, 627–641. [Google Scholar] [CrossRef]
- Grady, F.S.; Boes, A.D.; Geerling, J.C. A Century Searching for the Neurons Necessary for Wakefulness. Front. Neurosci. 2022, 16, 930514. [Google Scholar] [CrossRef]
- Neylan, T.C. Physiology of Arousal: Moruzzi and Magoun’s Ascending Reticular Activating System. J. Neuropsychiatry Clin. Neurosci. 1995, 7, 250. [Google Scholar] [PubMed]
- Wijdicks, E.F.M. The Ascending Reticular Activating System. Neurocrit. Care 2019, 31, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Russell, G.; Lightman, S. The Human Stress Response. Nat. Rev. Endocrinol. 2019, 15, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-Pituitary-Adrenal Axis, Neuroendocrine Factors and Stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Leistner, C.; Menke, A. Hypothalamic-pituitary-adrenal axis and stress. Handb. Clin. Neurol. 2020, 175, 55–64. [Google Scholar] [PubMed]
- Herrera, C.G.; Cadavieco, M.C.; Jego, S.; Ponomarenko, A.; Korotkova, T.; Adamantidis, A. Hypothalamic Feedforward Inhibition of Thalamocortical Network Controls Arousal and Consciousness. Nat. Neurosci. 2016, 19, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Venner, A.; Anaclet, C.; Broadhurst, R.Y.; Saper, C.B.; Fuller, P.M. A Novel Population of Wake-Promoting GABAergic Neurons in the Ventral Lateral Hypothalamus. Curr. Biol. 2016, 26, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.G.; Hassani, O.K.; Jones, B.E. Discharge of Identified Orexin/Hypocretin Neurons across the Sleep-Waking Cycle. J. Neurosci. 2005, 25, 6716–6720. [Google Scholar] [CrossRef]
- Li, S.-B.; Borniger, J.C.; Yamaguchi, H.; Hédou, J.; Gaudilliere, B.; de Lecea, L. Hypothalamic Circuitry Underlying Stress-Induced Insomnia and Peripheral Immunosuppression. Sci. Adv. 2020, 6, eabc2590. [Google Scholar] [CrossRef]
- Xu, M.; Chung, S.; Zhang, S.; Zhong, P.; Ma, C.; Chang, W.-C.; Weissbourd, B.; Sakai, N.; Luo, L.; Nishino, S.; et al. Basal Forebrain Circuit for Sleep-Wake Control. Nat. Neurosci. 2015, 18, 1641–1647. [Google Scholar] [CrossRef]
- Zant, J.C.; Kim, T.; Prokai, L.; Szarka, S.; McNally, J.; McKenna, J.T.; Shukla, C.; Yang, C.; Kalinchuk, A.V.; McCarley, R.W.; et al. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study. J. Neurosci. 2016, 36, 2057–2067. [Google Scholar] [CrossRef] [PubMed]
- Boucetta, S.; Cissé, Y.; Mainville, L.; Morales, M.; Jones, B.E. Discharge Profiles across the Sleep-Waking Cycle of Identified Cholinergic, GABAergic, and Glutamatergic Neurons in the Pontomesencephalic Tegmentum of the Rat. J. Neurosci. 2014, 34, 4708–4727. [Google Scholar] [CrossRef] [PubMed]
- Anaclet, C.; Pedersen, N.P.; Ferrari, L.L.; Venner, A.; Bass, C.E.; Arrigoni, E.; Fuller, P.M. Basal Forebrain Control of Wakefulness and Cortical Rhythms. Nat. Commun. 2015, 6, 8744. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Yin, D.; Wang, T.-X.; Guo, W.; Dong, H.; Xu, Q.; Luo, Y.-J.; Cherasse, Y.; Lazarus, M.; Qiu, Z.-L.; et al. Basal Forebrain Cholinergic Neurons Primarily Contribute to Inhibition of Electroencephalogram Delta Activity, Rather Than Inducing Behavioral Wakefulness in Mice. Neuropsychopharmacology 2016, 41, 2133–2146. [Google Scholar] [CrossRef] [PubMed]
- Gent, T.C.; Bassetti, C.L.; Adamantidis, A.R. Sleep-Wake Control and the Thalamus. Curr. Opin. Neurobiol. 2018, 52, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Wang, Y.; Yue, F.; Cheng, X.; Dang, R.; Qiao, Q.; Sun, X.; Li, X.; Jiang, Q.; Yao, J.; et al. The Paraventricular Thalamus Is a Critical Thalamic Area for Wakefulness. Science 2018, 362, 429–434. [Google Scholar] [CrossRef]
- Tasserie, J.; Uhrig, L.; Sitt, J.D.; Manasova, D.; Dupont, M.; Dehaene, S.; Jarraya, B. Deep Brain Stimulation of the Thalamus Restores Signatures of Consciousness in a Nonhuman Primate Model. Sci. Adv. 2022, 8, eabl5547. [Google Scholar] [CrossRef]
- Penzo, M.A.; Gao, C. The Paraventricular Nucleus of the Thalamus: An Integrative Node Underlying Homeostatic Behavior. Trends Neurosci. 2021, 44, 538–549. [Google Scholar] [CrossRef]
- Bordes, S.; Werner, C.; Mathkour, M.; McCormack, E.; Iwanaga, J.; Loukas, M.; Lammle, M.; Dumont, A.S.; Tubbs, R.S. Arterial Supply of the Thalamus: A Comprehensive Review. World Neurosurg. 2020, 137, 310–318. [Google Scholar] [CrossRef]
- Zhang, J.; Northoff, G. Beyond Noise to Function: Reframing the Global Brain Activity and Its Dynamic Topography. Commun. Biol. 2022, 5, 1350. [Google Scholar] [CrossRef]
- Liu, X.; de Zwart, J.A.; Schölvinck, M.L.; Chang, C.; Ye, F.Q.; Leopold, D.A.; Duyn, J.H. Subcortical Evidence for a Contribution of Arousal to fMRI Studies of Brain Activity. Nat. Commun. 2018, 9, 395. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; Olafsson, V.; Tal, O.; Liu, T.T. The Amplitude of the Resting-State fMRI Global Signal Is Related to EEG Vigilance Measures. Neuroimage 2013, 83, 983–990. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.W.; DeYoung, P.N.; Liu, T.T. Differences in the Resting-State fMRI Global Signal Amplitude between the Eyes Open and Eyes Closed States Are Related to Changes in EEG Vigilance. Neuroimage 2016, 124, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Kiviniemi, V.J.; Haanpää, H.; Kantola, J.-H.; Jauhiainen, J.; Vainionpää, V.; Alahuhta, S.; Tervonen, O. Midazolam Sedation Increases Fluctuation and Synchrony of the Resting Brain BOLD Signal. Magn. Reson. Imaging 2005, 23, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, M.; Horovitz, S.G.; van Gelderen, P.; de Zwart, J.A.; Jansma, J.M.; Ikonomidou, V.N.; Chu, R.; Deckers, R.H.R.; Leopold, D.A.; Duyn, J.H. Large-Amplitude, Spatially Correlated Fluctuations in BOLD fMRI Signals during Extended Rest and Early Sleep Stages. Magn. Reson. Imaging 2006, 24, 979–992. [Google Scholar] [CrossRef]
- Chang, C.; Leopold, D.A.; Schölvinck, M.L.; Mandelkow, H.; Picchioni, D.; Liu, X.; Ye, F.Q.; Turchi, J.N.; Duyn, J.H. Tracking Brain Arousal Fluctuations with fMRI. Proc. Natl. Acad. Sci. USA 2016, 113, 4518–4523. [Google Scholar] [CrossRef]
- Akeju, O.; Loggia, M.L.; Catana, C.; Pavone, K.J.; Vazquez, R.; Rhee, J.; Contreras Ramirez, V.; Chonde, D.B.; Izquierdo-Garcia, D.; Arabasz, G.; et al. Disruption of Thalamic Functional Connectivity Is a Neural Correlate of Dexmedetomidine-Induced Unconsciousness. eLife 2014, 3, e04499. [Google Scholar] [CrossRef]
- Qin, P.; Wu, X.; Wu, C.; Wu, H.; Zhang, J.; Huang, Z.; Weng, X.; Zang, D.; Qi, Z.; Tang, W.; et al. Higher-Order Sensorimotor Circuit of the Brain’s Global Network Supports Human Consciousness. Neuroimage 2021, 231, 117850. [Google Scholar] [CrossRef]
- Kong, X.; Kong, R.; Orban, C.; Wang, P.; Zhang, S.; Anderson, K.; Holmes, A.; Murray, J.D.; Deco, G.; van den Heuvel, M.; et al. Sensory-Motor Cortices Shape Functional Connectivity Dynamics in the Human Brain. Nat. Commun. 2021, 12, 6373. [Google Scholar] [CrossRef]
- Liu, D.; Dan, Y. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit. Annu. Rev. Neurosci. 2019, 42, 27–46. [Google Scholar] [CrossRef]
- Redinbaugh, M.J.; Phillips, J.M.; Kambi, N.A.; Mohanta, S.; Andryk, S.; Dooley, G.L.; Afrasiabi, M.; Raz, A.; Saalmann, Y.B. Thalamus Modulates Consciousness via Layer-Specific Control of Cortex. Neuron 2020, 106, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhou, L.; Wu, H.; Huang, Y.; Qiu, M.; Huang, L.; Lee, C.; Lane, T.J.; Qin, P. Eyes-Open and Eyes-Closed Resting State Network Connectivity Differences. Brain Sci. 2023, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Wu, X.; Wu, H.; Wang, D.; She, X.; Xie, M.; Zhang, F.; Zhang, D.; Zhang, X.; Qin, P. Eye-Opening Alters the Interaction Between the Salience Network and the Default-Mode Network. Neurosci. Bull. 2020, 36, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®); American Psychiatric Pub: Washington, DC, USA, 2013. [Google Scholar]
- Montgomery, S.A.; Åsberg, M. A New Depression Scale Designed to Be Sensitive to Change. Br. J. Psychiatry 1979, 134, 382–389. [Google Scholar] [CrossRef]
- Mendlewicz, J. Sleep Disturbances: Core Symptoms of Major Depressive Disorder Rather than Associated or Comorbid Disorders. World J. Biol. Psychiatry 2009, 10, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Herbsleb, M.; Schumann, A.; Lehmann, L.; Gabriel, H.H.W.; Bär, K.-J. Cardio-Respiratory Fitness and Autonomic Function in Patients with Major Depressive Disorder. Front. Psychiatry 2020, 10, 980. [Google Scholar] [CrossRef] [PubMed]
- Volkers, A. Motor Activity and Autonomic Cardiac Functioning in Major Depressive Disorder. J. Affect. Disord. 2003, 76, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Koschke, M.; Boettger, M.K.; Schulz, S.; Berger, S.; Terhaar, J.; Voss, A.; Yeragani, V.K.; Bär, K.-J. Autonomy of Autonomic Dysfunction in Major Depression. Psychosom. Med. 2009, 71, 852–860. [Google Scholar] [CrossRef]
- Chang, C.-C.; Tzeng, N.-S.; Yeh, C.-B.; Kuo, T.B.J.; Huang, S.-Y.; Chang, H.-A. Effects of Depression and Melatonergic Antidepressant Treatment Alone and in Combination with Sedative–Hypnotics on Heart Rate Variability: Implications for Cardiovascular Risk. World J. Biol. Psychiatry 2018, 19, 368–378. [Google Scholar] [CrossRef]
- Chang, H.-A.; Chang, C.-C.; Chen, C.-L.; Kuo, T.B.J.; Lu, R.-B.; Huang, S.-Y. Major Depression Is Associated with Cardiac Autonomic Dysregulation. Acta Neuropsychiatr. 2012, 24, 318–327. [Google Scholar] [CrossRef]
- Berger, S.; Kliem, A.; Yeragani, V.; Bär, K.-J. Cardio-Respiratory Coupling in Untreated Patients with Major Depression. J. Affect. Disord. 2012, 139, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Berger, S.; Schulz, S.; Kletta, C.; Voss, A.; Bär, K.-J. Autonomic Modulation in Healthy First-Degree Relatives of Patients with Major Depressive Disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 1723–1728. [Google Scholar] [CrossRef]
- Agelink, M.W.; Boz, C.; Ullrich, H.; Andrich, J. Relationship between Major Depression and Heart Rate Variability. Clinical Consequences and Implications for Antidepressive Treatment. Psychiatry Res. 2002, 113, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Schumann, A.; Andrack, C.; Bär, K.-J. Differences of Sympathetic and Parasympathetic Modulation in Major Depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 79, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of Depression and Antidepressant Treatment on Heart Rate Variability: A Review and Meta-Analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, Y.; Zhang, Y.; Chen, L.; Zou, Y.; Xiao, J.; Min, W.; Yuan, C.; Ye, Y.; Li, M.; et al. Heart Rate Variability in Generalized Anxiety Disorder, Major Depressive Disorder and Panic Disorder: A Network Meta-Analysis and Systematic Review. J. Affect. Disord. 2023, 330, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Plotsky, P.M.; Owens, M.J.; Nemeroff, C.B. Psychoneuroendocrinology of depression. Hypothalamic-pituitary-adrenal axis. Psychiatr. Clin. N. Am. 1998, 21, 293–307. [Google Scholar]
- Gibbons, J.L.; McHugh, P.R. Plasma Cortisol in Depressive Illness. J. Psychiatr. Res. 1962, 1, 162–171. [Google Scholar] [CrossRef]
- Sachar, E.J. Disrupted 24-Hour Patterns of Cortisol Secretion in Psychotic Depression. Arch. Gen. Psychiatry 1973, 28, 19. [Google Scholar] [CrossRef]
- Linkowski, P.; Mendlewicz, J.; Leclercq, R.; Brasseur, M.; Hubain, P.; Golstein, J.; Copinschi, G.; Cauter, E.V. The 24-Hour Profile of Adrenocorticotropin and Cortisol in Major Depressive Illness. J. Clin. Endocrinol. Metab. 1985, 61, 429–438. [Google Scholar] [CrossRef]
- Carpenter, W.T., Jr.; Bunney, W.E., Jr. Adrenal Cortical Activity in Depressive Illness. Am. J. Psychiatry 1971, 128, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Paslakis, G.; Krumm, B.; Gilles, M.; Schweiger, U.; Heuser, I.; Richter, I.; Deuschle, M. Discrimination between Patients with Melancholic Depression and Healthy Controls: Comparison between 24-h Cortisol Profiles, the DST and the Dex/CRH Test. Psychoneuroendocrinology 2011, 36, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Valdivieso, S.; Duval, F.; Mokrani, M.-C.; Schaltenbrand, N.; Castro, J.O.; Crocq, M.-A.; Macher, J.-P. Growth Hormone Response to Clonidine and the Cortisol Response to Dexamethasone in Depressive Patients. Psychiatry Res. 1996, 60, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Carroll, B.J.; Curtis, G.C.; Davies, B.M.; Mendels, J.; Sugerman, A.A. Urinary Free Cortisol Excretion in Depression. Psychol. Med. 1976, 6, 43–50. [Google Scholar] [CrossRef]
- Sachar, E.J. Cortisol Production in Depressive Illness: A Clinical and Biochemical Clarification. Arch. Gen. Psychiatry 1970, 23, 289. [Google Scholar] [CrossRef] [PubMed]
- Pintor, L.; Torres, X.; Navarro, V.; Martinez De Osaba, M.J.; Matrai, S.; Gastó, C. Corticotropin-Releasing Factor Test in Melancholic Patients in Depressed State versus Recovery: A Comparative Study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2007, 31, 1027–1033. [Google Scholar] [CrossRef]
- Maes, M.; Claes, M.; Vandewoude, M.; Schotte, C.; Martin, M.; Blockx, P.; Cosyns, P. Adrenocorticotropin Hormone, β-Endorphin and Cortisol Responses to oCRF in Melancholic Patients. Psychol. Med. 1992, 22, 317–329. [Google Scholar] [CrossRef]
- Rubin, R.T. Adrenal Gland Volume in Major Depression: Increase during the Depressive Episode and Decrease with Successful Treatment. Arch. Gen. Psychiatry 1999, 52, 213–218. [Google Scholar] [CrossRef]
- Wong, M.-L.; Kling, M.A.; Munson, P.J.; Listwak, S.; Licinio, J.; Prolo, P.; Karp, B.; McCutcheon, I.E.; Geracioti, T.D.; DeBellis, M.D.; et al. Pronounced and Sustained Central Hypernoradrenergic Function in Major Depression with Melancholic Features: Relation to Hypercortisolism and Corticotropin-Releasing Hormone. Proc. Natl. Acad. Sci. USA 2000, 97, 325–330. [Google Scholar] [CrossRef]
- Veith, R.C. Sympathetic Nervous System Activity in Major Depression: Basal and Desipramine-Induced Alterations in Plasma Norepinephrine Kinetics. Arch. Gen. Psychiatry 1994, 51, 411. [Google Scholar] [CrossRef]
- Egami, M.; Imamura, Y.; Nabeta, H.; Mizoguchi, Y.; Yamada, S. Saliva Levels of 3-methoxy-4-hydroxyphenylglycol and Clinical Efficacy of Mirtazapine or Selective Serotonin Reuptake Inhibitors in Patients with Major Depression. Hum. Psychopharmacol. 2013, 28, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Chandley, M.; Szebeni, K.; Szebeni, A.; Crawford, J.; Stockmeier, A.; Turecki, G.; Miguel-Hidalgo, J.; Ordway, G. Gene Expression Deficits in Pontine Locus Coeruleus Astrocytes in Men with Major Depressive Disorder. J. Psychiatry Neurosci. 2013, 38, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Chandley, M.J.; Szebeni, A.; Szebeni, K.; Crawford, J.D.; Stockmeier, C.A.; Turecki, G.; Kostrzewa, R.M.; Ordway, G.A. Elevated Gene Expression of Glutamate Receptors in Noradrenergic Neurons from the Locus Coeruleus in Major Depression. Int. J. Neuropsychopharmacol. 2014, 17, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.-Y.; Klimek, V.; Dilley, G.E.; Haycock, J.W.; Stockmeier, C.; Overholser, J.C.; Meltzer, H.Y.; Ordway, G.A. Elevated Levels of Tyrosine Hydroxylase in the Locus Coeruleus in Major Depression. Biol. Psychiatry 1999, 46, 1275–1286. [Google Scholar] [CrossRef] [PubMed]
- Szabo, S.T.; Blier, P. Effect of the Selective Noradrenergic Reuptake Inhibitor Reboxetine on the Fring Activity of Noradrenaline and Serotonin Neurons. Eur. J. Neurosci. 2001, 13, 2077–2087. [Google Scholar] [CrossRef] [PubMed]
- Grant, M.M.; Weiss, J.M. Effects of Chronic Antidepressant Drug Administration and Electroconvulsive Shock on Locus Coeruleus Electrophysiologic Activity. Biol. Psychiatry 2001, 49, 117–129. [Google Scholar] [CrossRef]
- Surova, G.; Ulke, C.; Schmidt, F.M.; Hensch, T.; Sander, C.; Hegerl, U. Fatigue and Brain Arousal in Patients with Major Depressive Disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 527–536. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Sander, C.; Dietz, M.-E.; Nowak, C.; Schröder, T.; Mergl, R.; Schönknecht, P.; Himmerich, H.; Hegerl, U. Brain Arousal Regulation as Response Predictor for Antidepressant Therapy in Major Depression. Sci. Rep. 2017, 7, 45187. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Pschiebl, A.; Sander, C.; Kirkby, K.C.; Thormann, J.; Minkwitz, J.; Chittka, T.; Weschenfelder, J.; Holdt, L.M.; Teupser, D.; et al. Impact of Serum Cytokine Levels on EEG-Measured Arousal Regulation in Patients with Major Depressive Disorder and Healthy Controls. Neuropsychobiology 2016, 73, 1–9. [Google Scholar] [CrossRef]
- Ulke, C.; Wittekind, D.A.; Spada, J.; Franik, K.; Jawinski, P.; Hensch, T.; Hegerl, U. Brain Arousal Regulation in SSRI-Medicated Patients with Major Depression. J. Psychiatr. Res. 2019, 108, 34–39. [Google Scholar] [CrossRef]
- Ulke, C.; Sander, C.; Jawinski, P.; Mauche, N.; Huang, J.; Spada, J.; Wittekind, D.; Mergl, R.; Luck, T.; Riedel-Heller, S.; et al. Sleep Disturbances and Upregulation of Brain Arousal during Daytime in Depressed versus Non-Depressed Elderly Subjects. World J. Biol. Psychiatry 2017, 18, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Ip, C.-T.; Ganz, M.; Dam, V.H.; Ozenne, B.; Rüesch, A.; Köhler-Forsberg, K.; Jørgensen, M.B.; Frokjaer, V.G.; Søgaard, B.; Christensen, S.R.; et al. NeuroPharm Study: EEG Wakefulness Regulation as a Biomarker in MDD. J. Psychiatr. Res. 2021, 141, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Wittekind, D.A.; Spada, J.; Gross, A.; Hensch, T.; Jawinski, P.; Ulke, C.; Sander, C.; Hegerl, U. Early Report on Brain Arousal Regulation in Manic vs Depressive Episodes in Bipolar Disorder. Bipolar Disord. 2016, 18, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.; Elklit, A.; Chen, Y.Y.; Ghazali, S.R.; Shevlin, M. Sex Differences in PTSD Symptoms: A Differential Item Functioning Approach. Psychol. Trauma 2019, 11, 319. [Google Scholar] [CrossRef] [PubMed]
- Van Sweden, B. Disturbed Vigilance in Mania. Biol. Psychiatry 1986, 21, 311–313. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, I.; Mellman, T.A. Gender Differences in Sleep during the Aftermath of Trauma and the Development of Posttraumatic Stress Disorder. Behav. Sleep Med. 2012, 10, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Suffel, A.; Nagels, A.; Steines, M.; Kircher, T.; Straube, B. Feeling Addressed! The Neural Processing of Social Communicative Cues in Patients with Major Depression. Hum. Brain Mapp. 2020, 41, 3541–3554. [Google Scholar] [CrossRef]
- Steriade, M.; McCormick, D.A.; Sejnowski, T.J. Thalamocortical Oscillations in the Sleeping and Aroused Brain. Science 1993, 262, 679–685. [Google Scholar] [CrossRef]
- Steriade, M. Arousal--Revisiting the Reticular Activating System. Science 1996, 272, 225. [Google Scholar] [CrossRef]
- Schiff, N.D. Central Thalamic Contributions to Arousal Regulation and Neurological Disorders of Consciousness. Ann. N. Y. Acad. Sci. 2008, 1129, 105–118. [Google Scholar] [CrossRef]
- Gent, T.C.; Bandarabadi, M.; Herrera, C.G.; Adamantidis, A.R. Thalamic Dual Control of Sleep and Wakefulness. Nat. Neurosci. 2018, 21, 974–984. [Google Scholar] [CrossRef] [PubMed]
- David, F.; Schmiedt, J.T.; Taylor, H.L.; Orban, G.; Di Giovanni, G.; Uebele, V.N.; Renger, J.J.; Lambert, R.C.; Leresche, N.; Crunelli, V. Essential Thalamic Contribution to Slow Waves of Natural Sleep. J. Neurosci. 2013, 33, 19599–19610. [Google Scholar] [CrossRef] [PubMed]
- Setzer, B.; Fultz, N.E.; Gomez, D.E.; Williams, S.D.; Bonmassar, G.; Polimeni, J.R.; Lewis, L.D. A Temporal Sequence of Thalamic Activity Unfolds at Transitions in Behavioral Arousal State. Nat. Commun. 2022, 13, 5442. [Google Scholar] [CrossRef] [PubMed]
- Neumeister, A.; Nugent, A.C.; Waldeck, T.; Geraci, M.; Schwarz, M.; Bonne, O.; Bain, E.E.; Luckenbaugh, D.A.; Herscovitch, P.; Charney, D.S. Neural and Behavioral Responses to Tryptophan Depletion in Unmedicatedpatients with Remitted Major Depressive Disorder and Controls. Arch. Gen. Psychiatry 2004, 61, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, D.D.; Weiss, A.P.; Cosgrove, G.R.; Alpert, N.M.; Cassem, E.H.; Nierenberg, A.A.; Price, B.H.; Mayberg, H.S.; Fischman, A.J.; Rauch, S.L. Cerebral Metabolic Correlates as Potential Predictors of Response to Anterior Cingulotomy for Treatment of Major Depression. J. Neurosurg. 2003, 99, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Holthoff, V.A.; Beuthien-Baumann, B.; Zündorf, G.; Triemer, A.; Lüdecke, S.; Winiecki, P.; Koch, R.; Füchtner, F.; Herholz, K. Changes in Brain Metabolism Associated with Remission in Unipolar Major Depression. Acta Psychiatr. Scand. 2004, 110, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Greicius, M.D.; Flores, B.H.; Menon, V.; Glover, G.H.; Solvason, H.B.; Kenna, H.; Reiss, A.L.; Schatzberg, A.F. Resting-State Functional Connectivity in Major Depression: Abnormally Increased Contributions from Subgenual Cingulate Cortex and Thalamus. Biol. Psychiatry 2007, 62, 429–437. [Google Scholar] [CrossRef]
- Anand, A.; Li, Y.; Wang, Y.; Wu, J.; Gao, S.; Bukhari, L.; Mathews, V.P.; Kalnin, A.; Lowe, M.J. Activity and Connectivity of Brain Mood Regulating Circuit in Depression: A Functional Magnetic Resonance Study. Biol. Psychiatry 2005, 57, 1079–1088. [Google Scholar] [CrossRef]
- Kang, L.; Zhang, A.; Sun, N.; Liu, P.; Yang, C.; Li, G.; Liu, Z.; Wang, Y.; Zhang, K. Functional Connectivity between the Thalamus and the Primary Somatosensory Cortex in Major Depressive Disorder: A Resting-State fMRI Study. BMC Psychiatry 2018, 18, 339. [Google Scholar] [CrossRef]
- Brown, E.C.; Clark, D.L.; Hassel, S.; MacQueen, G.; Ramasubbu, R. Thalamocortical Connectivity in Major Depressive Disorder. J. Affect. Disord. 2017, 217, 125–131. [Google Scholar] [CrossRef]
- Wang, C.; Wu, H.; Chen, F.; Xu, J.; Li, H.; Li, H.; Wang, J. Disrupted Functional Connectivity Patterns of the Insula Subregions in Drug-Free Major Depressive Disorder. J. Affect. Disord. 2018, 234, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, R.; Lv, L.; Qi, X.; Shi, J.; Xie, S. Correlation between Cognitive Deficits and Dorsolateral Prefrontal Cortex Functional Connectivity in First-Episode Depression. J. Affect. Disord. 2022, 312, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Xiao, K.; Ao, Y.; Cui, Q.; Jing, X.; Wang, Y. The Thalamus Is the Causal Hub of Intervention in Patients with Major Depressive Disorder: Evidence from the Granger Causality Analysis. NeuroImage Clin. 2022, 37, 103295. [Google Scholar] [CrossRef] [PubMed]
- Gallo, S.; El-Gazzar, A.; Zhutovsky, P.; Thomas, R.M.; Javaheripour, N.; Li, M.; Bartova, L.; Bathula, D.; Dannlowski, U.; Davey, C. Functional Connectivity Signatures of Major Depressive Disorder: Machine Learning Analysis of Two Multicenter Neuroimaging Studies. Mol. Psychiatry 2023, 28, 3013–3022. [Google Scholar] [CrossRef] [PubMed]
- Shine, J.M.; Lewis, L.D.; Garrett, D.D.; Hwang, K. The Impact of the Human Thalamus on Brain-Wide Information Processing. Nat. Rev. Neurosci. 2023, 24, 416–430. [Google Scholar] [CrossRef]
- Halassa, M.M.; Sherman, S.M. Thalamocortical Circuit Motifs: A General Framework. Neuron 2019, 103, 762–770. [Google Scholar] [CrossRef]
- Sherman, S.M.; Guillery, R.W. The Role of the Thalamus in the Flow of Information to the Cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2002, 357, 1695–1708. [Google Scholar] [CrossRef] [PubMed]
- Hong, W.; Li, M.; Liu, Z.; Li, X.; Huai, H.; Jia, D.; Jin, W.; Zhao, Z.; Liu, L.; Li, J. Heterogeneous Alterations in Thalamic Subfields in Major Depression Disorder. J. Affect. Disord. 2021, 295, 1079–1086. [Google Scholar] [CrossRef]
- Kong, Q.-M.; Qiao, H.; Liu, C.-Z.; Zhang, P.; Li, K.; Wang, L.; Li, J.-T.; Su, Y.; Li, K.-Q.; Yan, C.-G. Aberrant Intrinsic Functional Connectivity in Thalamo-cortical Networks in Major Depressive Disorder. CNS Neurosci. Ther. 2018, 24, 1063–1072. [Google Scholar] [CrossRef]
- Blumberger, D.M.; Vila-Rodriguez, F.; Thorpe, K.E.; Feffer, K.; Noda, Y.; Giacobbe, P.; Knyahnytska, Y.; Kennedy, S.H.; Lam, R.W.; Daskalakis, Z.J. Effectiveness of Theta Burst versus High-Frequency Repetitive Transcranial Magnetic Stimulation in Patients with Depression (THREE-D): A Randomised Non-Inferiority Trial. Lancet 2018, 391, 1683–1692. [Google Scholar] [CrossRef]
- Dunlop, K.; Sheen, J.; Schulze, L.; Fettes, P.; Mansouri, F.; Feffer, K.; Blumberger, D.M.; Daskalakis, Z.J.; Kennedy, S.H.; Giacobbe, P. Dorsomedial Prefrontal Cortex Repetitive Transcranial Magnetic Stimulation for Treatment-Refractory Major Depressive Disorder: A Three-Arm, Blinded, Randomized Controlled Trial. Brain Stimul. 2020, 13, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.-T.; Hu, X.-W.; Han, J.-F.; Zhang, J.-F.; Wang, Y.-Y.; Wolff, A.; Tremblay, S.; Hirjak, D.; Tan, Z.-L.; Northoff, G. Motor Cortex Repetitive Transcranial Magnetic Stimulation in Major Depressive Disorder-A Preliminary Randomized Controlled Clinical Trial. J. Affect. Disord. 2024, 344, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Paszkiel, S.; Dobrakowski, P.; Łysiak, A. The Impact of Different Sounds on Stress Level in the Context of EEG, Cardiac Measures and Subjective Stress Level: A Pilot Study. Brain Sci. 2020, 10, 728. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Huang, Z.; Zhou, H.; Ye, P. Effects of Music Therapy on Depression: A Meta-Analysis of Randomized Controlled Trials. PLoS ONE 2020, 15, e0240862. [Google Scholar] [CrossRef] [PubMed]
- Moda-Sava, R.N.; Murdock, M.H.; Parekh, P.K.; Fetcho, R.N.; Huang, B.S.; Huynh, T.N.; Witztum, J.; Shaver, D.C.; Rosenthal, D.L.; Alway, E.J. Sustained Rescue of Prefrontal Circuit Dysfunction by Antidepressant-Induced Spine Formation. Science 2019, 364, eaat8078. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Shinohara, R.; Fogaça, M.V.; Hare, B. Neurobiology of Rapid-Acting Antidepressants: Convergent Effects on GluA1-Synaptic Function. Mol. Psychiatry 2019, 24, 1816–1832. [Google Scholar] [CrossRef] [PubMed]
- Smith-Apeldoorn, S.Y.; Veraart, J.K.; Spijker, J.; Kamphuis, J.; Schoevers, R.A. Maintenance Ketamine Treatment for Depres-sion: A Systematic Review of Efficacy, Safety, and Tolerability. Lancet Psychiatry 2022, 9, 907–921. [Google Scholar] [CrossRef]
- Zanos, P.; Gould, T. Mechanisms of Ketamine Action as an Antidepressant. Mol. Psychiatry 2018, 23, 801–811. [Google Scholar] [CrossRef]
- Huang, Z.; Mashour, G.A.; Hudetz, A.G. Functional Geometry of the Cortex Encodes Dimensions of Consciousness. Nat. Commun. 2023, 14, 72. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, J.; Wu, J.; Mashour, G.A.; Hudetz, A.G. Temporal Circuit of Macroscale Dynamic Brain Activity Supports Human Consciousness. Sci. Adv. 2020, 6, eaaz0087. [Google Scholar] [CrossRef]
- Bonhomme, V.; Vanhaudenhuyse, A.; Demertzi, A.; Bruno, M.-A.; Jaquet, O.; Bahri, M.A.; Plenevaux, A.; Boly, M.; Boveroux, P.; Soddu, A.; et al. Resting-State Network-Specific Breakdown of Functional Connectivity during Ketamine Alteration of Consciousness in Volunteers. Anesthesiology 2016, 125, 873–888. [Google Scholar] [CrossRef]
- Sarasso, S.; Boly, M.; Napolitani, M.; Gosseries, O.; Charland-Verville, V.; Casarotto, S.; Rosanova, M.; Casali, A.G.; Brichant, J.-F.; Boveroux, P.; et al. Consciousness and Complexity during Unresponsiveness Induced by Propofol, Xenon, and Ketamine. Curr. Biol. 2015, 25, 3099–3105. [Google Scholar] [CrossRef]
- Mashour, G.A.; Hudetz, A.G. Neural Correlates of Unconsciousness in Large-Scale Brain Networks. Trends Neurosci. 2018, 41, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Cuarenta, A. Sex Differences in Anxiety and Depression: Circuits and Mechanisms. Nat. Rev. Neurosci. 2021, 22, 674–684. [Google Scholar] [CrossRef] [PubMed]
- Plante, D.T.; Landsness, E.C.; Peterson, M.J.; Goldstein, M.R.; Riedner, B.A.; Wanger, T.; Guokas, J.J.; Tononi, G.; Benca, R.M. Sex-Related Differences in Sleep Slow Wave Activity in Major Depressive Disorder: A High-Density EEG Investigation. BMC Psychiatry 2012, 12, 146. [Google Scholar] [CrossRef] [PubMed]
- Nolen-Hoeksema, S.; Larson, J.; Grayson, C. Explaining the Gender Difference in Depressive Symptoms. J. Pers. Soc. Psychol. 1999, 77, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Curtis, A.; Reyes, B.A.S.; Bethea, T.T.; Parastatidis, I.; Ischiropoulos, H.; Van Bockstaele, E.J.; Valentino, R.J. Sex Differences in Corticotropin-Releasing Factor Receptor Signaling and Trafficking: Potential Role in Female Vulnerability to Stress-Related Psychopathology. Mol. Psychiatry 2010, 15, 877, 896–904. [Google Scholar] [CrossRef]
- Curtis, A.L.; Grigoriadis, D.E.; Page, M.E.; Rivier, J.; Valentino, R.J. Pharmacological Comparison of Two Corticotro-pin-Releasing Factor Antagonists: In Vivo and In Vitro Studies. J. Pharmacol. Exp. Ther. 1994, 268, 359–365. [Google Scholar]
- Valentino, R.J.; Page, M.E.; Curtis, A.L. Activation of Noradrenergic Locus Coeruleus Neurons by Hemodynamic Stress Is Due to Local Release of Corticotropin-Releasing Factor. Brain. Res. 1991, 555, 25–34. [Google Scholar] [CrossRef]
- Valentino, R.J.; Bangasser, D.A. Sex-Biased Cellular Signaling: Molecular Basis for Sex Differences in Neuropsychiatric Diseases. Dialogues Clin. Neurosci. 2016, 18, 385–393. [Google Scholar] [CrossRef]
- Valentino, R.J.; Bangasser, D.; Van Bockstaele, E.J. Sex-Biased Stress Signaling: The Corticotropin-Releasing Factor Receptor as a Model. Mol. Pharmacol. 2013, 83, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Eck, S.R.; Telenson, A.M.; Salvatore, M. Sex Differences in Stress Regulation of Arousal and Cognition. Physiol. Behav. 2018, 187, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Bangasser, D.A.; Dong, H.; Carroll, J.; Plona, Z.; Ding, H.; Rodriguez, L.; McKennan, C.; Csernansky, J.G.; Seeholzer, S.H.; Valentino, R.J. Corticotropin-Releasing Factor Overexpression Gives Rise to Sex Differences in Alzheimer’s Disease-Related Signaling. Mol. Psychiatry 2017, 22, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Violin, J.D.; Lefkowitz, R.J. Beta-Arrestin-Biased Ligands at Seven-Transmembrane Receptors. Trends Pharmacol. Sci. 2007, 28, 416–422. [Google Scholar] [CrossRef]
- Lefkowitz, R.J.; Shenoy, S.K. Transduction of Receptor Signals by Beta-Arrestins. Science 2005, 308, 512–517. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Huang, Y.; Cai, W.; Zhang, B.; Huang, H.; Li, Q.; Qin, P.; Han, J. Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sci. 2024, 14, 50. https://doi.org/10.3390/brainsci14010050
Xie M, Huang Y, Cai W, Zhang B, Huang H, Li Q, Qin P, Han J. Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sciences. 2024; 14(1):50. https://doi.org/10.3390/brainsci14010050
Chicago/Turabian StyleXie, Musi, Ying Huang, Wendan Cai, Bingqi Zhang, Haonan Huang, Qingwei Li, Pengmin Qin, and Junrong Han. 2024. "Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review" Brain Sciences 14, no. 1: 50. https://doi.org/10.3390/brainsci14010050
APA StyleXie, M., Huang, Y., Cai, W., Zhang, B., Huang, H., Li, Q., Qin, P., & Han, J. (2024). Neurobiological Underpinnings of Hyperarousal in Depression: A Comprehensive Review. Brain Sciences, 14(1), 50. https://doi.org/10.3390/brainsci14010050