Chiari Formation or Malformation? Trends in the Pathophysiology and Surgical Treatment of an Ever-Elusive Entity
Abstract
:1. Introduction
2. Methods
3. The History of Chiari Malformation(s)
Type | Abbreviation | Author/Year | Main Characteristic |
---|---|---|---|
CHIARI 0 | CM0 | Iskandar et al., 1998 [10] | Posterior fossa crowding without tonsillar herniation (TH) |
CHIARI 0.5 | CM0.5 | Morgenstern et al., 2020 [11] | Ventrolateral tonsillar wrapping |
CHIARI 1 | CM1 | Chiari, 1891 [4] | Tonsillar herniation (>3–5 mm) |
CHIARI 1.5 | CM1.5 | Tubbs et al., 2004 [12] | Cerebellar and brainstem herniation ± basilar invagination, platybasia, Klippel–Feil syndrome, … |
CHIARI 2 | CM2 | Chiari, 1891 [4] | Spina bifida, cerebellar–brainstem herniation |
CHIARI 3 | CM3 | Chiari, 1891 [4] | Cerebellar–cervical encephalocele |
CHIARI 3.5 | CM3.5 | Fisahn et al., 2016 [13] | Cerebellar–cervical encephalocele connected to foregut |
CHIARI 4 | CM4 | Chiari, 1896 [5] | Cerebellar hypoplasia or aplasia without TH |
CHIARI 5 | CM5 | Tubbs et al., 2012 [14] | Cerebellar aplasia and occipital lobe herniation |
4. Theories and Controversies on Chiari Malformation Pathogenesis
4.1. Formation or Malformation?
4.2. Atlantoaxial Instability and Chiari Malformation
5. Clinical Patterns of Chiari Malformations
6. Recent Consensus Publications, Surgical Indications, and Controversies
- Osteo-ligamentous decompression alone (Figure 2) can be considered in pediatric patients without syringomyelia (80%) but is not recommended in adults (75%). This less invasive technique reduces the risks associated with the opening of the dura. Bony decompression should be comprehensive and always extended to C1; C2 posterior elements should not be resected to reduce the risk of iatrogenic CVJ instability.
- When syringomyelia is present, duraplasty (Figure 2) should always be performed. Autologous patches or allografts should be preferred over synthetic patches.
- Tonsillar coagulation and resection (Figure 2) can be considered when the tonsillar descent is significant and in recurrent/residual syrinx cases.
6.1. Controversies in Syringomyelia Management
6.2. Management of Associated Hydrocephalus
6.3. Filum Terminale and Chiari I Controversy
6.4. Surgical Innovations and Other Treatments
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massimi, L.; Peretta, P.; Erbetta, A.; Solari, A.; Farinotti, M.; Ciaramitaro, P.; Saletti, V.; Caldarelli, M.; Canheu, A.C.; Celada, C.; et al. Diagnosis and Treatment of Chiari Malformation Type 1 in Children: The International Consensus Document. Neurol. Sci. 2022, 43, 1311–1326. [Google Scholar] [CrossRef]
- Ciaramitaro, P.; Massimi, L.; Bertuccio, A.; Solari, A.; Farinotti, M.; Peretta, P.; Saletti, V.; Chiapparini, L.; Barbanera, A.; Garbossa, D.; et al. Diagnosis and Treatment of Chiari Malformation and Syringomyelia in Adults: International Consensus Document. Neurol. Sci. 2022, 43, 1327–1342. [Google Scholar] [CrossRef] [PubMed]
- Visocchi, M.; Mattogno, P.P. Chiari Malformations: The Impact of Clinical and Surgical Features on a Journal Reviewer’s Evaluation Protocol. J. Neurosurg. Sci. 2020, 64, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Chiari, H. Ueber Veränderungen des Kleinhirns infolge von Hydrocephalie des Grosshirns 1). Dtsch. Med. Wochenschr. 1891, 17, 1172–1175. [Google Scholar] [CrossRef]
- Chiari, H. Über Veränderungen des Kleinhirns, des Pons und der Medulla oblongata in Folge von Congenitaler Hydrocephalie des Grosshirns; Akademie der Wissenschaften, Vienna. Mathematisch-Naturwissenschaftliche Klasse. Denkschriften; K.K. Hof- und Staatsdruckerei: Wien, Austria, 1896. [Google Scholar]
- Azahraa Haddad, F.; Qaisi, I.; Joudeh, N.; Dajani, H.; Jumah, F.; Elmashala, A.; Adeeb, N.; Chern, J.J.; Tubbs, R.S. The Newer Classifications of the Chiari Malformations with Clarifications: An Anatomical Review. Clin. Anat. 2018, 31, 314–322. [Google Scholar] [CrossRef]
- Liu, W.; Wu, H.; Aikebaier, Y.; Wulabieke, M.; Paerhati, R.; Yang, X. No Significant Difference between Chiari Malformation Type 1.5 and Type I. Clin. Neurol. Neurosurg. 2017, 157, 34–39. [Google Scholar] [CrossRef]
- Benato, A.; Offi, M.; Bianchi, F.; Visocchi, M.; Tamburrini, G. Atlas Invagination through the Foramen Magnum: Expanding the Spectrum of Craniovertebral Junction Malformations. Eur. Spine J. 2023, 32, 2615–2621. [Google Scholar] [CrossRef]
- Bianchi, F.; Montedoro, B.; Frassanito, P.; Massimi, L.; Tamburrini, G. Chiari I Malformation: Management Evolution and Technical Innovation. Childs Nerv. Syst. 2023, 39, 2757–2769. [Google Scholar] [CrossRef]
- Iskandar, B.J.; Hedlund, G.L.; Grabb, P.A.; Oakes, W.J. The Resolution of Syringohydromyelia without Hindbrain Herniation after Posterior Fossa Decompression. J. Neurosurg. 1998, 89, 212–216. [Google Scholar] [CrossRef]
- Morgenstern, P.F.; Tosi, U.; Uribe-Cardenas, R.; Greenfield, J.P. Ventrolateral Tonsillar Position Defines Novel Chiari 0.5 Classification. World Neurosurg. 2020, 136, 444–453. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Iskandar, B.J.; Bartolucci, A.A.; Oakes, W.J. A Critical Analysis of the Chiari 1.5 Malformation. J. Neurosurg. 2004, 101, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Fisahn, C.; Shoja, M.M.; Turgut, M.; Oskouian, R.J.; Oakes, W.J.; Tubbs, R.S. The Chiari 3.5 Malformation: A Review of the Only Reported Case. Childs Nerv. Syst. 2016, 32, 2317–2319. [Google Scholar] [CrossRef] [PubMed]
- Tubbs, R.S.; Muhleman, M.; Loukas, M.; Oakes, W.J. A New Form of Herniation: The Chiari V Malformation. Childs Nerv. Syst. 2012, 28, 305–307. [Google Scholar] [CrossRef]
- Gardner, W.J.; Goodall, R.J. The Surgical Treatment of Arnold-Chiari Malformation in Adults; an Explanation of Its Mechanism and Importance of Encephalography in Diagnosis. J. Neurosurg. 1950, 7, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Oldfield, E.H.; Muraszko, K.; Shawker, T.H.; Patronas, N.J. Pathophysiology of Syringomyelia Associated with Chiari I Malformation of the Cerebellar Tonsils. Implications for Diagnosis and Treatment. J. Neurosurg. 1994, 80, 3–15. [Google Scholar] [CrossRef]
- Nishikawa, M.; Sakamoto, H.; Hakuba, A.; Nakanishi, N.; Inoue, Y. Pathogenesis of Chiari Malformation: A Morphometric Study of the Posterior Cranial Fossa. J. Neurosurg. 1997, 86, 40–47. [Google Scholar] [CrossRef]
- Goel, A. Is Atlantoaxial Instability the Cause of Chiari Malformation? Outcome Analysis of 65 Patients Treated by Atlantoaxial Fixation. J. Neurosurg. Spine 2015, 22, 116–127. [Google Scholar] [CrossRef]
- Kim, I.-K.; Wang, K.-C.; Kim, I.-O.; Cho, B.-K. Chiari 1.5 Malformation: An Advanced Form of Chiari I Malformation. J. Korean Neurosurg. Soc. 2010, 48, 375–379. [Google Scholar] [CrossRef]
- Attenello, F.J.; McGirt, M.J.; Gathinji, M.; Datoo, G.; Atiba, A.; Weingart, J.; Carson, B.; Jallo, G.I. Outcome of Chiari-Associated Syringomyelia after Hindbrain Decompression in Children: Analysis of 49 Consecutive Cases. Neurosurgery 2008, 62, 1307–1313. [Google Scholar] [CrossRef]
- Grenier-Chartrand, F.; Taverne, M.; James, S.; Guida, L.; Paternoster, G.; Loiselet, K.; Beccaria, K.; Dangouloff-Ros, V.; Levy, R.; de Saint Denis, T.; et al. Mobility Assessment Using Multi-Positional MRI in Children with Cranio-Vertebral Junction Anomalies. J. Clin. Med. 2023, 12, 6714. [Google Scholar] [CrossRef]
- Ball, M.J.; Dayan, A.D. Pathogenesis of Syringomyelia. Lancet 1972, 2, 799–801. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Hill, M.; Loukas, M.; Shoja, M.M.; Oakes, W.J. Volumetric Analysis of the Posterior Cranial Fossa in a Family with Four Generations of the Chiari Malformation Type I. J. Neurosurg. Pediatr. 2008, 1, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.K.; Milner, E.; Yarbrough, C.K.; Lipsey, K.; Piccirillo, J.F.; Smyth, M.D.; Park, T.S.; Limbrick, D.D. Outcome Methods Used in Clinical Studies of Chiari Malformation Type I: A Systematic Review. J. Neurosurg. 2015, 122, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Roller, L.A.; Bruce, B.B.; Saindane, A.M. Demographic Confounders in Volumetric MRI Analysis: Is the Posterior Fossa Small in the Adult Chiari 1 Malformation? AJR Am. J. Roentgenol. 2015, 204, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, S.; Williams, B. A Critical Appraisal of Drainage in Syringomyelia. J. Neurosurg. 1995, 82, 1–10. [Google Scholar] [CrossRef]
- Almotairi, F.S.; Hellström, P.; Skoglund, T.; Nilsson, Å.L.; Tisell, M. Chiari I Malformation-Neuropsychological Functions and Quality of Life. Acta Neurochir. 2020, 162, 1575–1582. [Google Scholar] [CrossRef]
- Bianchi, F.; Benato, A.; Frassanito, P.; Tamburrini, G.; Massimi, L. Functional and Morphological Changes in Hypoplasic Posterior Fossa. Childs Nerv. Syst. 2021, 37, 3093–3104. [Google Scholar] [CrossRef]
- Visocchi, M. Surgery and Neuropsychological Functions Changes in Chiari I Malformation: Two Faces of the Same Medal? Acta Neurochir. 2020, 162, 1583–1584. [Google Scholar] [CrossRef]
- Liao, C.; Visocchi, M.; Zhang, W.; Li, S.; Yang, M.; Zhong, W.; Liu, P. The Relationship Between Basilar Invagination and Chiari Malformation Type I: A Narrative Review. Acta Neurochir. Suppl. 2019, 125, 111–118. [Google Scholar] [CrossRef]
- Jian, F.-Z.; Chen, Z.; Wrede, K.H.; Samii, M.; Ling, F. Direct Posterior Reduction and Fixation for the Treatment of Basilar Invagination With Atlantoaxial Dislocation. Neurosurgery 2010, 66, 678. [Google Scholar] [CrossRef]
- Menezes, A.H. Craniovertebral Junction Database Analysis: Incidence, Classification, Presentation, and Treatment Algorithms. Childs Nerv. Syst. 2008, 24, 1101–1108. [Google Scholar] [CrossRef]
- Lou, Y.; Yang, J.; Wang, L.; Chen, X.; Xin, X.; Liu, Y. The Clinical Efficacy Study of Treatment to Chiari Malformation Type I with Syringomyelia under the Minimally Invasive Surgery of Resection of Submeningeal Cerebellar Tonsillar Herniation and Reconstruction of Cisterna Magna. Saudi J. Biol. Sci. 2019, 26, 1927–1931. [Google Scholar] [CrossRef] [PubMed]
- Salunke, P.; Karthigeyan, M.; Malik, P.; Panchal, C. Changing Perception but Unaltered Reality: How Effective Is C1-C2 Fixation for Chiari Malformations without Instability? World Neurosurg. 2020, 136, e234–e244. [Google Scholar] [CrossRef] [PubMed]
- Visocchi, M.; Trevisi, G.; Iacopino, D.; Tamburrini, G.; Caldarelli, M.; Barbagallo, G. Odontoid Process and Clival Regeneration with Chiari Malformation Worsening after Transoral Decompression: An Unexpected and Previously Unreported Cause of “Accordion Phenomenon”. Eur. Spine J. 2014, 24, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Besteiro González, J.L.; Torres Campa-Santamarina, J.M. Anomalies in the Cognitive-Executive Functions in Patients with Chiari Malformation Type I. Psicothema 2018, 30, 316–321. [Google Scholar] [CrossRef]
- Das, S.; Stone, L.; Godzik, J.; Kelly, M. Spine Deformity Associated with Chiari I Malformation and Syringomyelia. Neurosurg. Clin. N. Am. 2023, 34, 151–157. [Google Scholar] [CrossRef]
- García, M.; Lázaro, E.; López-Paz, J.F.; Martínez, O.; Pérez, M.; Berrocoso, S.; Al-Rashaida, M.; Amayra, I. Cognitive Functioning in Chiari Malformation Type I Without Posterior Fossa Surgery. Cerebellum 2018, 17, 564–574. [Google Scholar] [CrossRef]
- Lavorato, L.; Spallone, A.; Visocchi, M. Surgical Treatment of Chiari Malformation in Adults: Comparison of Surgical Techniques Described in the Literature and Our Experience. Acta Neurochir. Suppl. 2019, 125, 139–143. [Google Scholar] [CrossRef]
- Samantray, S.; Silva, A.H.D.; Valetopoulou, A.; Tahir, Z. Foramen Magnum Decompression with Cervical Syringotomy for Chiari Malformation Type I with Syringomyelia—A Useful Adjunct in Selected Cases. Surg. Neurol. Int. 2023, 14, 341. [Google Scholar] [CrossRef]
- Chang, T.; Zhang, X.; Maoliti, W.; Yuan, Q.; Yang, X.; Wang, J. Outcomes of Dura Splitting Decompression Versus Posterior Fossa Decompression With Duraplasty in the Treatment of Chiari I Malformation: A Systematic Review and Meta-Analysis. World Neurosurg. 2021, 147, 105–114. [Google Scholar] [CrossRef]
- Ciappetta, P.; Signorelli, F.; Visocchi, M. The Role of Arachnoid Veils in Chiari Malformation Associated with Syringomyelia. Acta Neurochir. Suppl. 2019, 125, 97–99. [Google Scholar] [CrossRef] [PubMed]
- Ellenbogen, R.G.; Armonda, R.A.; Shaw, D.W.; Winn, H.R. Toward a Rational Treatment of Chiari I Malformation and Syringomyelia. Neurosurg. Focus 2000, 8, E6. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Imperato, A.; Maugeri, R.; Visocchi, M.; Iacopino, D.G.; Francaviglia, N. Surgical Treatment in Symptomatic Chiari Malformation Type I: A Series of 25 Adult Patients Treated with Cerebellar Tonsil Shrinkage. Acta Neurochir. Suppl. 2019, 125, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.F.; Pattisapu, J.V.; Ackerman, L.L.; Infinger, L.K.; Jackson, E.M.; Jernigan, S.; Maher, C.O.; Niazi, T.; Qaiser, R.; Quinsey, C.; et al. In Reply: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines for Patients with Chiari Malformation: Surgical Interventions. Clin. Neurosurg. 2024, 94, E35–E36. [Google Scholar] [CrossRef]
- Di Lorenzo, N.; Palma, L.; Palatinsky, E.; Fortuna, A. “Conservative” Cranio-Cervical Decompression in the Treatment of Syringomyelia-Chiari I Complex. A Prospective Study of 20 Adult Cases. Spine 1995, 20, 2479–2483. [Google Scholar] [CrossRef]
- Sahuquillo, J.; Rubio, E.; Poca, M.A.; Rovira, A.; Rodriguez-Baeza, A.; Cervera, C. Posterior Fossa Reconstruction: A Surgical Technique for the Treatment of Chiari I Malformation and Chiari I/Syringomyelia Complex--Preliminary Results and Magnetic Resonance Imaging Quantitative Assessment of Hindbrain Migration. Neurosurgery 1994, 35, 874–884. [Google Scholar] [CrossRef]
- Spennato, P.; Vitulli, F.; Tafuto, R.; Imperato, A.; Mirone, G.; Cinalli, G. Fourth Ventricle to Spinal Subarachnoid Space Stenting in Pediatric Patients with Refractory Syringomyelia: Case Series and Systematic Review. Neurosurg. Rev. 2023, 46, 67. [Google Scholar] [CrossRef]
- Batzdorf, U.; Klekamp, J.; Johnson, J.P. A Critical Appraisal of Syrinx Cavity Shunting Procedures. J. Neurosurg. 1998, 89, 382–388. [Google Scholar] [CrossRef]
- Aydin, L.; Dereli, D.; Kartum, T.A.; Sirinoglu, D.; Sahin, B.; Eksi, M.S.; Musluman, A.M.; Yilmaz, A. Management of Persistent Syringomyelia in Patients Operated for Chiari Malformation Type 1. World Neurosurg. 2024, 182, e360–e368. [Google Scholar] [CrossRef]
- Logue, V.; Edwards, M.R. Syringomyelia and Its Surgical Treatment--an Analysis of 75 Patients. J. Neurol. Neurosurg. Psychiatry 1981, 44, 273–284. [Google Scholar] [CrossRef]
- Matsumoto, T.; Symon, L. Surgical Management of Syringomyelia--Current Results. Surg. Neurol. 1989, 32, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Mazzola, C.A.; Fried, A.H. Revision Surgery for Chiari Malformation Decompression. Neurosurg. Focus 2003, 15, E3. [Google Scholar] [CrossRef] [PubMed]
- Soleman, J.; Roth, J.; Constantini, S. Syringo-Subarachnoid Shunt: How I Do It. Acta Neurochir. 2019, 161, 367–370. [Google Scholar] [CrossRef]
- Massimi, L.; Pennisi, G.; Frassanito, P.; Tamburrini, G.; Di Rocco, C.; Caldarelli, M. Chiari Type I and Hydrocephalus. Childs Nerv. Syst. 2019, 35, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Tubbs, R.S.; McGirt, M.J.; Oakes, W.J. Surgical Experience in 130 Pediatric Patients with Chiari I Malformations. J. Neurosurg. 2003, 99, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Massimi, L.; Pravatà, E.; Tamburrini, G.; Gaudino, S.; Pettorini, B.; Novegno, F.; Colosimo, C.; Di Rocco, C. Endoscopic Third Ventriculostomy for the Management of Chiari I and Related Hydrocephalus: Outcome and Pathogenetic Implications. Neurosurgery 2011, 68, 950–956. [Google Scholar] [CrossRef]
- McGirt, M.J.; Nimjee, S.M.; Floyd, J.; Bulsara, K.R.; George, T.M. Correlation of Cerebrospinal Fluid Flow Dynamics and Headache in Chiari I Malformation. Neurosurgery 2005, 56, 716–721. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Bui, C.J.; Rice, W.C.; Loukas, M.; Naftel, R.P.; Holcombe, M.P.; Oakes, W.J. Critical Analysis of the Chiari Malformation Type I Found in Children with Lipomyelomeningocele. J. Neurosurg. 2007, 106, 196–200. [Google Scholar] [CrossRef]
- Selden, N.R.; Nixon, R.R.; Skoog, S.R.; Lashley, D.B. Minimal Tethered Cord Syndrome Associated with Thickening of the Terminal Filum. J. Neurosurg. 2006, 105, 214–218. [Google Scholar] [CrossRef]
- Massimi, L.; Peraio, S.; Peppucci, E.; Tamburrini, G.; Di Rocco, C. Section of the Filum Terminale: Is It Worthwhile in Chiari Type I Malformation? Neurol. Sci. 2011, 32 (Suppl. 3), S349–S351. [Google Scholar] [CrossRef]
- Tubbs, R.S.; Loukas, M.; Shoja, M.M.; Oakes, W.J. Observations at the Craniocervical Junction with Simultaneous Caudal Traction of the Spinal Cord. Childs Nerv. Syst. 2007, 23, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Royo-Salvador, M.B.; Solé-Llenas, J.; Doménech, J.M.; González-Adrio, R. Results of the Section of the Filum Terminale in 20 Patients with Syringomyelia, Scoliosis and Chiari Malformation. Acta Neurochir. 2005, 147, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Milano, J.B.; Barcelos, A.C.E.S.; Onishi, F.J.; Daniel, J.W.; Botelho, R.V.; Dantas, F.R.; Neto, E.R.; de Freitas Bertolini, E.; Mudo, M.L.; Brock, R.S.; et al. The Effect of Filum Terminale Sectioning for Chiari 1 Malformation Treatment: Systematic Review. Neurol. Sci. 2020, 41, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, R.H.; German, J.W. Minimally Invasive Approach for the Treatment of Intradural Spinal Pathology. 2013, 35, E5. Neurosurg. Focus 2013, 35, E5. [Google Scholar] [CrossRef]
- Ratre, S.; Yadav, N.; Yadav, Y.R.; Parihar, V.S.; Bajaj, J.; Kher, Y. Endoscopic Management of Arnold-Chiari Malformation Type I with or without Syringomyelia. J. Neurol. Surg. A Cent. Eur. Neurosurg. 2018, 79, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Avila, M.J.; Vivanco-Suarez, J.; Karas, P.; Monteith, S.; Patel, A. Minimally Invasive Technique for Chiari I Decompression Without Durotomy: Surgical Technique and Preliminary Case Series. World Neurosurg. 2024, 188, e145–e154. [Google Scholar] [CrossRef]
- Kotil, K.; Ozdogan, S.; Kayaci, S.; Duzkalir, H.G. Long-Term Outcomes of a New Minimally Invasive Approach in Chiari Type 1 and 1.5 Malformations: Technical Note and Preliminary Results. World Neurosurg. 2018, 115, 407–413. [Google Scholar] [CrossRef]
- Zagzoog, N.; Reddy, K.K. Use of Minimally Invasive Tubular Retractors for Foramen Magnum Decompression of Chiari Malformation: A Technical Note and Case Series. World Neurosurg. 2019, 128, 248–253. [Google Scholar] [CrossRef]
- Tyagi, G.; Uppar, A.M.; Pruthi, N.; Shukla, D. Minimally Invasive Foramen Magnum Decompression Using Tubular Retractors (MIFT) for Chiari I Malformations. Acta Neurochir. (Wien) 2023, 165, 767–770. [Google Scholar] [CrossRef]
- Di, X. Endoscopic Suboccipital Decompression on Pediatric Chiari Type I. Minim. Invasive Neurosurg. 2009, 52, 119–125. [Google Scholar] [CrossRef]
- Deng, K.; Li, Y.-N.; Li, G.-L.; Gao, J.; Yang, Z.; Di, X.; Wang, R.-Z. Neural Endoscopic Assisted Micro-Invasive Management of Chiari I Malformation. Chin. Med. J. 2010, 123, 1878–1883. [Google Scholar] [CrossRef]
- Pakzaban, P. Technique for Mini-Open Decompression of Chiari Type I Malformation in Adults. Oper. Neurosurg. 2017, 13, 465. [Google Scholar] [CrossRef] [PubMed]
- Khalessi, A.A.; Rahme, R.; Rennert, R.C.; Borgas, P.; Steinberg, J.A.; White, T.G.; Santiago-Dieppa, D.R.; Boockvar, J.A.; Hatefi, D.; Pannell, J.S.; et al. First-in-Man Clinical Experience Using a High-Definition 3-Dimensional Exoscope System for Microneurosurgery. Oper. Neurosurg. 2019, 16, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Mattogno, P.P.; Della Pepa, G.M.; Menna, G.; Agostini, L.; Albanese, A.; Tamburrini, G.; Gaudino, S.; Olivi, A.; Doglietto, F. Posterior Cranial Fossa Surgery with a 3 Dimensional Exoscope: A Single-Center Survey-Based Analysis and a Literature Review. World Neurosurg. 2024, 189, e15–e26. [Google Scholar] [CrossRef] [PubMed]
Mechanism | Description | Proposed By |
---|---|---|
Lack of perforation of the rhombencephalic roof | Incomplete perforation of the rhombencephalic roof during embryonic development leads to Chiari malformation. | Gardner [15] |
Piston-like motion with or without intracranial pressure increase | The piston-like motion of the cerebellar tonsils, possibly exacerbated by increased intracranial pressure, causes the tonsils to descend into the foramen magnum. | Oldfield [16] |
Underdevelopment of the occipital bone and posterior cranial fossa | Underdevelopment of the occipital bone and small posterior cranial fossa results in inadequate space for the cerebellum, leading to its herniation. | Nishikawa [17] |
Atlantoaxial instability generates a protective/compensatory mechanism | Instability at the atlantoaxial joint triggers a protective or compensatory mechanism, leading to cerebellar tonsillar descent. | Goel [18] |
Study | N. of Patients | Age | Skin Incision Size | Instrumentation Used | Complications (n. Reported) |
---|---|---|---|---|---|
Di et al., 2009 [71] | 26 | 18 m–16 y | 2 cm | Long-rod rigid endoscope | Bacterial Meningitis (1) |
Deng et al., 2010 [72] | 21 | 11 ± 5 y | 2.5 cm | Long-rod rigid endoscope | Aseptic meningitis (1) |
Gandhi et al., 2013 [65] | 4 | NR | 2–2.5 cm | Tubular retractor | Aseptic meningitis (1) |
Pazkaban et al., 2017 [73] | 6 | 21–41 y | 3–4 cm | Speculum retractors | None |
Ratre et al., 2017 [66] | 15 | 26–48 y | 2.5–3 cm | Long-rod rigid endoscope | None |
Khalessi et al., 2017 [74] | 2 | NR | NR | 3-D exoscope | None |
Kotil et al., 2018 [68] | 61 | 15–58 y | 1.5 cm | Speculum retractors | Superficial cutaneous infection (1) |
Zagzoog et al., 2019 [69] | 22 | 19–71 y | NR | METRx tubular retractor | VP shunt for hydrocephalus (1) |
Tyagi et al., 2023 [70] | 1 | 47 | 2–2.5 cm | METRx tubular retractor | None |
Costa et al., 2024 [67] | 10 | 25–62 y | 3–4 cm | Mars3VL retractor | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visocchi, M.; Benato, A.; Palombi, D.; Signorelli, F. Chiari Formation or Malformation? Trends in the Pathophysiology and Surgical Treatment of an Ever-Elusive Entity. Brain Sci. 2024, 14, 1006. https://doi.org/10.3390/brainsci14101006
Visocchi M, Benato A, Palombi D, Signorelli F. Chiari Formation or Malformation? Trends in the Pathophysiology and Surgical Treatment of an Ever-Elusive Entity. Brain Sciences. 2024; 14(10):1006. https://doi.org/10.3390/brainsci14101006
Chicago/Turabian StyleVisocchi, Massimiliano, Alberto Benato, Davide Palombi, and Francesco Signorelli. 2024. "Chiari Formation or Malformation? Trends in the Pathophysiology and Surgical Treatment of an Ever-Elusive Entity" Brain Sciences 14, no. 10: 1006. https://doi.org/10.3390/brainsci14101006
APA StyleVisocchi, M., Benato, A., Palombi, D., & Signorelli, F. (2024). Chiari Formation or Malformation? Trends in the Pathophysiology and Surgical Treatment of an Ever-Elusive Entity. Brain Sciences, 14(10), 1006. https://doi.org/10.3390/brainsci14101006