Food Addiction
Abstract
:1. Introduction
2. Definitions
2.1. Highly Processed and Ultra-Processed Food
2.2. Substance Use Disorder
- (1)
- tolerance (increased amount with a corresponding decrease in effect);
- (2)
- withdrawal (negative physical or psychological symptoms arising after deprivation of a particular substance);
- (3)
- loss of control (instances of a greater amount taken over time and for a period of time that is longer than intended);
- (4)
- a persistent desire and/or repeated unsuccessful attempts to quit using the substance;
- (5)
- excessive time spent on obtaining, using, or recovering from its effects;
- (6)
- reduced social, recreational, or occupational, activities due to substance use
- (7)
- continued use despite knowledge of its adverse consequences;
- (8)
- intense cravings;
- (9)
- continued use despite interpersonal problems due to use of the substance;
- (10)
- use is continued despite problems fulfilling role obligations because of substance use; and
- (11)
- substance is used in situations that make it physically hazardous [10].
2.3. Food Addiction
3. Animal Studies Relevant to Food Addiction
3.1. Bingeing
3.2. Withdrawal
3.3. Craving
3.4. Sensitization and Cross-Sensitization to Psychostimulant Drugs and Alcohol
4. Neurochemical Commonalities between Drug Self-Administration and Hedonic Eating
4.1. Mesolimbic Dopamine System
4.2. Endogenous Opioids and Receptors
4.3. Orexin
4.4. Acetylcholine and the Dopamine–Acetylcholine Balance
5. Serotonin
Human Studies of Food Addiction
6. Discussion and Clinical Treatment
6.1. Dopamine
6.2. Opioids
6.3. Serotonin
6.4. Orexin
6.5. Ineffective Pharmacological Treatment
6.6. Non-Pharmacological Treatment
7. Conclusions
8. Future Directions for Research
Funding
Acknowledgments
Conflicts of Interest
References
- Koob, G.F.; Le Moal, M. Neurobiology of Addiction; Academic Press: San Diego, CA, USA, 2005. [Google Scholar]
- Stephens, D.W.; Kerr, B.; Fernandez-Juricic, E. Impulsiveness without discounting: The ecological rationality hypothesis. Proc. Biol. Sci. 2004, 271, 2459–2465. [Google Scholar] [CrossRef] [PubMed]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Evidence for sugar addiction: Behavioral and neurochemical effects of intermittent, excessive sugar intake. Neurosci. Biobehav. Rev. 2008, 32, 20–39. [Google Scholar] [CrossRef] [PubMed]
- Corwin, R.L.; Grigson, P.S. Symposium overview—Food addiction: Fact or fiction? J. Nutr. 2009, 139, 617–619. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; O’Brien, C.P. Issues for DSM-V: Should obesity be included as a brain disorder? Am. J. Psychiatry 2007, 164, 708–710. [Google Scholar] [CrossRef] [PubMed]
- DiFeliceantonio, A.G.; Coppin, G.; Rigoux, L.; Thanarajah, S.E.; Dagher, A.; Tittgemeyer, M.; Small, D.M. Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab. 2018, 28, 33–44. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; DiFeliceantonio, A.G. Highly processed foods can be considered addictive substances based on established scientific criteria. Addiction 2023, 118, 589–598. [Google Scholar] [CrossRef]
- Kelly, A.L.; Baugh, M.E.; Oster, M.E.; DiFeliceantonio, A.G. The impact of caloric availability on eating behavior and ultra-processed food reward. Appetite 2022, 178, 106274. [Google Scholar] [CrossRef]
- Brownell, K.D.; Gold, M.S. Food and Addiction: A Comprehensive Handbook; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; Text Rev.; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Meule, A. A Critical Examination of the Practical Implications Derived from the Food Addiction Concept. Curr. Obes. Rep. 2019, 8, 11–17. [Google Scholar] [CrossRef]
- Gearhardt, A.N.; Schulte, E.M. Is food addictive? A review of the science. Annu. Rev. Nutr. 2021, 41, 387–410. [Google Scholar] [CrossRef]
- Gearhardt, A.N. Commentary on Minhas et al.: Food addiction––The role of substance and environmental factors. Addiction 2021, 116, 2880–2881. [Google Scholar] [CrossRef]
- Praxedes, D.R.S.; Silva-Júnior, A.E.; Macena, M.L.; Oliveira, A.D.; Cardoso, K.S.; Nunes, L.O.; Monteiro, M.B.; Melo, I.S.V.; Gearhardt, A.N.; Bueno, N.B. Prevalence of food addiction determined by the Yale Food Addiction Scale and associated factors: A systematic review with meta-analysis. Eur. Eat. Disord. Rev. 2022, 30, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Yekaninejad, M.S.; Badrooj, N.; Vosoughi, F.; Lin, C.Y.; Potenza, M.N.; Pakpour, A.H. Prevalence of food addiction in children and adolescents: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13183. [Google Scholar] [CrossRef] [PubMed]
- LaFata, E.M.; Gearhardt, A.N. Ultra-Processed food addiction: An epidemic? Psychother. Psychosom. 2022, 91, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Berner, L.A.; Avena, N.M.; Hoebel, B.G. Bingeing, self-restriction, and increased body weight in rats with limited access to a sweet-fat diet. Obesity 2008, 16, 1998–2002. [Google Scholar] [CrossRef] [PubMed]
- Boggiano, M.M.; Chandler, P.C.; Viana, J.B.; Oswald, K.D.; Maldonado, C.R.; Wauford, P.K. Combined dieting and stress evoke exaggerated responses to opioids in binge-eating rats. Behav. Neurosci. 2005, 119, 1207–1214. [Google Scholar] [CrossRef]
- Corwin, R.L. Bingeing rats: A model of intermittent excessive behavior? Appetite 2006, 46, 11–15. [Google Scholar] [CrossRef]
- Malik, V.S.; Schulze, M.B.; Hu, F.B. Intake of sugar-sweetened beverages and weight gain: A systematic review. Am. J. Clin. Nutr. 2006, 84, 274–288. [Google Scholar] [CrossRef]
- Avena, N.M.; Long, K.A.; Hoebel, B.G. Sugar-dependent rats show enhanced responding for sugar after abstinence: Evidence of a sugar deprivation effect. Physiol. Behav. 2005, 84, 359–362. [Google Scholar] [CrossRef]
- Vanderschuren, L.J.; Kalivas, P.W. Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: A critical review of preclinical studies. Psychopharmacology 2000, 151, 99–120. [Google Scholar] [CrossRef]
- Colantuoni, C.; Schwenker, J.; McCarthy, J.; Rada, P.; Ladenheim, B.; Cadet, J.-L.; Schwartz, G.J.; Moran, T.H.; Hoebel, B.G. Excessive sugar intake alters binding to dopamine and mu-opioid receptors in the brain. Neuroreport 2001, 12, 3549–3552. [Google Scholar] [CrossRef]
- de Sa Nogueira, D.; Bourdy, R.; Filliol, D.; Awad, G.; Andry, V.; Goumon, Y.; Olmstead, M.C.; Befort, K. Binge sucrose-induced neuroadaptations: A focus on the endocannabinoid system. Appetite 2021, 164, 105258. [Google Scholar] [CrossRef] [PubMed]
- Bello, N.T.; Hajnal, A. Dopamine and binge eating behaviors. Pharmacol. Biochem. Behav. 2010, 97, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Parnarouskis, L.; Leventhal, A.M.; Ferguson, S.G.; Gearhardt, A.N. Withdrawal: A key consideration in evaluating whether highly processed foods are addictive. Obes. Rev. 2022, 23, e13507. [Google Scholar] [CrossRef] [PubMed]
- Way, E.L.; Loh, H.H.; Shen, F.H. Simultaneous quantitative assessment of morphine tolerance and physical dependence. J. Pharmacol. Exp. Ther. 1969, 167, 1–8. [Google Scholar]
- Colantuoni, C.; Rada, P.; McCarthy, J.; Patten, C.; Avena, N.M.; Chadeayne, A.; Hoebel, B.G. Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obes. Res. 2002, 10, 478–488. [Google Scholar] [CrossRef]
- Cottone, P.; Sabino, V.; Steardo, L.; Zorrilla, E.P. Opioid-dependent anticipatory negative contrast and binge-like eating in rats with limited access to highly preferred food. Neuropsychopharmacology 2008, 33, 524–535. [Google Scholar] [CrossRef]
- Wideman, C.H.; Nadzam, G.R.; Murphy, H.M. Implications of an animal model of sugar addiction, withdrawal and relapse for human health. Nutr. Neurosci. 2005, 8, 269–276. [Google Scholar] [CrossRef]
- Galic, M.A.; Persinger, M.A. Voluminous sucrose consumption in female rats: Increased “nippiness” during periods of sucrose removal and possible oestrus periodicity. Psychol. Rep. 2002, 90, 58–60. [Google Scholar] [CrossRef]
- Sinclair, J.D.; Senter, R.J. Development of an alcohol-deprivation effect in rats. Q. J. Stud. Alcohol. 1968, 29, 863–867. [Google Scholar] [CrossRef]
- Ciccocioppo, R.; Angeletti, S.; Weiss, F. Long-lasting resistance to extinction of response reinstatement induced by ethanol-related stimuli: Role of genetic ethanol preference. Alcohol Clin. Exp. Res. 2001, 251, 414–1419. [Google Scholar]
- Grimm, J.W.; Shaham, Y.; Hope, B.T. Effect of cocaine and sucrose withdrawal period on extinction behavior, cue-induced reinstatement, and protein levels of the dopamine transporter and tyrosine hydroxylase in limbic and cortical areas in rats. Behav. Pharmacol. 2002, 13, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Grimm, J.W.; Hope, B.T.; Shaham, Y. Incubation of cocaine craving after withdrawal: A review of preclinical data. Neuropharmacology 2004, 47 (Suppl. 1), 214–226. [Google Scholar] [CrossRef] [PubMed]
- Grimm, J.W.; Fyall, A.M.; Osincup, D.P. Incubation of sucrose craving: Effects of reduced training and sucrose pre-loading. Physiol. Behav. 2005, 84, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Berridge, K.C. “Liking” and “wanting” food rewards: Brain substrates and roles in eating disorders. Physiol. Behav. 2009, 97, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Antelman, S.M.; Caggiula, A.R. Oscillation follows drug sensitization: Implications. Crit. Rev. Neurobiol. 1996, 10, 101–117. [Google Scholar] [CrossRef]
- Robinson, T.E.; Becker, J.B. Enduring changes in brain and behavior produced by chronic amphetamine administration: A review and evaluation of animal models of amphetamine psychosis. Brain Res. 1986, 396, 157–198. [Google Scholar] [CrossRef]
- Ellgren, M.; Spano, S.M.; Hurd, Y.L. Adolescent cannabis exposure alters opiate intake and opioid limbic neuronal populations in adult rats. Neuropsychopharmacology 2007, 32, 607–615. [Google Scholar] [CrossRef]
- Henningfield, J.E.; Clayton, R.; Pollin, W. Involvement of tobacco in alcoholism and illicit drug use. Br. J. Addict. 1990, 85, 279–291. [Google Scholar] [CrossRef]
- Hubbell, C.L.; Mankes, R.F.; Reid, L.D. A small dose of morphine leads rats to drink more alcohol and achieve higher blood alcohol concentrations. Alcohol Clin. Exp. Res. 1993, 17, 1040–1043. [Google Scholar] [CrossRef]
- Liguori, A.; Hughes, J.R.; Goldberg, K.; Callas, P. Subjective effects of oral caffeine in formerly cocaine-dependent humans. Drug Alcohol Depend. 1997, 49, 17–24. [Google Scholar] [CrossRef]
- Nichols, M.L.; Hubbell, C.L.; Kalsher, M.J.; Reid, L.D. Morphine increases intake of beer among rats. Alcohol 1991, 8, 237–240. [Google Scholar] [CrossRef]
- Volpicelli, J.R.; Ulm, R.R.; Hopson, N. Alcohol drinking in rats during and following morphine injections. Alcohol 1991, 8, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Avena, N.M.; Hoebel, B.G. A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience 2003, 122, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Gosnell, B.A. Sucrose intake enhances behavioral sensitization produced by cocaine. Brain Res. 2005, 1031, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Foley, K.A.; Fudge, M.A.; Kavaliers, M.; Ossenkopp, K.P. Quinpirole-induced behavioral sensitization is enhanced by prior scheduled exposure to sucrose: A multi-variable examination of locomotor activity. Behav. Brain Res. 2006, 167, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.E.; Berridge, K.C. The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res. Rev. 1993, 18, 247–291. [Google Scholar] [CrossRef]
- Avena, N.M.; Carrillo, C.A.; Needham, L.; Leibowitz, S.F.; Hoebel, B.G. Sugar-dependent rats show enhanced intake of unsweetened ethanol. Alcohol 2004, 34, 203–209. [Google Scholar] [CrossRef]
- Carroll, M.E.; Anderson, M.M.; Morgan, A.D. Regulation of intravenous cocaine self-administration in rats selectively bred for high (HiS) and low (LoS) saccharin intake. Psychopharmacology 2007, 190, 331–341. [Google Scholar] [CrossRef]
- Davis, J.F.; Tracy, A.L.; Schurdak, J.D.; Tschöp, M.H.; Lipton, J.W.; Clegg, D.J.; Benoit, S.C. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav. Neurosci. 2008, 122, 1257–1263. [Google Scholar] [CrossRef]
- Unterwald, E.M.; Ho, A.; Rubenfeld, J.M.; Kreek, M.J. Time course of the development of behavioral sensitization and dopamine receptor up-regulation during binge cocaine administration. J. Pharmacol. Exp. Ther. 1994, 270, 1387–1396. [Google Scholar]
- Alburges, M.E.; Narang, N.; Wamsley, J.K. Alterations in the dopaminergic receptor system after chronic administration of cocaine. Synapse 1993, 14, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Unterwald, E.M.; Kreek, M.J.; Cuntapay, M. The frequency of cocaine administration impacts cocaine-induced receptor alterations. Brain Res. 2001, 900, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Spangler, R.; Goddard, N.L.; Avena, N.M.; Hoebel, B.G.; Leibowitz, S.F. Elevated D3 dopamine receptor mRNA in dopaminergic and dopaminoceptive regions of the rat brain in response to morphine. Mol. Brain Res. 2003, 111, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.J.; Vinsant, S.L.; Nader, M.A.; Porrino, L.J.; Friedman, D.P. Effect of cocaine self-administration on dopamine D2 receptors in rhesus monkeys. Synapse 1998, 30, 88–96. [Google Scholar] [CrossRef]
- Georges, F.; Stinus, L.; Bloch, B.; Le Moine, C. Chronic morphine exposure and spontaneous withdrawal are associated with modifications of dopamine receptor and neuropeptide gene expression in the rat striatum. Eur. J. Neurosci. 1999, 11, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Goeders, N.E.; Kuhar, M.J. Chronic cocaine administration induces opposite changes in dopamine receptors in the striatum and nucleus accumbens. Alcohol Drug Res. 1987, 7, 207–216. [Google Scholar]
- Turchan, J.; Lason, W.; Budziszewska, B.; Przewlocka, B. Effects of single and repeated morphine administration on the prodynorphin, proenkephalin and dopamine D2 receptor gene expression in the mouse brain. Neuropeptides 1997, 31, 24–28. [Google Scholar] [CrossRef]
- Volkow, N.D.; Ding, Y.S.; Fowler, J.S.; Wang, G.J. Cocaine addiction: Hypothesis derived from imaging studies with PET. J. Addict. Dis. 1996, 15, 55–71. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.; Fowler, J.S.; Logan, J.; Hitzemann, R.; Ding, Y.; Pappas, N.; Shea, C.; Piscani, K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin. Exp. Res. 1996, 20, 1594–1598. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wang, G.-J.; Telang, F.; Fowler, J.S.; Logan, J.; Childress, A.-R.; Jayne, M.; Ma, Y.; Wong, C. Cocaine cues and dopamine in dorsal striatum: Mechanism of craving in cocaine addiction. J. Neurosci. 2006, 26, 6583–6588. [Google Scholar] [CrossRef]
- Bello, N.T.; Lucas, L.R.; Hajnal, A. Repeated sucrose access influences dopamine D2 receptor density in the striatum. Neuroreport 2002, 13, 1575–1578. [Google Scholar] [CrossRef] [PubMed]
- Spangler, R.; Wittkowski, K.M.; Goddard, N.L.; Avena, N.M.; Hoebel, B.G.; Leibowitz, S.F. Opiate-like effects of sugar on gene expression in reward areas of the rat brain. Mol. Brain Res. 2004, 124, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Di Chiara, G.; Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Nat. Acad. Sci. USA 1988, 85, 5274–5278. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.; Avena, N.M.; Hoebel, B.G. Daily bingeing on sugar repeatedly releases dopamine in the accumbens shell. Neuroscience 2005, 134, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Bassareo, V.; Di Chiara, G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J. Neurosci. 1997, 17, 851–861. [Google Scholar] [CrossRef]
- de Wit, H. Priming effects with drugs and other reinforcers. Exp. Clin. Psychopharmacol. 1996, 4, 5–10. [Google Scholar] [CrossRef]
- Pothos, E.N.; Creese, I.; Hoebel, B.G. Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. J. Neurosci. 1995, 15, 6640–6650. [Google Scholar] [CrossRef]
- Bello, N.T.; Sweigart, K.L.; Lakoski, J.M.; Norgren, R.; Hajnal, A. Restricted feeding with scheduled sucrose access results in an upregulation of the rat dopamine transporter. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284, R1260–R1268. [Google Scholar] [CrossRef]
- Bailey, A.; Gianotti, R.; Ho, A.; Kreek, M.J. Persistent upregulation of mu-opioid, but not adenosine, receptors in brains of long-term withdrawn escalating dose “binge” cocaine-treated rats. Synapse 2005, 57, 160–166. [Google Scholar] [CrossRef]
- Vigano, D.; Rubino, T.; Di Chiara, G.; Ascari, I.; Massi, P.; Parolaro, D. Mu opioid receptor signaling in morphine sensitization. Neuroscience 2003, 117, 921–929. [Google Scholar] [CrossRef]
- Uhl, G.R.; Ryan, J.P.; Schwartz, J.P. Morphine alters preproenkephalin gene expression. Brain Res. 1988, 459, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Zubieta, J.K.; Gorelick, D.A.; Stauffer, R.; Ravert, H.T.; Dannals, R.F.; Frost, J.J. Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat. Med. 1996, 2, 1225–1229. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A.E.; Bakshi, V.P.; Haber, S.N.; Steininger, T.L.; Will, M.J.; Zhang, M. Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav. 2002, 76, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Kelley, A.E.; Will, M.J.; Steininger, T.L.; Zhang, M.; Haber, S.N. Restricted daily consumption of a highly palatable food (chocolate Ensure®) alters striatal enkephalin gene expression. Eur. J. Neurosci. 2003, 18, 2592–2598. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef]
- Volkow, N.D.; Wise, R.A. How can drug addiction help us understand obesity? Nat. Neurosci. 2005, 8, 555–560. [Google Scholar] [CrossRef]
- Cason, A.M.; Smith, R.J.; Tahsili-Fahadan, P.; Moorman, D.E.; Sartor, G.C.; Aston-Jones, G. Role of orexin/hypocretin in reward-seeking and addiction: Implications for obesity. Physiol. Behav. 2010, 100, 419–428. [Google Scholar] [CrossRef]
- Harris, G.C.; Wimmer, M.; Aston-Jones, G. A role for lateral hypothalamic orexin neurons in reward seeking. Nature 2005, 437, 556–559. [Google Scholar] [CrossRef]
- Harris, G.C.; Aston-Jones, G. Augmented accumbal serotonin levels decrease the preference for a morphine associated environment during withdrawal. Neuropsychopharmacology 2001, 24, 75–85. [Google Scholar] [CrossRef]
- Zheng, H.; Patterson, L.M.; Berthoud, H.R. Orexin signaling in the ventral tegmental area is required for high-fat appetite induced by opioid stimulation of the nucleus accumbens. J. Neurosci. 2007, 27, 11075–11082. [Google Scholar] [CrossRef]
- Avena, N.M.; Rada, P.; Hoebel, B.G. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose. Neuroscience 2008, 156, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.; Jensen, K.; Hoebel, B.G. Effects of nicotine and mecamylamine-induced withdrawal on extracellular dopamine and acetylcholine in the rat nucleus accumbens. Psychopharmacology 2001, 157, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.; Johnson, D.F.; Lewis, M.J.; Hoebel, B.G. In alcohol-treated rats, naloxone decreases extracellular dopamine and increases acetylcholine in the nucleus accumbens: Evidence of opioid withdrawal. Pharmacol. Biochem. Behav. 2004, 79, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Rada, P.V.; Mark, G.P.; Taylor, K.M.; Hoebel, B.G. Morphine and naloxone, i.p. or locally, affect extracellular acetylcholine in the accumbens and prefrontal cortex. Pharmacol. Biochem. Behav. 1996, 53, 809–816. [Google Scholar] [CrossRef]
- Avena, N.M.; Bocarsly, M.E.; Rada, P.; Kim, A.; Hoebel, B.G. After daily bingeing on a sucrose solution, food deprivation induces anxiety and accumbens dopamine/acetylcholine imbalance. Physiol. Behav. 2008, 94, 309–315. [Google Scholar] [CrossRef]
- Chandler-Laney, P.; Castaneda, E.; Pritchett, C.; Smith, M.; Giddings, M.; Artiga, A.; Boggiano, M. A history of caloric restriction induces neurochemical and behavioral changes in rats consistent with models of depression. Pharmacol. Biochem. Behav. 2007, 87, 104–114. [Google Scholar] [CrossRef]
- Schulte, E.M.; Avena, N.M.; Gearhardt, A.N. Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS ONE 2015, 10, e0117959. [Google Scholar] [CrossRef]
- Whatnall, M.; Clarke, E.; Collins, C.E.; Pursey, K.; Burrows, T. Ultra-processed food intakes associated with ‘food addiction’ in young adults. Appetite 2022, 178, 106260. [Google Scholar] [CrossRef]
- Meule, A.; Gearhardt, A.N. Five years of the Yale Food Addiction Scale: Taking stock and moving forward. Curr. Addict. Rep. 2014, 1, 193–205. [Google Scholar] [CrossRef]
- Hoover, L.V.; Yu, H.P.; Cummings, J.R.; Ferguson, S.G.; Gearhardt, A.N. Co-occurrence of food addiction, obesity, problematic substance use, and parental history of problematic alcohol use. Psychol. Addict. Behav. 2023, 37, 928–935. [Google Scholar] [CrossRef]
- Davis, C.; Levitan, R.D.; Kaplan, A.S.; Kennedy, J.L.; Carter, J.C. Food cravings, appetite, and snack-food consumption in response to a psychomotor stimulant drug: The moderating effect of “food-addiction”. Front. Psychol. 2014, 5, 403. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Loxton, N.J.; Levitan, R.D.; Kaplan, A.S.; Carter, J.C.; Kennedy, J.L. “Food addiction” and its association with a dopaminergic multilocus genetic profile. Physiol. Behav. 2013, 118, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.J.; Volkow, N.D.; Thanos, P.K.; Fowler, J.S. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: A concept review. J. Addict. Dis. 2004, 23, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Appelhans, B.M.; Woolf, K.; Pagoto, S.L.; Schneider, K.L.; Whited, M.C.; Liebman, R. Inhibiting food reward: Delay discounting, food reward sensitivity, and palatable food intake in overweight and obese women. Obesity 2011, 19, 2175–2182. [Google Scholar] [CrossRef]
- Berner, L.A.; Bocarsly, M.E.; Hoebel, B.G.; Avena, N.M. Pharmacological interventions for binge eating: Lessons from animal models, current treatments, and future directions. Curr. Pharm. Des. 2011, 17, 1180–1187. [Google Scholar] [CrossRef]
- Blumenthal, D.M.; Gold, M.S. Neurobiology of food addiction. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 359–365. [Google Scholar] [CrossRef]
- Cabou, C.; Burcelin, R. GLP-1, the gut-brain, and brain-periphery axes. Rev. Diabet. Stud. 2011, 8, 418–431. [Google Scholar] [CrossRef]
- Jensterle, M.; Rizzo, M.; Haluzík, M.; Janež, A. Efficacy of GLP-1 RA approved for weight management in patients with or without diabetes: A narrative review. Adv. Ther. 2022, 39, 2452–2467. [Google Scholar] [CrossRef]
- Corwin, R.L.; Wojnicki, F.H. Baclofen, raclopride, and naltrexone differentially affect intake of fat and sucrose under limited access conditions. Behav. Pharmacol. 2009, 20, 537–548. [Google Scholar] [CrossRef]
- Baker, R.W.; Osman, J.; Bodnar, R.J. Differential actions of dopamine receptor antagonism in rats upon food intake elicited by either mercaptoacetate or exposure to a palatable high-fat diet. Pharmacol. Biochem. Behav. 2001, 69, 201–208. [Google Scholar] [CrossRef]
- Rao, R.E.; Wojnicki, F.H.; Coupland, J.; Ghosh, S.; Corwin, R.L. Baclofen, raclopride, and naltrexone differentially reduce solid fat emulsion intake under limited access conditions. Pharmacol. Biochem. Behav. 2008, 89, 581–590. [Google Scholar] [CrossRef]
- Wong, K.J.; Wojnicki, F.H.; Corwin, R.L. Baclofen, raclopride, and naltrexone differentially affect intake of fat/sucrose mixtures under limited access conditions. Pharmacol. Biochem. Behav. 2009, 92, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Krystal, J.H.; Cramer, J.A.; Krol, W.F.; Kirk, G.F.; Rosenheck, R.A. Veterans Affairs Naltrexone Cooperative Study G. Naltrexone in the treatment of alcohol dependence. N. Engl. J. Med. 2001, 345, 1734–1739. [Google Scholar] [CrossRef] [PubMed]
- Naleid, A.M.; Grace, M.K.; Chimukangara, M.; Billington, C.J.; Levine, A.S. Paraventricular opioids alter intake of high-fat but not high-sucrose diet depending on diet preference in a binge model of feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R99–R105. [Google Scholar] [CrossRef] [PubMed]
- Carbone, E.A.; Caroleo, M.; Rania, M.; Calabrò, G.; Staltari, F.A.; de Filippis, R.; Aloi, M.; Condoleo, F.; Arturi, F.; Segura-Garcia, C. An open-label trial on the efficacy and tolerability of naltrexone/bupropion SR for treating altered eating behaviours and weight loss in binge eating disorder. Eat. Weight Disord. 2021, 26, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Tammela, L.I.; Rissanen, A.; Kuikka, J.T.; Karhunen, L.J.; Repo-Tiihonen, E.; Naukkarinen, H.; Vanninen, E.; Tiihonen, J.; Uusitupa, M.; Bergström, K.A. Treatment improves serotonin transporter binding and reduces binge eating. Psychopharmacology 2003, 170, 89–93. [Google Scholar] [CrossRef]
- Milano, W.; Petrella, C.; Casella, A.; Capasso, A.; Carrino, S.; Milano, L. Use of sibutramine, an inhibitor of the reuptake of serotonin and noradrenaline, in the treatment of binge eating disorder: A placebo-controlled study. Adv. Ther. 2005, 22, 25–31. [Google Scholar] [CrossRef]
- Carroll, M.E.; Lac, S.T.; Asencio, M.; Kragh, R. Fluoxetine reduces intravenous cocaine self-administration in rats. Pharmacol. Biochem. Behav. 1990, 35, 237–244. [Google Scholar] [CrossRef]
- Lawrence, A.J.; Cowen, M.S.; Yang, H.J.; Chen, F.; Oldfield, B. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol. 2006, 148, 752–759. [Google Scholar] [CrossRef]
- Smart, D.; Haynes, A.C.; Williams, G.; Arch, J.R. Orexins and the treatment of obesity. Eur. J. Pharmacol. 2002, 440, 199–212. [Google Scholar] [CrossRef]
- Marazziti, D.; Rossi, L.; Baroni, S.; Consoli, G.; Hollander, E.; Catena-Dell’Osso, M. Novel treatment options of binge eating disorder. Curr. Med. Chem. 2011, 18, 5159–5164. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.M.; Flint, A.J.; Roberts, A.L.; Agnew-Blais, J.; Koenen, K.C.; Rich-Edwards, J.W. Posttraumatic stress disorder symptoms and food addiction in women by timing and type of trauma exposure. JAMA Psychiatry 2014, 71, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Brewerton, T.D. Food addiction as a proxy for eating disorder and obesity severity, trauma history, PTSD symptoms, and comorbidity. Eat. Weight Disord. 2017, 22, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Minhas, M.; Murphy, C.M.; Balodis, I.M.; Samokhvalov, A.V.; MacKillop, J. Food addiction in a large community sample of Canadian adults: Prevalence and relationship with obesity, body composition, quality of life and impulsivity. Addiction 2021, 116, 2870–2879. [Google Scholar] [CrossRef]
DSM-5 Criteria for Substance-Use Disorders * | Relation to Food Addiction |
---|---|
Criterion A: Impaired Control over Substance Use | |
Individual may take substance in larger amounts or over a longer period than originally intended | Unintended hyperphagia; eating despite lack of hunger; eating until feeling physically ill |
Individual may express a consistent desire to reduce or regulate substance use and may report many unsuccessful efforts to do so | Dietary restraint; repeated failed attempts to limit the consumption of particular foods |
Individual may spend a significant amount of time obtaining the substance, using the substance, or recovering from its effects | Going out of one’s way to obtain certain foods; eating throughout the day; feeling sluggish after overeating |
Craving is manifested by an intense desire or urge for the drug | Overwhelming urge to consume certain foods; preoccupied by thoughts of food and eating |
Criterion B: Social Impairment | |
Recurrent substance use may result in failure to fulfill obligations at work, school, or home | Overeating that results in obesity can limit recreational activities and the ability to perform some aspects of one’s job or household chores |
Individual may continue using substance despite having persistent or recurrent social or interpersonal problems caused or exacerbated by effects of the substance | Individuals often get into arguments with loved ones about the amount or way they are eating, akin to fighting about smoking |
Important social, occupational, or recreational activities may be given up or reduced because of substance use | Professional or social situations may be avoided based on food availability (e.g., a certain food is absent or fear of overeating foods present). Also, overeating that leads to obesity can limit participation in activities |
Criterion C: Risky Use of the Substance | |
Recurrent substance use in physically hazardous situations | Bingeing on sugar despite having diabetes or another comorbidity that poses an immediate hazard to one’s health |
Continued substance use despite knowing of having a persistent or recurrent physical or psychological problem that is likely to have been caused or exacerbated by the substance | Food habits are continued despite physical health concerns (i.e., diabetes, hypertension, excessive weight gain, cardiovascular disease) or psychological health concerns (i.e., depression, low self-esteem, eating disorders characterized by binge-eating) |
Criterion D: Pharmacological Criteria | |
Tolerance is signaled by requiring a markedly larger dose of the substance to feel the desired effect or a markedly reduced effect when the usual dose is consumed | Laboratory animals show escalation of highly processed food intake over time in binge paradigms. Humans also report needing greater amounts of food over time to achieve the same effect, including reducing negative emotions like sadness or increasing pleasure |
Withdrawal is a syndrome that occurs when blood or tissue concentrations of a substance decline in an individual who had maintained prolonged heavy use of the substance | Opiate-like withdrawal has been observed in laboratory animal models. Humans may feel irritable, nervous, or sad; food is used to alleviate negative physical symptoms or emotional problems, and when certain foods are cut down, physical symptoms occur (e.g., headaches and fatigue) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krupa, H.; Gearhardt, A.N.; Lewandowski, A.; Avena, N.M. Food Addiction. Brain Sci. 2024, 14, 952. https://doi.org/10.3390/brainsci14100952
Krupa H, Gearhardt AN, Lewandowski A, Avena NM. Food Addiction. Brain Sciences. 2024; 14(10):952. https://doi.org/10.3390/brainsci14100952
Chicago/Turabian StyleKrupa, Haley, Ashley N. Gearhardt, Anne Lewandowski, and Nicole M. Avena. 2024. "Food Addiction" Brain Sciences 14, no. 10: 952. https://doi.org/10.3390/brainsci14100952
APA StyleKrupa, H., Gearhardt, A. N., Lewandowski, A., & Avena, N. M. (2024). Food Addiction. Brain Sciences, 14(10), 952. https://doi.org/10.3390/brainsci14100952