Evolution of Thoracic Disc Herniation Surgery: Future Perspectives from a Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Study Selection
3.2. Primary Outcomes: Major Complications
3.3. Secondary Outcomes
3.4. Sensitivity Analysis
3.5. Heterogeneity and Publication Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Court, C.; Mansour, E.; Bouthors, C. Thoracic disc herniation: Surgical treatment. Orthop. Traumatol. Surg. Res. 2018, 104, S31–S40. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.W.; Deffer, P.A., Jr.; Akmakjian, J.; Donaldson, D.H.; Brugman, J.L. The natural history of thoracic disc herniation. Spine 1992, 17, S97–S102. [Google Scholar] [CrossRef] [PubMed]
- Corvino, S.; Mariniello, G.; Solari, D.; Berardinelli, J.; Maiuri, F. The Role of Surgery in Spinal Intradural Metastases from Renal Cell Carcinoma: A Literature Review. Cancers 2022, 14, 1595. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Tan, W.L.B.; Wei, W.; Vellayappan, B.A. An overview of the tumors affecting the spine-inside to out. Neurooncol. Pract. 2020, 7, i10–i17. [Google Scholar] [CrossRef]
- Yoshihara, H. Surgical treatment for thoracic disc herniation: An update. Spine 2014, 39, E406–E412. [Google Scholar] [CrossRef]
- Mariniello, G.; Corvino, S.; Corazzelli, G.; Maiuri, F. Cervical epidural abscess complicated by a pharyngoesophageal perforation after anterior cervical spine surgery for subaxial spondylodiscitis. Surg. Neurol. Int. 2023, 14, 102. [Google Scholar] [CrossRef]
- Smith, A.S.; Blaser, S.I. Infectious and inflammatory processes of the spine. Radiol. Clin. N. Am. 1991, 29, 809–827. [Google Scholar] [CrossRef]
- Corazzelli, G.; Tamburini Randi, F.; Cuoci, A.; Scibilia, A.; Conti, A.; Sturiale, C.; Bortolotti, C. 3D-exoscope-assisted occlusion of a foraminal intradural left L5-S1 arteriovenous fistula—Operative Video. World Neurosurg. 2024, 192, 69–70. [Google Scholar] [CrossRef]
- Corazzelli, G.; Di Noto, G.; Ciardo, A.; Colangelo, M.; Corvino, S.; Leonetti, S.; D’Elia, A.; Ricciardi, F.; Bocchino, A.; Paolini, S.; et al. Posterolateral approaches to the thoracic spine for calcific disc herniation: Is wider exposure always better? Acta Neurochir. 2024, 166, 267. [Google Scholar] [CrossRef]
- Corazzelli, G.; Meglio, V.; Corvino, S.; Leonetti, S.; Ricciardi, F.; D’Elia, A.; Pizzuti, V.; Santilli, M.; Innocenzi, G. The Goutallier Classification System: How Does Paravertebral Adipose Degeneration Change in Patients With Symptomatic Lumbar Spinal Stenosis? Spine 2024, 49, E174–E182. [Google Scholar] [CrossRef]
- McInerney, J.; Ball, P.A. The pathophysiology of thoracic disc disease. Neurosurg. Focus 2000, 9, e1. [Google Scholar] [CrossRef] [PubMed]
- Mixter, W.J.; Barr, J.S. Rupture of the intervertebral disc with involvement of the spinal canal. N. Engl. J. Med. 1934, 211, 210–215. [Google Scholar] [CrossRef]
- Lesoin, F.; Rousseaux, M.; Autricque, A.; Reesaul, Y.; Villette, L.; Clarisse, J.; Jomin, M. Thoracic disc herniations: Evolution in the approach and indications. Acta Neurochir. 1986, 80, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Hulme, A. The surgical approach to thoracic intervertebral disc protrusions. J. Neurol. Neurosurg. Psychiatry 1960, 23, 133–137. [Google Scholar] [CrossRef]
- Mulier, S.; Debois, V. Thoracic disc herniations: Transthoracic, lateral, or posterolateral approach? A review. Surg. Neurol. 1998, 49, 599–606, discussion 606–598. [Google Scholar] [CrossRef]
- Begagić, E.; Pugonja, R.; Bečulić, H.; Selimović, E.; Skomorac, R.; Saß, B.; Pojskić, M. The New Era of Spinal Surgery: Exploring the Use of Exoscopes as a Viable Alternative to Operative Microscopes-A Systematic Review and Meta-Analysis. World Neurosurg. 2024, 182, 144–158.e141. [Google Scholar] [CrossRef]
- Gunjotikar, S.; Pestonji, M.; Tanaka, M.; Komatsubara, T.; Ekade, S.J.; Heydar, A.M.; Hieu, H.K. Evolution, Current Trends, and Latest Advances of Endoscopic Spine Surgery. J. Clin. Med. 2024, 13, 3208. [Google Scholar] [CrossRef]
- Peron, S.; Rusconi, A.; Minotti, M.; Stefini, R. High definition 4K-three-dimensional exoscope for removal of a C1-C2 meningioma: Technical case report. Neurocirugia 2023, 34, 48–52. [Google Scholar] [CrossRef]
- Lin, H.; Chen, F.; Mo, J.; Lin, T.; Wang, Z.; Liu, W. Cervical Spine Microsurgery with the High-Definition 3D Exoscope: Advantages and Disadvantages. World Neurosurg. 2022, 161, e1–e7. [Google Scholar] [CrossRef]
- Siller, S.; Zoellner, C.; Fuetsch, M.; Trabold, R.; Tonn, J.C.; Zausinger, S. A high-definition 3D exoscope as an alternative to the operating microscope in spinal microsurgery. J. Neurosurg. Spine 2020, 33, 705–714. [Google Scholar] [CrossRef]
- Iqbal, J.; Covell, M.M.; Jabeen, S.; Nadeem, A.; Malik Gunjial, H.; Abdus Saboor, H.; Amin, A.; Salman, Y.; Hafeez, M.H.; Bowers, C.A. Comparative analysis of exoscope-assisted spine surgery versus operating microscope: A systematic review. World Neurosurg. X 2024, 21, 100258. [Google Scholar] [CrossRef] [PubMed]
- Vattipally, V.N.; Jiang, K.; Weber-Levine, C.; Rosin, R.; Davidar, A.D.; Hersh, A.M.; Khalifeh, J.; Ahmed, A.K.; Azad, T.D.; Ashayeri, K.; et al. Exoscope Use in Spine Surgery: A Systematic Review of Applications, Benefits, and Limitations. World Neurosurg. 2024, 184, 283–292.e283. [Google Scholar] [CrossRef] [PubMed]
- Kasliwal, M.K. Evolution and current status of surgical management of thoracic disc herniation—A review. Clin. Neurol. Neurosurg. 2024, 236, 108055. [Google Scholar] [CrossRef] [PubMed]
- Melnyk, B.M.; Fineout-Overholt, E.; Giggleman, M.; Choy, K. A test of the ARCC© model improves implementation of evidence-based practice, healthcare culture, and patient outcomes. Worldviews Evid.-Based Nurs. 2017, 14, 5–9. [Google Scholar] [CrossRef]
- Capece, M.; Corazzelli, G.; Pizzuti, V.; Leonetti, S.; Innocenzi, G. A challenging recurrent thoracic disc herniation. Surg. Neurol. Int. 2023, 14, 101. [Google Scholar] [CrossRef]
- El-Kalliny, M.; Tew, J.; Van Loveren, H.; Dunsker, S. Surgical approaches to thoracic disc herniations. Acta Neurochir. 1991, 111, 22–32. [Google Scholar] [CrossRef]
- Hott, J.S.; Feiz-Erfan, I.; Kenny, K.; Dickman, C.A. Surgical management of giant herniated thoracic discs: Analysis of 20 cases. J. Neurosurg. Spine 2005, 3, 191–197. [Google Scholar] [CrossRef]
- Khoo, L.T.; Smith, Z.A.; Asgarzadie, F.; Barlas, Y.; Armin, S.S.; Tashjian, V.; Zarate, B. Minimally invasive extracavitary approach for thoracic discectomy and interbody fusion: 1-year clinical and radiographic outcomes in 13 patients compared with a cohort of traditional anterior transthoracic approaches. J. Neurosurg. Spine 2011, 14, 250–260. [Google Scholar] [CrossRef]
- Arts, M.P.; Bartels, R.H. Anterior or posterior approach of thoracic disc herniation? A comparative cohort of mini-transthoracic versus transpedicular discectomies. Spine J. 2014, 14, 1654–1662. [Google Scholar] [CrossRef]
- Oppenlander, M.E.; Clark, J.C.; Kalyvas, J.; Dickman, C.A. Surgical management and clinical outcomes of multiple-level symptomatic herniated thoracic discs. J. Neurosurg. Spine 2013, 19, 774–783. [Google Scholar] [CrossRef]
- Kapoor, S.; Amarouche, M.; Al-Obeidi, F.; U-King-Im, J.M.; Thomas, N.; Bell, D. Giant thoracic discs: Treatment, outcome, and follow-up of 33 patients in a single centre. Eur. Spine J. 2018, 27, 1555–1566. [Google Scholar] [CrossRef] [PubMed]
- Kerezoudis, P.; Rajjoub, K.R.; Goncalves, S.; Alvi, M.A.; Elminawy, M.; Alamoudi, A.; Nassr, A.; Habermann, E.B.; Bydon, M. Anterior versus posterior approaches for thoracic disc herniation: Association with postoperative complications. Clin. Neurol. Neurosurg. 2018, 167, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Oltulu, I.; Cil, H.; Ulu, M.O.; Deviren, V. Clinical outcomes of symptomatic thoracic disk herniations treated surgically through minimally invasive lateral transthoracic approach. Neurosurg. Rev. 2019, 42, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Armocida, D.; D’Angelo, L.; Paglia, F.; Pedace, F.; De Giacomo, T.; Berra, L.V.; Frati, A.; Santoro, A. Surgical management of giant calcified thoracic disc herniation and the role of neuromonitoring. The outcome of large mono centric series. J. Clin. Neurosci. 2022, 100, 37–45. [Google Scholar] [CrossRef]
- Yuan, L.; Chen, Z.; Liu, Z.; Liu, X.; Li, W.; Sun, C. Comparison of anterior approach and posterior circumspinal decompression in the treatment of giant thoracic discs. Glob. Spine J. 2023, 13, 17–24. [Google Scholar] [CrossRef]
- Brotis, A.G.; Tasiou, A.; Paterakis, K.; Tzerefos, C.; Fountas, K.N. Complications associated with surgery for thoracic disc herniation: A systematic review and network meta-analysis. World Neurosurg. 2019, 132, 334–342. [Google Scholar] [CrossRef]
- Paolini, S.; Tola, S.; Missori, P.; Esposito, V.; Cantore, G. Endoscope-assisted resection of calcified thoracic disc herniations. Eur. Spine J. 2016, 25, 200–206. [Google Scholar] [CrossRef]
- Johnson, J.P.; Filler, A.G.; McBride, D.Q. Endoscopic thoracic discectomy. Neurosurg. Focus 2000, 9, 1–8. [Google Scholar] [CrossRef]
- de Divitiis, O.; d’Avella, E.; Fabozzi, G.L.; Cavallo, L.M.; Solari, D. Surgeon’s Eyes on the Relevant Surgical Target. In The Funnel: From the Skull Base to the Sacrum: New Trends, Technologies and Strategies; Springer: Berlin/Heidelberg, Germany, 2023; pp. 5–11. [Google Scholar]
- DE Divitiis, O.; D’Avella, E.; Denaro, L.; Somma, T.; Sacco, M.; D’Avella, D. VITOM®-3D: Preliminary experience with intradural extramedullary spinal tumors. J. Neurosurg. Sci. 2019, 66, 356–361. [Google Scholar]
- Wait, S.D.; Fox, D.J., Jr.; Kenny, K.J.; Dickman, C.A. Thoracoscopic resection of symptomatic herniated thoracic discs: Clinical results in 121 patients. Spine 2012, 37, 35–40. [Google Scholar] [CrossRef]
- Anand, N.; Regan, J.J. Video-assisted thoracoscopic surgery for thoracic disc disease: Classification and outcome study of 100 consecutive cases with a 2-year minimum follow-up period. Spine 2002, 27, 871–879. [Google Scholar] [CrossRef]
Frame | Mesh Terms | Search | Inclusion Criteria | Exclusion Criteria | Sources |
---|---|---|---|---|---|
P (patients, participants, population) | #1 “Adult spine surgery”, #2 “Thoracic disc herniation”, OR “Thoracic disc” | #1 AND #2 AND #3 AND #4 AND #5 | Published in peer-reviewed journals. | Irrelevant title or abstract Irrelevant full text Editorial, reviews, meta-analysis Studies with less than 20 subjects Experimental/nonhuman studies At least one pair of comparators, Indications other than thoracic disc herniation | Databases (PubMed, Cochrane Library, ClinicalTrials.gov, Web of Science, and Scopus) |
I (intervention) | #3 “Posterolateral approach” | English language | |||
C (comparator) | #4 “Anterior approach” OR “Thoracotomy” OR “Thoracoscopy” | Randomized controlled trials, non-randomized observational studies, cohort studies, case series | |||
O (outcome) | #5 “Medical Complications” OR “Surgical Complications” OR “Complete Resection” OR “Blood Loss” OR “Hospital Stay” OR Duration of Surgery” | Accurately described sample characteristics, surgical and medical complications, Frenkel grades, neurological outcomes, and Surgical parameters. | Reference list | ||
T (time) | The search period: 1990 until December 2023 |
Event(s) | Definition |
---|---|
Neurological improvement | Patients who improved at least one Frenkel grade at the last follow-up |
Anterior Approach | Thoracotomy, mini-transthoracic approach, thoracoscopy |
Posterolateral Approach | Costotransversectomy with/without pediculectomy, Transpedicular, transfacet pedicle-sparing, Minimally Invasive Lateral Extracavitary Tubular Approach |
Surgical complications | Wound infection, rebleeding, severe hemorrhage, persistent pleural effusion, hemothorax, chylothorax, incidental intraoperative dural injury, postoperative cerebrospinal fluid (CSF) leak, and CSF–pleural fistula, insufficient discectomy, residual disc, and recurrence |
Medical Complications | Stroke, pneumonia, pulmonary embolism, seizure, deep vein thrombosis, myositis ossificans, numbness, neuralgia, abdominal wall weakness, and abdominal hyperesthesia |
Author | Year | Country | Study Design | Recruitment Period | Patients | Anterior Approaches | Posterolateral Approaches | Neurological Improvement | Complete Hernia Resection | Medical Complications | Surgical Complications | Blood Loss | Hospital Stay | Duration of Surgery | Follow-Up * | Level of Evidence† | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANT | POST | ANT | POST | ANT | POST | ANT | POST | ANT | POST | ANT | POST | ANT | POST | ||||||||||
El-Kalliny et al. [26] | 1991 | USA | CS | 1985 to 1990 | 21 (7 M, 14 F), Median age 43 y.o. (SD 13.39) | 8 | 13 | 6 | 11 | - | - | 3 | 1 | 1 | 0 | - | - | - | - | - | - | 3 (±12) | 6 |
Hott et al. [27] | 2005 | USA | CS | 1992 to 2003 | 20 (8 M, 12 F), Median age 61 y.o. (SD 7.75) | 16 | 4 | 14 | 3 | - | - | 6 | 0 | 1 | 0 | 775 | 750 | - | - | - | - | 40.8 (±19.5) | 6 |
Khoo et al. [28] | 2011 | Mexico | Rcoh | 2008 to 2010 | 24 (9 M, 15 F), Median age 52 y.o. (SD 12.75) | 11 | 13 | 8 | 12 | 11 | 13 | 7 | 3 | 3 | 1 | 295 | 200 | 5.3 | 5.8 | 175 | 93.75 | 13 | 4 |
Arts et al. [29] | 2013 | Netherlands | Pcoh | 2005 to 2013 | 100 (41 M, 59 F), Median age 54 y.o. (SD 19.25) | 44 | 33 | 32 | 25 | - | - | 12 | 1 | 13 | 2 | 1157 | 213 | 10.1 | 4.9 | 229 | 98 | 8.5 (±7.75) | 3 |
Oppenlander et al. [30] | 2013 | USA | RCoh | 1992 to 2012 | 56 (26 M, 30 F), Mean age 48 y.o. (SD 12.5) | 39 | 13 | - | - | 39 | 13 | 6 | 1 | 5 | 1 | 1011.5 | 496 | 7 | 4 | - | - | 48 (±43.25) | 4 |
Kapoor et al. [31] | 2017 | UK | Rcoh | 2006 to 2014 | 33 (16 M, 17 F), Mean age 60 y.o. (SD 12) | 22 | 11 | 11 | 4 | - | - | 5 | 1 | 6 | 3 | 1493 | 257 | 15 | 6.5 | 251 | 170 | 14.45 (±93.75) | 4 |
Kerezoudis et al. [32] | 2018 | USA | CS | 2012 to 2015 | 155 (75 M, 80 F), Mean age 53 y.o. (SD 11) | 65 | 90 | - | - | - | - | 22 | 2 | 1 | 1 | - | - | 6 | 4 | 228 | 159 | - | 6 |
Oltulu et al. [33] | 2019 | Turkey | Rcoh | 2007 to 2016 | 86 (53 M, 33 F), Mean age 56 y.o. (SD 19.25) | s68 | 18 | 58 | 14 | - | - | 12 | 0 | 4 | 6 | 390 | 602.78 | 4.87 | 7.17 | 186.79 | 223.12 | 20 (±5.4) | 4 |
Armocida et al. [34] | 2022 | Italy | CS | 2009 to 2019 | 76 (43 M, 33 F), Mean age 52 y.o. (SD 13.92) | 28 | 48 | 22 | 42 | 20 | 32 | 1 | 1 | 4 | 6 | - | - | - | - | - | - | 20.25 (±28.75) | 6 |
Yuan et al. [35] | 2023 | China | RCoh | 2006 to 2019 | 186 (145 M, 41 F), Mean age 46 y.o. (SD 13.24) | 63 | 123 | 2 | 61 | 39 | 114 | 3 | 1 | 17 | 16 | 947.94 | 716.83 | 15 | 9 | 180.78 | 163.06 | 75.82 (±32.5) | 4 |
Major Medical Complications | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Author | Year | Sample | Posterolateral Approach | Anterior Approach | P1 | P2 | Odds Ratio | 95% CI | |||
Pts | Ev | Pts | Ev | Lower | Upper | ||||||
El-Kalliny | 1991 | 21 | 13 | 1 | 8 | 3 | 0.014 | 0.375 | 0.024 | 0.002 | 0.277 |
Hott | 2005 | 20 | 4 | 0 | 16 | 6 | 0.750 | 0.438 | 3.857 | 0.326 | 4.572 |
Khoo | 2011 | 24 | 13 | 3 | 11 | 7 | 0.014 | 0.545 | 0.012 | 0.001 | 0.121 |
Artz | 2013 | 100 | 33 | 1 | 44 | 12 | 0.030 | 0.273 | 0.083 | 0.010 | 0.679 |
Oppenlander | 2013 | 56 | 13 | 1 | 39 | 6 | 0.077 | 0.154 | 0.458 | 0.050 | 4.211 |
Kapoor | 2017 | 33 | 11 | 1 | 22 | 5 | 0.091 | 0.227 | 0.340 | 0.035 | 3.340 |
Kerezoudis | 2018 | 155 | 90 | 2 | 65 | 22 | 0.022 | 0.338 | 0.044 | 0.010 | 0.198 |
Oltulu | 2019 | 86 | 18 | 0 | 68 | 12 | 0.056 | 0.176 | 0.275 | 0.033 | 2.266 |
Armocida | 2022 | 76 | 48 | 1 | 28 | 1 | 0.021 | 0.036 | 0.574 | 0.035 | 9.561 |
Yuan | 2023 | 186 | 123 | 1 | 63 | 3 | 0.008 | 0.048 | 0.164 | 0.017 | 1.610 |
Results | 757 | 366 | 11 | 364 | 77 | 0.135 | 0.068 | 0.268 | |||
Major Surgical complications | |||||||||||
Pts | Ev | Pts | Ev | Lower | Upper | ||||||
El-Kalliny | 1991 | 21 | 13 | 0 | 8 | 1 | 0.008 | 0.125 | 0.054 | 0.003 | 0.961 |
Hott | 2005 | 20 | 4 | 0 | 16 | 1 | 0.250 | 0.188 | 1.444 | 0.109 | 19.217 |
Khoo | 2011 | 24 | 13 | 1 | 11 | 3 | 0.008 | 0.091 | 0.078 | 0.005 | 1.334 |
Artz | 2013 | 100 | 33 | 2 | 44 | 13 | 0.061 | 0.295 | 0.154 | 0.032 | 0.739 |
Oppenlander | 2013 | 56 | 13 | 1 | 39 | 5 | 0.077 | 0.128 | 0.567 | 0.060 | 5.353 |
Kapoor | 2017 | 33 | 11 | 3 | 22 | 6 | 0.273 | 0.273 | 1.000 | 0.197 | 5.079 |
Kerezoudis | 2018 | 155 | 90 | 1 | 65 | 1 | 0.011 | 0.015 | 0.719 | 0.044 | 11.713 |
Oltulu | 2019 | 86 | 18 | 6 | 68 | 4 | 0.333 | 0.059 | 8.000 | 1.958 | 32.683 |
Armocida | 2022 | 76 | 48 | 6 | 28 | 4 | 0.125 | 0.143 | 0.857 | 0.220 | 3.343 |
Yuan | 2023 | 186 | 123 | 16 | 63 | 17 | 0.130 | 0.270 | 0.405 | 0.188 | 0.870 |
Results | 757 | 366 | 36 | 364 | 55 | 0.610 | 0.375 | 0.990 | |||
Neurological improvement | |||||||||||
Pts | 1-Ev | Pts | 1-Ev | Lower | Upper | ||||||
El-Kalliny | 1991 | 21 | 13 | 2 | 8 | 2 | 0.029 | 0.250 | 0.088 | 0.010 | 0.743 |
Hott | 2005 | 20 | 4 | 1 | 16 | 2 | 0.250 | 0.188 | 1.444 | 0.109 | 19.217 |
Khoo | 2011 | 24 | 13 | 1 | 11 | 3 | 0.014 | 0.182 | 0.065 | 0.005 | 0.794 |
Artz | 2013 | 100 | 33 | 8 | 44 | 12 | 0.242 | 0.273 | 0.853 | 0.303 | 2.405 |
Kapoor | 2017 | 33 | 11 | 7 | 22 | 11 | 0.636 | 0.500 | 1.750 | 0.396 | 7.733 |
Oltulu | 2019 | 86 | 18 | 4 | 68 | 10 | 0.222 | 0.147 | 1.657 | 0.452 | 6.069 |
Armocida | 2022 | 76 | 48 | 6 | 28 | 6 | 0.125 | 0.214 | 0.524 | 0.151 | 1.817 |
Yuan | 2023 | 186 | 123 | 62 | 63 | 41 | 0.504 | 0.651 | 0.545 | 0.291 | 1.021 |
Results | 546 | 263 | 91 | 260 | 87 | 0.648 | 0.426 | 0.985 | |||
Complete hernia resection | |||||||||||
Author | Year | Sample | Posterolateral Approach | Anterior Approach | P1 | P2 | Odds Ratio | 95% CI | |||
Pts | 1-Ev | Pts | 1-Ev | Lower | Upper | ||||||
Khoo | 2011 | 24 | 13 | 0 | 11 | 0 | 0.007 | 0.008 | 0.856 | 0.053 | 13.836 |
Oppenlander | 2013 | 52 | 13 | 0 | 39 | 0 | 0.007 | 0.003 | 2.871 | 0.178 | 46.204 |
Armocida | 2022 | 76 | 48 | 16 | 28 | 8 | 0.333 | 0.286 | 1.250 | 0.453 | 3.453 |
Yuan | 2023 | 186 | 123 | 9 | 63 | 24 | 0.073 | 0.381 | 0.128 | 0.055 | 0.300 |
Results | 338 | 197 | 25 | 141 | 32 | 0.381 | 0.206 | 0.708 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corazzelli, G.; Corvino, S.; Di Noto, G.; Di Domenico, C.; Russo, F.; Mariniello, G.; Elefante, A.; Bocchetti, A.; Paolini, S.; Esposito, V.; et al. Evolution of Thoracic Disc Herniation Surgery: Future Perspectives from a Systematic Review and Meta-Analysis. Brain Sci. 2024, 14, 1062. https://doi.org/10.3390/brainsci14111062
Corazzelli G, Corvino S, Di Noto G, Di Domenico C, Russo F, Mariniello G, Elefante A, Bocchetti A, Paolini S, Esposito V, et al. Evolution of Thoracic Disc Herniation Surgery: Future Perspectives from a Systematic Review and Meta-Analysis. Brain Sciences. 2024; 14(11):1062. https://doi.org/10.3390/brainsci14111062
Chicago/Turabian StyleCorazzelli, Giuseppe, Sergio Corvino, Giulio Di Noto, Chiara Di Domenico, Federico Russo, Giuseppe Mariniello, Andrea Elefante, Antonio Bocchetti, Sergio Paolini, Vincenzo Esposito, and et al. 2024. "Evolution of Thoracic Disc Herniation Surgery: Future Perspectives from a Systematic Review and Meta-Analysis" Brain Sciences 14, no. 11: 1062. https://doi.org/10.3390/brainsci14111062
APA StyleCorazzelli, G., Corvino, S., Di Noto, G., Di Domenico, C., Russo, F., Mariniello, G., Elefante, A., Bocchetti, A., Paolini, S., Esposito, V., Innocenzi, G., de Falco, R., & de Divitiis, O. (2024). Evolution of Thoracic Disc Herniation Surgery: Future Perspectives from a Systematic Review and Meta-Analysis. Brain Sciences, 14(11), 1062. https://doi.org/10.3390/brainsci14111062