Cross-Section of Neurological Manifestations Among SARS-CoV-2 Omicron Subvariants—Single-Center Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Omicron period (O1) from January to June 2022—203 patients;
- Omicron period (O2) from July 2022 to February 2023—136 patients;
- Omicron period (O3) from March to December 2023—87 patients.
2.2. Statistical Analysis
3. Results
3.1. Overall Characteristics
3.2. Neurological Manifestations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanjuán, R.; Domingo-Calap, P. Mechanisms of viral mutation. Cell. Mol. Life Sci. 2016, 73, 4433–4448. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683–690. [Google Scholar] [CrossRef]
- Hoteit, R.; Yassine, H.M. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines 2022, 10, 919. [Google Scholar] [CrossRef]
- Ramesh, S.; Govindarajulu, M.; Parise, R.S.; Neel, L.; Shankar, T.; Patel, S.; Lowery, P.; Smith, F.; Dhanasekaran, M.; Moore, T. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implications and Vaccine Efficacy. Vaccines 2021, 9, 1195. [Google Scholar] [CrossRef]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Tracking SARS-CoV-2 Variants. 2023. Update on 21 December 2023. Available online: https://www.who.int/activities/tracking-SARS-CoV-2-variants (accessed on 18 January 2024).
- Jung, C.; Kmiec, D.; Koepke, L.; Zech, F.; Jacob, T.; Sparrer, K.M.J.; Kirchhoff, F. Omicron: What Makes the Latest SARS-CoV-2 Variant of Concern So Concerning? J. Virol. 2022, 96, e0207721. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, R.K.; Kandi, V.; Sarangi, A.K.; Verma, S.; Tuli, H.S.; Chakraborty, S.; Chakraborty, C.; Dhama, K. The recently emerged BA.4 and BA.5 lineages of Omicron and their global health concerns amid the ongoing wave of COVID-19 pandemic—Correspondence. Int. J. Surg. 2022, 103, 106698. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Bhattacharya, M.; Nag, S.; Dhama, K.; Chakraborty, C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023, 15, 167. [Google Scholar] [CrossRef] [PubMed]
- Pather, S.; Madhi, S.A.; Cowling, B.J.; Moss, P.; Kamil, J.P.; Ciesek, S.; Muik, A.; Türeci, Ö. SARS-CoV-2 Omicron variants: Burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines. Front. Immunol. 2023, 14, 1130539. [Google Scholar] [CrossRef]
- Liu, J.; Xie, W.; Wang, Y.; Xiong, Y.; Chen, S.; Han, J.; Wu, Q. A comparative overview of COVID-19, MERS and SARS: Review article. Int. J. Surg. 2020, 81, 1–8. [Google Scholar] [CrossRef]
- Anscombe, C.; Lissauer, S.; Thole, H.; Rylance, J.; Dula, D.; Menyere, M.; Kutambe, B.; van der Veer, C.; Phiri, T.; Banda, N.P.; et al. A comparison of four epidemic waves of COVID-19 in Malawi; an observational cohort study. BMC Infect. Dis. 2023, 23, 79. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.W.X.; Chiew, C.J.; Ang, L.W.; Mak, T.M.; Cui, L.; Toh, M.P.H.S.; Lim, Y.D.; Lee, P.H.; Lee, T.H.; Chia, P.Y.; et al. Clinical and Virological Features of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants of Concern: A Retrospective Cohort Study Comparing B.1.1.7 (Alpha), B.1.351 (Beta), and B.1.617.2 (Delta). Clin. Infect. Dis. 2022, 75, e1128–e1136. [Google Scholar] [CrossRef]
- Seyler, L.; Van Nedervelde, E.; De Cock, D.; Mann, C.; Pien, K.; Allard, S.D.; Demuyser, T. Surfing the Waves: Differences in Hospitalised COVID-19 Patients across 4 Variant Waves in a Belgian University Hospital. Viruses 2023, 15, 618. [Google Scholar] [CrossRef] [PubMed]
- Cojocaru, C.; Cojocaru, E.; Turcanu, A.M.; Zaharia, D.C. Clinical challenges of SARS-CoV-2 variants (Review). Exp. Ther. Med. 2022, 23, 416. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E. Heavily mutated Omicron variant puts scientists on alert. Nature 2021, 600, 21. [Google Scholar] [CrossRef]
- Dhama, K.; Nainu, F.; Frediansyah, A.; Yatoo, M.I.; Mohapatra, R.K.; Chakraborty, S.; Zhou, H.; Islam, M.R.; Mamada, S.S.; Kusuma, H.I.; et al. Global emerging Omicron variant of SARS-CoV-2: Impacts, challenges and strategies. J. Infect. Public Health 2023, 16, 4–14. [Google Scholar] [CrossRef]
- Morris, C.P.; Eldesouki, R.E.; Sachithanandham, J.; Fall, A.; Norton, J.M.; Abdullah, O.; Gallagher, N.; Li, M.; Pekosz, A.; Klein, E.Y.; et al. Omicron Subvariants: Clinical, Laboratory, and Cell Culture Characterization. Clin. Infect. Dis. 2023, 76, 1276–1284. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, G.; Shi, J.; Zhang, X.; Huo, J.; Li, M.; Chen, J.; Yu, L.; Li, Y.; Han, Z.; et al. Retrospective study about clinical severity and epidemiological analysis of the COVID-19 Omicron subvariant lineage-infected patients in Hohhot, China. BMC Infect. Dis. 2024, 24, 206. [Google Scholar] [CrossRef]
- Goller, K.V.; Ziemann, J.; Kohler, C.; Becker, K.; Hübner, N.-O.; on behalf of the CoMV-Gen Study Group. Clinical Manifestations of Infections with the Omicron Sub-Lineages BA.1, BA.2, and BA.5: A Retrospective Follow-Up Analysis of Public Health Data from Mecklenburg-Western Pomerania, Germany. Viruses 2024, 16, 454. [Google Scholar] [CrossRef]
- De Rioja, V.L.; Basile, L.; Perramon-Malavez, A.; Martínez-Solanas, É.; López, D.; Medina Maestro, S.; Coma, E.; Fina, F.; Prats, C.; Mendioroz Peña, J.; et al. Severity of Omicron Subvariants and Vaccine Impact in Catalonia, Spain. Vaccines 2024, 12, 466. [Google Scholar] [CrossRef] [PubMed]
- Flisiak, R.; Zarębska-Michaluk, D.; Dobrowolska, K.; Rorat, M.; Rogalska, M.; Kryńska, J.A.; Moniuszko-Malinowska, A.; Czupryna, P.; Kozielewicz, D.; Jaroszewicz, J.; et al. Change in the Clinical Picture of Hospitalized Patients with COVID-19 between the Early and Late Period of Dominance of the Omicron SARS-CoV-2 Variant. J. Clin. Med. 2023, 12, 5572. [Google Scholar] [CrossRef] [PubMed]
- Pavel, B.; Moroti, R.; Spataru, A.; Popescu, M.R.; Panaitescu, A.M.; Zagrean, A.-M. Neurological Manifestations of SARS-CoV2 Infection: A Narrative Review. Brain Sci. 2022, 12, 1531. [Google Scholar] [CrossRef] [PubMed]
- Jagst, M.; Pottkämper, L.; Gömer, A.; Pitarokoili, K.; Steinmann, E. Neuroinvasion and neurotropism of severe acute respiratory syndrome coronavirus 2 infection. Curr. Opin. Microbiol. 2024, 79, 102474. [Google Scholar] [CrossRef] [PubMed]
- Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol. 2020, 19, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Brola, W.; Wilski, M. Neurological consequences of COVID-19. Pharmacol. Rep. 2022, 74, 1208–1222. [Google Scholar] [CrossRef] [PubMed]
- Ng, J.H.; Sun, A.; Je, H.S.; Tan, E.K. Unravelling Pathophysiology of Neurological and Psychiatric Complications of COVID-19 Using Brain Organoids. Neuroscientist 2023, 29, 30–40. [Google Scholar] [CrossRef]
- Xue, H.; Zeng, L.; He, H.; Xu, D.; Ren, K. Autoimmune encephalitis in COVID-19 patients: A systematic review of case reports and case series. Front. Neurol. 2023, 14, 1207883. [Google Scholar] [CrossRef]
- Bauer, L.; Laksono, B.M.; de Vrij, F.M.S.; Kushner, S.A.; Harschnitz, O.; van Riel, D. The neuroinvasiveness, neurotropism, and neurovirulence of SARS-CoV-2. Trends Neurosci. 2022, 45, 358–368. [Google Scholar] [CrossRef]
- Bauer, L.; van Riel, D. Do SARS-CoV-2 Variants Differ in Their Neuropathogenicity? mBio 2023, 14, e0292022. [Google Scholar] [CrossRef]
- Forero, K.; Buqaileh, R.; Sunderman, C.; AbouAlaiwi, W. COVID-19 and Neurological Manifestations. Brain Sci. 2023, 13, 1137. [Google Scholar] [CrossRef]
- Wang, E.; Yang, Q.J.; Xu, X.X.; Zou, Q.C.; Long, Y.; Ma, G.; Deng, Z.H.; Zhao, J.B.; Li, M.H.; Zeng, J. Differential pathogenic and molecular features in neurological infection of SARS-CoV-2 Omicron BA.5.2 and BA.2.75 and Delta. J. Med. Virol. 2024, 96, e29357. [Google Scholar] [CrossRef] [PubMed]
- Sahin, A.; Karadag-Oncel, E.; Buyuksen, O.; Ekemen-Keles, Y.; Ustundag, G.; Elvan-Tuz, A.; Tasar, S.; Didinmez-Taskirdi, E.; Baykan, M.; Kara-Aksay, A.; et al. The diversity in the clinical features of children hospitalized with COVID-19 during the nonvariant, Alpha (B.1.1.7), Delta (B.1.617.2), and Omicron (B.1.1.529) variant periods of SARS CoV-2: Caution for neurological symptoms in Omicron variant. J. Med. Virol. 2023, 95, e28628. [Google Scholar] [CrossRef]
- Tetsuhara, K.; Akamine, S.; Matsubara, Y.; Fujii, S.; Kashimada, W.; Marutani, K.; Torio, M.; Morooka, Y.; Hanaoka, N.; Fujimoto, T.; et al. Severe encephalopathy associated with SARS-CoV-2 Omicron BA.1 variant infection in a neonate. Brain Dev. 2022, 44, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Diaconu, I.E.; Irimie-Băluță, R.E.; Vâţă, A.; Avadanei, A.N.; Vasilescu, A.M.; Ignat, B.E.; Luca, M.C. COVID-19 neurological manifestations—The experience of a tertiary hospital from Northeastern Romania. Med. Surg. J. Rev. Med. Chir. Soc. Med. Nat. Iaşi. 2024, 128, 21–33. [Google Scholar] [CrossRef]
- Sureshbabu, S.; Joseph, M.; Haseena, C.V.; Basheer, N.; Srutha Keerthi, R.N.; Samrooda, N.; Abdurehiman, K.P.; Deepthi, P.V.; Peter, B.; Alappat, J. Comparison of Neurological Manifestations in the Two Waves of COVID-19 Infection: A Cross-Sectional Study. Ann. Indian Acad. Neurol. 2022, 25, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.; Gupta, D.; Pujari, S.; Deshpande, V.; Naphade, P.; Deshpande, R. Neurological Manifestations in COVID-19 in Three Waves of the Pandemic: An Inpatient Study from India. Ann. Indian Acad. Neurol. 2022, 25, 1047–1055. [Google Scholar] [CrossRef]
- Jachman-Kapułka, J.; Zińczuk, A.; Szymański, W.; Simon, K.; Rorat, M. Complexity and Diversity of the Neurological Spectrum of SARS-CoV-2 over Three Waves of COVID-19. J. Clin. Med. 2024, 13, 3477. [Google Scholar] [CrossRef]
- Genomic Epidemiology of SARS-CoV-2 with Subsampling Focused on Poland Since Pandemic Start. Available online: https://covariants.org/per-country?country=Poland (accessed on 27 October 2024).
- Lu, L.; Chen, L.; Wang, P.; Qi, Z.; Chen, Y.; Wu, X.; Liu, X.; Wang, M.; Li, J.; Yan, B.; et al. Neurological complications during the Omicron COVID-19 wave in China: A cohort study. Eur. J. Neurol. 2024, 31, e16096. [Google Scholar] [CrossRef]
- Shen, X.; Wang, P.; Shen, J.; Jiang, Y.; Wu, L.; Nie, X.; Liu, J.; Chen, W. Neurological Manifestations of hospitalized patients with mild to moderate infection with SARS-CoV-2 Omicron variant in Shanghai, China. J. Infect. Public Health. 2023, 16, 155–162. [Google Scholar] [CrossRef]
- Seehusen, F.; Clark, J.J.; Sharma, P.; Bentley, E.G.; Kirby, A.; Subramaniam, K.; Wunderlin-Giuliani, S.; Hughes, G.L.; Patterson, E.I.; Michael, B.D.; et al. Neuroinvasion and Neurotropism by SARS-CoV-2 Variants in the K18-hACE2 Mouse. Viruses 2022, 14, 1020. [Google Scholar] [CrossRef]
- Yang, J.H.; Yang, M.S.; Kim, D.M.; Kim, B.; Tark, D.; Kang, S.M.; Lee, G.H. Delta (B1.617.2) variant of SARS-CoV-2 induces severe neurotropic patterns in K18-hACE2 mice. Sci. Rep. 2023, 13, 3303. [Google Scholar] [CrossRef]
- Proust, A.; Queval, C.J.; Harvey, R.; Adams, L.; Bennett, M.; Wilkinson, R.J. Differential effects of SARS-CoV-2 variants on central nervous system cells and blood-brain barrier functions. J. Neuroinflamm. 2023, 20, 184. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Huang, C.G.; Shie, S.S.; Lin, J.J.; Chen, C.J. Clinical features and virologic lineages of COVID-19-associated encephalitis in Taiwanese children during early epidemic wave of omicron in 2022: Report from a medical center. J. Microbiol. Immunol. Infect. 2024, 57, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Choi, Y.; Kim, S.Y.; Cho, A.; Kim, H.; Chae, J.H.; Kim, K.J.; Park, D.; Kwon, Y.S.; Kim, M.J.; et al. Severe Neurological Manifestation Associated With Coronavirus Disease 2019 in Children During the Omicron Variant-Predominant Period. Pediatr. Neurol. 2024, 156, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Griggs, E.P.; Mitchell, P.K.; Lazariu, V.; Gaglani, M.; McEvoy, C.; Klein, N.P.; Valvi, N.R.; Irving, S.A.; Kojima, N.; Stenehjem, E.; et al. Clinical Epidemiology and Risk Factors for Critical Outcomes Among Vaccinated and Unvaccinated Adults Hospitalized With COVID-19-VISION Network, 10 States, June 2021-March 2023. Clin. Infect. Dis. 2024, 78, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Albitar, O.; Ballouze, R.; Ooi, J.P.; Sheikh Ghadzi, S.M. Risk factors for mortality among COVID-19 patients. Diabetes Res. Clin. Pract. 2020, 166, 108293. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, Y.; He, Y.; Liu, X.; Liu, M.; Tang, Y.; Li, X.; Yang, G.; Liang, G.; Xu, S.; et al. Age-Related Risk Factors and Complications of Patients With COVID-19: A Population-Based Retrospective Study. Front. Med. 2022, 8, 757459. [Google Scholar] [CrossRef]
- Marron, L.; Mateo-Urdiales, A.; O’Donnell, J.; Robinson, E.; Domegan, L. The impact of the COVID-19 vaccination programme on symptomatic and severe SARS-CoV-2 infection during a period of Omicron variant dominance in Ireland, December 2021 to March 2023. Euro Surveill 2024, 29, 2300697. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Yisimayi, A.; Jian, F.; Song, W.; Xiao, T.; Wang, L.; Du, S.; Wang, J.; Li, Q.; Chen, X.; et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature 2022, 608, 593–602. [Google Scholar] [CrossRef]
- Drabik, L.; Derbisz, J.; Chatys-Bogacka, Z.; Mazurkiewicz, I.; Sawczynska, K.; Kesek, T.; Czepiel, J.; Wrona, P.; Szaleniec, J.; Wojcik-Bugajska, M.; et al. Neurological Prognostic Factors in Hospitalized Patients with COVID-19. Brain Sci. 2022, 12, 193. [Google Scholar] [CrossRef]
- Wnuk, M.; Sawczyńska, K.; Kęsek, T.; Wrona, P.; Chatys-Bogacka, Ż.; Mazurkiewicz, I.; Drabik, L.; Jagiełła, J.; Szaleniec, J.; Czepiel, J.; et al. Neurological symptoms in hospitalised patients with COVID-19 and their association with in-hospital mortality. Neurol. Neurochir. Pol. 2021, 55, 314–321. [Google Scholar] [CrossRef]
- Syahrul, S.; Maliga, H.A.; Ilmawan, M.; Fahriani, M.; Mamada, S.S.; Fajar, J.K.; Frediansyah, A.; Syahrul, F.N.; Imran, I.; Haris, S.; et al. Hemorrhagic and ischemic stroke in patients with coronavirus disease 2019: Incidence, risk factors, and pathogenesis—A systematic review and meta-analysis. F1000Research 2021, 10, 34. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Lu, L.; Zhang, B.; Luo, J.; Li, W.; He, L.; Sander, J.W.; Mu, J.; Zhu, C.; Zhou, D. Association of consciousness impairment and mortality in people with COVID-19. Acta Neurol. Scand. 2021, 144, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Mekkawy, D.A.; Hamdy, S.; Abdel-Naseer, M.; Shehata, H.S.; Halfawy, A.A.; Shalaby, N.M.; Shehata, G.A.; Ali, A.M.; Elmazny, A.; Ahmed, S.M.; et al. Neurological Manifestations in a Cohort of Egyptian Patients with COVID-19: A Prospective, Multicenter, Observational Study. Brain Sci. 2022, 12, 74. [Google Scholar] [CrossRef] [PubMed]
- Di Giorgio, A.; Mirijello, A.; De Gennaro, C.; Fontana, A.; Alboini, P.E.; Florio, L.; Inchingolo, V.; Zarrelli, M.; Miscio, G.; Raggi, P.; et al. Factors Associated with Delirium in COVID-19 Patients and Their Outcome: A Single-Center Cohort Study. Diagnostics 2022, 12, 544. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, M.; Sockalingam, S.; Bonato, S.; Rajaratnam, T.; Ravindran, M.; Gosse, P.; Sheehan, K.A. A rapid review of the pathoetiology, presentation, and management of delirium in adults with COVID-19. J. Psychosom. Res. 2021, 141, 110350. [Google Scholar] [CrossRef]
- Wu, Y.; Li, H.; Zhang, Z.; Liang, W.; Zhang, T.; Tong, Z.; Guo, X.; Qi, X. Risk factors for mortality of coronavirus disease 2019 (COVID-19) patients during the early outbreak of COVID-19: A systematic review and meta-analysis. Ann. Palliat. Med. 2021, 10, 5069–5083. [Google Scholar] [CrossRef]
- Amanat, M.; Rezaei, N.; Roozbeh, M.; Shojaei, M.; Tafakhori, A.; Zoghi, A.; Darazam, I.A.; Salehi, M.; Karimialavijeh, E.; Lima, B.S.; et al. Neurological manifestations as the predictors of severity and mortality in hospitalized individuals with COVID-19: A multicenter prospective clinical study. BMC Neurol. 2021, 21, 116. [Google Scholar] [CrossRef]
- Shapiro, R.; Gallardo, V.J.; Caronna, E.; Pozo-Rosich, P. The impact of headache disorders on COVID-19 survival: A world population-based analysis. medRxiv 2021. [Google Scholar] [CrossRef]
- Caronna, E.; Ballvé, A.; Llauradó, A.; Gallardo, V.J.; Ariton, D.M.; Lallana, S.; López Maza, S.; Olivé Gadea, M.; Quibus, L.; Restrepo, J.L.; et al. Headache: A striking prodromal and persistent symptom, predictive of COVID-19 clinical evolution. Cephalalgia 2020, 40, 1410–1421. [Google Scholar] [CrossRef]
Variables | Total (n = 426) | O1 (n = 203) | O2 (n = 136) | O3 (n = 87) | p-Value | Trend p-Value |
---|---|---|---|---|---|---|
Age (years) | 71.69 (17.55) 74.00 [65–85] | 68.28 (19.23) 71.00 [60–83] | 73.27 (15.34) 74.00 [67–85] | 77.21 (14.87) 78.00 [71–88] | p < 0.001 | p < 0.001 |
Sex | ||||||
Male | 214 | 104 (51.23%) | 68 (50.00%) | 42 (48.28%) | p = 0.9 | p = 0.643 |
Female | 212 | 99 (48.77%) | 68 (50.00%) | 45 (51.72%) | ||
Duration of symptoms before admission (days) | 4.75 (4.60) 3.00 [2–7] | 5.30 (4.85) 4 [2–7] | 4.13 (4.41) 3 [1–5] | 4.46 (4.21) 3 [1–7] | p = 0.109 | p = 0.03 |
Length of hospitalization (days) | 9.00 (10.40) 7.00 [5–0] | 9.99 (8.59) 8.00 [5–12] | 8.47 (14.72) 5 [4–8] | 7.53 (3.98) 7 [5–10] | p = 0.004 | p = 0.006 |
SARS-CoV-2 vaccination (≥1 dose) | 172 (62.32%) (n = 276) | 89 (52.35%) (n = 170) | 58 (76.32%) (n = 76) | 25 (83.33%) (n = 30) | p < 0.001 | p < 0.001 |
Previous SARS-CoV-2 infection | 21 (5.19%) (n = 405) | 7 (3.47%) (n = 202) | 7 (5.15%) (n = 136) | 7 (10.45%) (n = 67) | p = 0.08 | p = 0.04 |
Comorbidities | ||||||
Cardiovascular diseases | 324 (76.06%) | 146 (71.92%) | 105 (77.21%) | 73 (83.91%) | p = 0.084 | p = 0.026 |
Hypertension | 280 (65.73%) | 125 (61.58%) | 91 (66.91%) | 64 (73.56%) | p = 0.135 | p = 0.046 |
Atrial fibrillation | 21 (4.93%) | 9 (4.43%) | 7 (5.15%) | 5 (5.75%) | p = 0.885 | p = 0.621 |
Ischemic heart disease | 16 (3.76%) | 7 (3.45%) | 6 (4.41%) | 3 (3.45%) | p = 0.888 | p = 0.907 |
Chronic circulatory failure | 7 (1.64%) | 5 (2.46%) | 1 (0.74%) | 1 (1.15%) | p = 0.434 | p = 0.306 |
Diabetes | 114 (26.76%) | 54 (26.60%) | 31 (22.79%) | 29 (33.33%) | p = 0.222 | p = 0.396 |
Respiratory diseases | 63 (14.79%) | 30 (14.78%) | 20 (14.71%) | 13 (14.94%) | p = 0.999 | p = 0.978 |
Cancer history | 82 (19.25%) | 48 (23.65%) | 18 (13.24%) | 16 (18.39%) | p = 0.057 | p = 0.127 |
Chronic kidney disease | 41 (9.62%) | 12 (5.91%) | 11 (8.09%) | 18 (20.69%) | p < 0.001 | p < 0.001 |
Obesity | 42 (9.86%) | 27 (13.30%) | 8 (5.88%) | 7 (8.05%) | p = 0.066 | p = 0.074 |
Neurological comorbidities | ||||||
Past history of stroke/TIA | 63 (14.79%) | 15 (7.39%) | 29 (21.32%) | 19 (21.84%) | p < 0.001 | p < 0.001 |
Dementia | 69 (16.20%) | 23 (11.33%) | 23 (16.91%) | 23 (26.44%) | p = 0.006 | p = 0.002 |
Epilepsy | 17 (3.99%) | 6 (2.96%) | 8 (5.88%) | 3 (3.45%) | p = 0.386 | p = 0.605 |
Parkinson’s disease | 17 (3.99% | 6 (2.96%) | 5 (3.68%) | 6 (6.90%) | p = 0.283 | p = 0.141 |
Multiple sclerosis | 4 (0.939%) | 2 (0.99%) | 2 (1.47%) | 0 (0.00%) | p = 0.537 | p = 0.557 |
Neuromuscular disease | 6 (1,41%) | 3 (1.48%) | 2 (1.47%) | 1 (1.15%) | p = 0.974 | p = 0.847 |
CNS Neoplasm | 7 (1,64%) | 4 (1.97%) | 3 (2.21%) | 0 (0.00%) | p = 0.399 | p = 0.309 |
Variables | Total (n = 426) | O1 (n = 203) | O2 (n = 136) | O3 (n = 87) | p-Value | Trend p-Value |
---|---|---|---|---|---|---|
Systemic features | ||||||
Fever | 236 (55.40%) | 110 (54.19%) | 70 (51.47%) | 56 (64.37%) | p = 0.149 | p = 0.199 |
Cough | 210 (49.30%) | 90 (44.33%) | 68 (50.00%) | 52 (59.77%) | p = 0.054 | p = 0.017 |
Dyspnea | 160 (37.56%) | 92 (45.32%) | 39 (28.68%) | 29 (33.33%) | p = 0.005 | p = 0.013 |
Diarrhea | 46 (10.80%) | 24 (11.82%) | 10 (7.35%) | 12 (13.79%) | p = 0.258 | p = 0.916 |
Runny nose | 45 (10.56%) | 15 (7.39%) | 16 (11.76%) | 14 (16.09%) | p = 0.075 | p = 0.023 |
Sore throat | 57 (13.38%) | 23 (11.33%) | 24 (17.65%) | 10 (11.49%) | p = 0.208 | p = 0.645 |
Rash | 8 (1.88%) | 6 (2.96%) | 1 (0.74%) | 1 (1.15%) | p = 0.287 | p = 0.196 |
Fatigue | 274 (64.32%) | 118 (58.13%) | 92 (67.65%) | 64 (73.56%) | p = 0.026 | p = 0.007 |
Loss of appetite | 79 (18.54%) | 35 (17.24%) | 26 (19.12%) | 18 (20.69%) | p = 0.770 | p = 0.043 |
Respiratory support | ||||||
No oxygen | 180 (42.25%) | 74 (36.45%) | 65 (47.79%) | 41 (47.13%) | p = 0.069 | p = 0.044 |
Low-dose oxygen therapy | 246 (57.75%) | 129 (63.55%) | 71 (52.21%) | 46 (52.875) | p = 0.069 | p = 0.044 |
HFNOT | 47 (11.03%) | 30 (14.78%) | 10 (7.35%) | 7 (8.05%) | p = 0.062 | p = 0.043 |
NIMV | 17 (3.99%) | 16 (7.88%) | 1 (0.74%) | 0 (0.00%) | p < 0.001 | p < 0.001 |
IMV | 18 (4.26%) | 14 (6.90%) | 4 (2.94%) | 0 (0.00%) | p = 0.019 | p = 0.005 |
Treatment | ||||||
Dexamethasone | 189 (44.37%) | 113 (55.67%) | 41 (30.15%) | 35 (40.23%) | p < 0.001 | p < 0.001 |
Chloroquine/hydroxychloroquine | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Amantadine | 2 (0.47%) | 1 (0.49%) | 0 (0.00%) | 1 (1.15%) | p = 0.472 | p = 0.622 |
COVID-19 convalescent plasma | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Paxlovid | 21 (4.23%) | 0 (0.00%) | 6 (4.41%) | 15 (17.24%) | p < 0.001 | p < 0.001 |
Antibodies (casiriwimab/imdewimab or regdanvimab) | 3 (0.70%) | 3 (1.48%) | 0 (0.00%) | 0 (0.00%) | p = 0.190 | p = 0.104 |
Remdesivir | 181 (42.49%) | 76 (37.44%) | 91 (66.91%) | 14 (16.09%) | p < 0.001 | p = 0.110 |
Tocilizumab | 21 (4.23%) | 18 (8.87%) | 2 (1.47%) | 1 (1.15%) | p = 0.002 | p = 0.001 |
Baricitinib | 10 (2.35%) | 10 (4.93%) | 0 (0.00%) | 0 (0.00%) | p = 0.004 | p = 0.003 |
Molnupiravir | 26 (6.10%) | 12 (5.91%) | 11 (8.09%) | 3 (3.45%) | p = 0.365 | p = 0.618 |
Anticoagulation p.o. (VKA, NOAC) | 32 (7.51%) | 12 (5.91%) | 5 (3.68%) | 15 (17.24%) | p < 0.001 | p = 0.006 |
LMWH | 383 (89.91%) | 184 (90.64%) | 129 (94.85%) | 70 (80.46%) | p = 0.002 | p = 0.045 |
Antibiotics | 175 (41.08%) | 102 (50.25%) | 42 (30.88%) | 31 (35.63%) | p < 0.001 | p = 0.003 |
Bacterial coinfections | 104 (24.41) | 58 (28.57) | 26 (19.12%) | 20 (22.99%) | p = 0.132 | p = 0.156 |
ICU admission | 20 (4.69%) | 16 (7.88%) | 4 (2.94%) | 0 (0.00%) | p = 0.007 | p = 0.002 |
Death | 57 (13.38%) | 38 (18.72%) | 15 (11.03%) | 4 (4.60%) | p = 0.003 | p < 0.001 |
Variables | Total (n = 426) | O1 (n = 203) | O2 (n = 136) | O3 (n = 87) | p-Value | Trend p-Value |
---|---|---|---|---|---|---|
Neurological manifestations | 236 (55.40%) | 97 (47.78%) | 80 (58.82%) | 59 (67.82%) | p = 0.004 | p = 0.001 |
Neurological symptoms | 236 (55.40%) | 97 (47.78%) | 80 (58.82%) | 59 (67.82%) | p = 0.011 | p = 0.003 |
Headache | 61 (14.32%) | 24 (11.82%) | 26 (19.12%) | 11 (12.64%) | p = 0.151 | p = 0.521 |
Dizziness | 41 (9.62%) | 18 (8.87%) | 12 (8.82%) | 11 (12.64%) | p = 0.564 | p = 0.380 |
Myalgia | 45 (10.56%) | 17 (8.37%) | 17 (12.50%) | 11 (12.64%) | p = 0.374 | p = 0.206 |
Smell disorder | 6 (1.41%) | 3 (1.48%) | 1 (0.74%) | 2 (2.30%) | p = 0.623 | p = 0.738 |
Taste disorder | 6 (1.41%) | 3 (1.48%) | 1 (0.74%) | 2 (2.30%) | p = 0.623 | p = 0.738 |
Vision disorder | 2 (0.47%) | 0 (0.00%) | 1 (0.74%) | 1 (1.15%) | p = 0.363 | p = 0.160 |
Delirium | 81 (19.01%) | 30 (14.78%) | 26 (19.12%) | 25 (28.74%) | p = 0.021 | p = 0.007 |
Mood disorder | 35 (8.22%) | 15 (7.39%) | 14 (10.29%) | 6 (6.90%) | p = 0.559 | p = 0.904 |
Catatonia | 6 (1.41%) | 0 (0.00%) | 3 (2.21%) | 3 (3.45%) | p = 0.047 | p = 0.014 |
Memory disorder | 24 (5.63%) | 10 (4.93%) | 8 (5.88%) | 6 (6.90%) | p = 0.780 | p = 0.481 |
Sleep disorder | 16 (3.76%) | 10 (4.93%) | 6 (4.41%) | 0 (0.00%) | p = 0.115 | p = 0.065 |
Paresthesia | 8 (1.88%) | 4 (1.97%) | 3 (2.21%) | 1 (1.15%) | p = 0.844 | p = 0.707 |
Paresis | 27 (6.34%) | 8 (3.94%) | 16 (11.76%) | 3 (3.45%) | p = 0.007 | p = 0.534 |
Neurological complications | 61 (14.32%) | 18 (8.87%) | 20 (14.71%) | 23 (26.44%) | p < 0.001 | p < 0.001 |
Cerebrovascular diseases | 27 (6.34%) | 9 (4.43%) | 10 (7.35%) | 8 (9.20%) | p = 0.263 | p = 0.105 |
TIA | 10 (2.35%) | 2 (0.99%) | 2 (1.47%) | 6 (6.90%) | p = 0.007 | p = 0.006 |
Ischemic stroke | 11 (2.58%) | 4 (1.97%) | 5 (3.68%) | 2 (2.30%) | p = 0.613 | p = 0.696 |
Hemorrhagic stroke | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Venous thrombosis | 5 (1.17%) | 2 (0.99%) | 3 (2.21%) | 0 (0.00%) | p = 0.310 | p = 0.712 |
Encephalopathy | 26 (6.10%) | 5 (2.46%) | 8 (5.88%) | 13 (14.94%) | p < 0.001 | p < 0.001 |
Seizure | 7 (1.64%) | 3 (1.48%) | 2 (1.47%) | 2 (2.30%) | p = 0.865 | p = 0.657 |
Ataxia | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Myoclonus | 1 (0.23%) | 0 (0.00%) | 0 (0.00%) | 1 (1.15%) | p = 0.142 | p = 0.102 |
Myopathy | 1 (0.23%) | 0 (0.00%) | 0 (0.00%) | 1 (1.15%) | p = 0.142 | p = 0.102 |
Mononeuropathy | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Polyneuropathy | 3 (0.70%) | 1 (0.49%) | 2 (1.47%) | 0 (0.00%) | p = 0.389 | p = 0.892 |
GBS | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Meningitidis | 2 (0.47%) | 2 (0.99%) | 0 (0.00%) | 0 (0.00%) | p = 0.333 | p = 0.186 |
Encephalitis | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Myelitis | 1 (0.23%) | 1 (0.49%) | 0 (0.00%) | 0 (0.00%) | p = 0.577 | p = 0.350 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jachman-Kapułka, J.; Zińczuk, A.; Simon, K.; Rorat, M. Cross-Section of Neurological Manifestations Among SARS-CoV-2 Omicron Subvariants—Single-Center Study. Brain Sci. 2024, 14, 1161. https://doi.org/10.3390/brainsci14111161
Jachman-Kapułka J, Zińczuk A, Simon K, Rorat M. Cross-Section of Neurological Manifestations Among SARS-CoV-2 Omicron Subvariants—Single-Center Study. Brain Sciences. 2024; 14(11):1161. https://doi.org/10.3390/brainsci14111161
Chicago/Turabian StyleJachman-Kapułka, Justyna, Aleksander Zińczuk, Krzysztof Simon, and Marta Rorat. 2024. "Cross-Section of Neurological Manifestations Among SARS-CoV-2 Omicron Subvariants—Single-Center Study" Brain Sciences 14, no. 11: 1161. https://doi.org/10.3390/brainsci14111161
APA StyleJachman-Kapułka, J., Zińczuk, A., Simon, K., & Rorat, M. (2024). Cross-Section of Neurological Manifestations Among SARS-CoV-2 Omicron Subvariants—Single-Center Study. Brain Sciences, 14(11), 1161. https://doi.org/10.3390/brainsci14111161