The Impact of Intraoperative CT-Based Navigation in Congenital Craniovertebral Junction Anomalies: New Concepts of Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Information
2.2. Pre-Operative Planning
2.3. Surgical Procedure
2.4. Complication Avoidance and Follow-Up
2.5. Search Strategy and Eligibility
3. Results
3.1. Surgical Case Series
3.2. Study Identification
3.3. Illustrative Cases
- Case 1 (Figure 1)
- Case 2 (Figure 2)
- Case 4 (Figure 3)
- Case 8 (Figure 4)
4. Discussion
4.1. Background
4.2. Advancements
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CCVJA | congenital craniovertebral junction anomalies |
CVJ | craniovertebral junction |
VA | vertebral artery |
References
- White, A.A., 3rd; Panjabi, M.M. The clinical biomechanics of the occipitoatlantoaxial complex. Orthop. Clin. N. Am. 1978, 9, 867–878. [Google Scholar] [CrossRef]
- Menezes, A.H.; Traynelis, V.C. Anatomy and biomechanics of normal craniovertebral junction (a) and biomechanics of stabilization (b). Childs Nerv. Syst. 2008, 24, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Laheri, V. Plate and screw fixation for atlanto-axial subluxation. Acta Neurochir 1994, 129, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Erbengi, A.; Oge, H.K. Congenital malformations of the craniovertebral junction: Classification and surgical treatment. Acta Neurochir. 1994, 127, 180–185. [Google Scholar] [CrossRef]
- Du, J.; Gao, X.; Huang, Y.; Yang, X.; Zheng, B.; Liu, Z.; Hui, H.; Gao, L.; Wu, J.; Zhao, Z.; et al. Posterior Surgery in the Treatment of Craniovertebral Junction Deformity with Torticollis. Orthop. Surg. 2022, 14, 2418–2426. [Google Scholar] [CrossRef]
- Yamazaki, M.; Koda, M.; Aramomi, M.A.; Hashimoto, M.; Masaki, Y.; Okawa, A. Anomalous vertebral artery at the extraosseous and intraosseous regions of the craniovertebral junction: Analysis by three-dimensional computed tomography angiography. Spine 2005, 30, 2452–2457. [Google Scholar] [CrossRef]
- Holly, L.T.; Foley, K.T. Intraoperative spinal navigation. Spine 2003, 28 (Suppl. S15), S54–S61. [Google Scholar] [CrossRef]
- Oertel, M.F.; Hobart, J.; Stein, M.; Schreiber, V.; Scharbrodt, W. Clinical and methodological precision of spinal navigation assisted by 3D intraoperative O-arm radiographic imaging. J. Neurosurg. Spine 2011, 14, 532–536. [Google Scholar] [CrossRef]
- Menezes, A.H. Congenital and acquired abnormalities of the craniovertebral junction (children and adults). In Neurological Surgery; Youmans, J., Ed.; WB Saunders: Philadelphia, PA, USA, 1995; pp. 1035–1089. [Google Scholar]
- Ravikanth, R.; Majumdar, P. Embryological considerations and evaluation of congenital anomalies of craniovertebral junction: A single-center experience. Tzu Chi Med. J. 2020, 33, 175–180. [Google Scholar] [CrossRef]
- Wang, M.Y.; Samudrala, S. Cadaveric morphometric analysis for atlantal lateral mass screw placement. Neurosurgery 2004, 54, 1436–1439, discussion 1439–1440. [Google Scholar] [CrossRef]
- Michelini, G.; Corridore, A.; Torlone, S.; Bruno, F.; Marsecano, C.; Capasso, R.; Caranci, F.; Barile, A.; Masciocchi, C.; Splendiani, A. Dynamic MRI in the evaluation of the spine: State of the art. Acta Biomed. 2018, 89, 89–101. [Google Scholar] [PubMed]
- Huang, D.G.; Hao, D.J.; Li, G.L.; Guo, H.; Zhang, Y.C.; He, B.R. C2 nerve dysfunction associated with C1 lateral mass screw fixation. Orthop. Surg. 2014, 6, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Currier, B.L.; Todd, L.T.; Maus, T.P.; Fisher, D.R.; Yaszemski, M.J. Anatomic relationship of the internal carotid artery to the C1 vertebra: A case report of cervical reconstruction for chordoma and pilot study to assess the risk of screw fixation of the atlas. Spine 2003, 28, E461–E467. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.J.; Haid, R.W.; Rodts, G.E.; Subach, B.R.; Mummaneni, P.V.; Riedel, C.J.; Birch, B.D. Atlantal lateral mass screws for posterior spinal reconstruction: Technical note and case series. Neurosurg. Focus 2002, 12, E5. [Google Scholar] [CrossRef] [PubMed]
- Bydon, A.; Xu, R.; Bydon, M.; Macki, M.; Belkoff, S.; Langdale, E.; McGovern, K.; Wolinsky, J.-P.; Gokalsan, Z. Biomechanical impact of C2 pedicle screw length in an atlantoaxial fusion construct. Surg. Neurol. Int. 2014, 5 (Suppl. S7), S343–S346. [Google Scholar] [CrossRef]
- Huang, D.-G.; Hao, D.-J.; He, B.-R.; Wu, Q.-N.; Liu, T.-J.; Wang, X.-D.; Guo, H.; Fang, X.-Y. Posterior atlantoaxial fixation: A review of all techniques. Spine J. 2015, 15, 2271–2281. [Google Scholar] [CrossRef]
- Chin, K.R.; Mills, M.V.; Seale, J.; Cumming, V. Ideal starting point and trajectory for C2 pedicle screw placement: A 3D computed tomography analysis using perioperative measurements. Spine J. 2014, 14, 615–618. [Google Scholar] [CrossRef]
- Jakoi, A.M.; Iorio, J.A.; Cahill, P.J. Autologous bone graft harvesting: A review of grafts and surgical techniques. Musculoskelet. Surg. 2015, 99, 171–178. [Google Scholar] [CrossRef]
- Gallie, W.E. Fractures and dislocations of the cervical spine. Am. J. Surg. 1939, 46, 495–499. [Google Scholar] [CrossRef]
- Brooks, A.L.; Jenkins, E.B. Atlanto-axial arthrodesis by the wedge compression method. J. Bone Jt. Surg. Am. 1978, 60, 279–284. [Google Scholar] [CrossRef]
- Dickman, C.A.; Sonntag, V.K.; Papadopoulos, S.M.; Hadley, M.N. The interspinous method of posterior atlantoaxial arthrodesis. J. Neurosurg. 1991, 74, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Goel, A. Atlantoaxial joint jamming as a treatment for atlantoaxial dislocation: A preliminary report: Technical note. J. Neurosurg. Spine 2007, 7, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Gelinne, A.; Piazza, M.; Bhowmick, D.A. Minimally invasive modification of the Goel-Harms atlantoaxial fusion technique: A case series and illustrative guide. Neurosurg. Focus 2023, 54, E14. [Google Scholar] [CrossRef] [PubMed]
- Uribe, J.S.; Ramos, E.; Youssef, A.S.; Levine, N.; Turner, A.W.; Johnson, W.M.; Vale, F.L. Craniocervical fixation with occipital condyle screws: Biomechanical analysis of a novel technique. Spine 2010, 35, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Jian, F.Z.; Su, C.H.; Chen, Z.; Wang, X.W.; Ling, F. Feasibility and limitations of C1 lateral mass screw placement in patients of atlas assimilation. Clin. Neurol. Neurosurg. 2012, 114, 590–596. [Google Scholar] [CrossRef]
- Tan, G.H.; Goss, B.G.; Thorpe, P.J.; Williams, R.P. CT-based classification of long spinal allograft fusion. Eur. Spine J. 2007, 16, 1875–1881. [Google Scholar] [CrossRef]
- Li, L.; Wang, P.; Chen, L.; Ma, X.; Bu, B.; Yu, X. Individualized treatment of craniovertebral junction malformation guided by intraoperative computed tomography. J. Spinal Disord. Tech. 2012, 25, 77–84. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Wang, P.; Yin, Y.; Bu, B.; Zhou, D. Intraoperative computed tomography with an integrated navigation system in stabilization surgery for complex craniovertebral junction malformation. J. Spinal Disord. Tech. 2014, 27, 245–252. [Google Scholar] [CrossRef]
- Lopez, A.J.; Scheer, J.K.; Leibl, K.E.; Smith, Z.A.; Dlouhy, B.J.; Dahdaleh, N.S. Anatomy and biomechanics of the craniovertebral junction. Neurosurg. Focus 2015, 38, E2. [Google Scholar] [CrossRef]
- Samartzis, D.; Shen, F.H.; Herman, J.; Mardjetko, S.M. Atlantoaxial rotatory fixation in the setting of associated congenital malformations: A modified classification system. Spine 2010, 35, E119–E127. [Google Scholar] [CrossRef]
- Panjabi, M.M.; White, A.A., 3rd. Basic biomechanics of the spine. Neurosurgery 1980, 7, 76–93. [Google Scholar] [CrossRef] [PubMed]
- Jeanneret, B.; Magerl, F. Primary posterior fusion C1/2 in odontoid fractures: Indications, technique, and results of transarticular screw fixation. J. Spinal Disord. 1992, 5, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.M.; Lauryssen, C. Vertebral artery injury in C1-2 transarticular screw fixation: Results of a survey of the AANS/CNS section on disorders of the spine and peripheral nerves. American Association of Neurological Surgeons/Congress of Neurological Surgeons. J. Neurosurg. 1998, 88, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Desai, K.I.; Muzumdar, D.P. Atlantoaxial fixation using plate and screw method: A report of 160 treated patients. Neurosurgery 2002, 51, 1351–1356, discussion 1356–1357. [Google Scholar] [CrossRef]
- Goel, A.; Kulkarni, A.G.; Sharma, P. Reduction of fixed atlantoaxial dislocation in 24 cases: Technical note. J. Neurosurg. Spine 2005, 2, 505–509. [Google Scholar] [CrossRef]
- Harms, J.; Melcher, R.P. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine 2001, 26, 2467–2471. [Google Scholar] [CrossRef]
- Chun, D.H.; Yoon, D.H.; Kim, K.N.; Yi, S.; Shin, D.A.; Ha, Y. Biomechanical Comparison of Four Different Atlantoaxial Posterior Fixation Constructs in Adults: A Finite Element Study. Spine 2018, 43, E891–E897. [Google Scholar] [CrossRef]
- Chang, C.-C.; Huang, W.-C.; Tu, T.-H.; Chang, P.-Y.; Fay, L.-Y.; Wu, J.-C.; Cheng, H. Differences in fixation strength among constructs of atlantoaxial fixation. J. Neurosurg. Spine 2018, 30, 52–59. [Google Scholar] [CrossRef]
- Joaquim, A.F.; Osorio, J.A.; Riew, K.D. Occipitocervical Fixation: General Considerations and Surgical Technique. Global Spine J. 2020, 10, 647–656. [Google Scholar] [CrossRef]
- Uribe, J.S.; Ramos, E.; Vale, F. Feasibility of occipital condyle screw placement for occipitocervical fixation: A cadaveric study and description of a novel technique. J. Spinal Disord. Tech. 2008, 21, 540–546. [Google Scholar] [CrossRef]
- Rajasekaran, S.; Kanna, P.R.; Shetty, T.A. Intra-operative computer navigation guided cervical pedicle screw insertion in thirty-three complex cervical spine deformities. J. Craniovertebr. Junction Spine 2010, 1, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Kosmopoulos, V.; Schizas, C. Pedicle screw placement accuracy: A meta-analysis. Spine 2007, 32, E111–E120. [Google Scholar] [CrossRef] [PubMed]
- Larson, A.N.; Polly, D.W.J.; Guidera, K.J.; Mielke, C.H.; Santos, E.R.G.; Ledonio, C.G.T.; Sembrano, J.N. The accuracy of navigation and 3D image-guided placement for the placement of pedicle screws in congenital spine deformity. J. Pediatr. Orthop. 2012, 32, e23–e29. [Google Scholar] [CrossRef]
- Mischkowski, R.A.; Zinser, M.J.; Ritter, L.; Neugebauer, J.; Keeve, E.; Zöller, J.E. Intraoperative navigation in the maxillofacial area based on 3D imaging obtained by a cone-beam device. Int. J. Oral. Maxillofac. Surg. 2007, 36, 687–694. [Google Scholar] [CrossRef]
- Dalgorf, D.; Daly, M.; Chan, H.; Siewerdsen, J.; Irish, J. Accuracy and reproducibility of automatic versus manual registration using a cone-beam CT image guidance system. J. Otolaryngol. Head. Neck Surg. 2011, 40, 75–80. [Google Scholar]
- Schicho, K.; Figl, M.; Seemann, R.; Donat, M.; Pretterklieber, M.L.; Birkfellner, W.; Reichwein, A.; Wanschitz, F.; Kainberger, F.; Bergmann, H.; et al. Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy: Technical note. J. Neurosurg. 2007, 106, 704–709. [Google Scholar] [CrossRef]
No. | Age(y)/Sex | Main Radiologic Findings | Instrumentation Choice | Complications | Follow-Up (mo) | Fusion Grade |
---|---|---|---|---|---|---|
1 | 59/F | AA, BI | C0/C1–C2 (Laminar) + Bilateral cages | NA | 58 | 1 |
2 | 4/M | DA, BA, BI | C1–C2–C3 (articular) | NA | 46 | 1 |
3 | 49/M | OO, AAD | C1–C2 | NA | 35 | 1 |
4 | 61/M | AA, BI, PB | C0/C1–C2 | NA | 30 | 1 |
5 | 76/M | OO | C1–C2 fixation + subaxial laminoplasty | NA | 24 | 1 |
6 | 78/M | AA, AAD | C0/C1–C2–C3 (pedicular) | Dorsal cervicotoracic hematoma | 20 | 1 |
7 | 54/M | OO, AAD | C1–C2 + Jazz™ Lock system | NA | 16 | 1 |
8 | 54/M | BA, KF, Odontoid Fracture (Type 3 Anderson-D’Alonzo) | C1–C3 (pedicular) | NA | 12 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cracchiolo, G.; Baram, A.; Capo, G.; Rossini, Z.; Riva, M.; Fanti, A.; De Robertis, M.; Fornari, M.; Pessina, F.; Brembilla, C. The Impact of Intraoperative CT-Based Navigation in Congenital Craniovertebral Junction Anomalies: New Concepts of Treatment. Brain Sci. 2024, 14, 1228. https://doi.org/10.3390/brainsci14121228
Cracchiolo G, Baram A, Capo G, Rossini Z, Riva M, Fanti A, De Robertis M, Fornari M, Pessina F, Brembilla C. The Impact of Intraoperative CT-Based Navigation in Congenital Craniovertebral Junction Anomalies: New Concepts of Treatment. Brain Sciences. 2024; 14(12):1228. https://doi.org/10.3390/brainsci14121228
Chicago/Turabian StyleCracchiolo, Giorgio, Ali Baram, Gabriele Capo, Zefferino Rossini, Marco Riva, Andrea Fanti, Mario De Robertis, Maurizio Fornari, Federico Pessina, and Carlo Brembilla. 2024. "The Impact of Intraoperative CT-Based Navigation in Congenital Craniovertebral Junction Anomalies: New Concepts of Treatment" Brain Sciences 14, no. 12: 1228. https://doi.org/10.3390/brainsci14121228
APA StyleCracchiolo, G., Baram, A., Capo, G., Rossini, Z., Riva, M., Fanti, A., De Robertis, M., Fornari, M., Pessina, F., & Brembilla, C. (2024). The Impact of Intraoperative CT-Based Navigation in Congenital Craniovertebral Junction Anomalies: New Concepts of Treatment. Brain Sciences, 14(12), 1228. https://doi.org/10.3390/brainsci14121228