Dynamic Neural Patterns of Human Emotions in Virtual Reality: Insights from EEG Microstate Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Scene Selection and Participants
2.2. Emotion Induction and EEG Recording
2.3. EEG Pre-Processing
2.4. EEG Microstate Analysis
2.5. Statistics Analysis
3. Results
3.1. Cluster Evaluation
3.2. Microstate Duration, Occurrence, and Coverage
Class | NEG | NEU | POS | ANOVAs | Post Hoc (p-Value) | |||
---|---|---|---|---|---|---|---|---|
NEG- NEU | NEG- POS | NEU- POS | ||||||
Duration/ms | A | 138 ± 48.5 | 134 ± 47.5 | 139 ± 50.2 | χ2(2) = 0.513, p = 0.975 a | - | - | - |
B | 140 ± 38.9 | 144 ± 50.1 | 130 ± 30.7 | F(55.55) = 1.43, p = 0.246 b η2 = 0.021 | - | - | - | |
C | 119 ± 32.1 | 130 ± 39.2 | 111 ± 24.4 | F(64.7) = 3.89, p = 0.032 b η2 = 0.052 | 0.481 | 0.447 | 0.034 | |
D | 130 ± 43.9 | 129 ± 61.5 | 116 ± 28.5 | χ2(2) = 4.97, p = 0.083 a | - | - | - | |
Occurrence | A | 2.08 ± 0.414 | 1.81 ± 0.522 | 2.02 ± 0.318 | F(76) = 6.42, p = 0.003 c η2 = 0.072 | 0.014 | 1.000 | 0.033 |
B | 1.93 ± 0.459 | 2.01 ± 0.460 | 2.08 ± 0.328 | F(76) = 1.59, p = 0.210 c η2 = 0.020 | - | - | - | |
C | 1.81 ± 0.516 | 1.89 ± 0.455 | 2.09 ± 0.380 | F(76) = 3.78, p = 0.027 c η2 = 0.064 | 1.000 | 0.020 | 0.114 | |
D | 1.86 ± 0.464 | 1.83 ± 0.517 | 2.08 ± 0.418 | F(76) = 4.53, p = 0.014 c η2 = 0.057 | 1.000 | 0.056 | 0.026 | |
Coverage/% | A | 27.9 ± 10.0 | 24.7 ± 10.9 | 27.0 ± 8.38 | χ2(2) = 1.28, p = 0.527 a | - | - | - |
B | 26.4 ± 8.82 | 28.4 ± 9.98 | 26.1 ± 7.07 | χ2(2) = 1.33, p = 0.515 a | - | - | - | |
C | 21.7 ± 9.20 | 23.5 ± 7.32 | 23.2 ± 6.01 | F(65.53) = 0.738, p = 0.463 b η2 = 0.011 | - | - | - | |
D | 24.0 ± 7.79 | 23.4 ± 10.7 | 23.8 ± 6.83 | χ2(2) = 0.974, p = 0.614 a | - | - | - |
3.3. Analysis of Transition Probability in Microstates
4. Discussion
4.1. Microstate Features Altered by Emotions
4.2. Unique Dynamic Transition in Different Emotions
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolan, R.J. Emotion, cognition, and behavior. Science 2002, 298, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Phillips, M.L.; Drevets, W.C.; Rauch, S.L.; Lane, R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol. Psychiatry 2003, 54, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Tomarken, A.J.; Davidson, R.J.; Wheeler, R.E.; Doss, R.C. Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. J. Pers. Soc. Psychol. 1992, 62, 676–687. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Kurzmann, J.; Neuper, C. Cortical correlate of spatial presence in 2D and 3D interactive virtual reality: An EEG study. Int. J. Psychophysiol. 2012, 83, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [Google Scholar] [CrossRef]
- Zheng, W.-L.; Zhu, J.-Y.; Lu, B.-L. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. 2017, 10, 417–429. [Google Scholar] [CrossRef]
- Marín-Morales, J.; Higuera-Trujillo, J.L.; Greco, A.; Guixeres, J.; Llinares, C.; Scilingo, E.P.; Alcañiz, M.; Valenza, G. Affective computing in virtual reality: Emotion recognition from brain and heartbeat dynamics using wearable sensors. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef]
- Suhaimi, N.S.; Mountstephens, J.; Teo, J. A Dataset for Emotion Recognition Using Virtual Reality and EEG (DER-VREEG): Emotional State Classification Using Low-Cost Wearable VR-EEG Headsets. Big Data Cogn. Comput. 2022, 6, 16. [Google Scholar] [CrossRef]
- Yu, M.; Xiao, S.; Hua, M.; Wang, H.; Chen, X.; Tian, F.; Li, Y. EEG-based emotion recognition in an immersive virtual reality environment: From local activity to brain network features. Biomed. Signal Process. Control. 2022, 72, 103349. [Google Scholar] [CrossRef]
- Yu, M.; Xiao, S.; Tian, F.; Li, Y. Frontal-occipital network alterations while viewing 2D & 3D movies: A source-level EEG and graph theory approach. Biomed. Tech. 2022, 67, 161–172. [Google Scholar] [CrossRef]
- Wright, P.; He, G.; Shapira, N.A.; Goodman, W.K.; Liu, Y. Disgust and the insula: fMRI responses to pictures of mutilation and contamination. Neuroreport 2004, 15, 2347–2351. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Hao, Y.; Wang, X.; Gao, Y.; Shi, H.; Huo, S.; Wang, B.; Guo, H.; Xiang, J. EEG Functional Connectivity Underlying Emotional Valance and Arousal Using Minimum Spanning Trees. Front. Neurosci. 2020, 14, 355. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, D.; Ozaki, H.; Pal, I. EEG alpha map series: Brain micro-states by space-oriented adaptive segmentation. Electroencephalogr. Clin. Neurophysiol. 1987, 67, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Pascual-Leone, A.; Michel, C.M.; Farzan, F. Microstates in resting-state EEG: Current status and future directions. Neurosci. Biobehav. Rev. 2015, 49, 105–113. [Google Scholar] [CrossRef]
- Michel, C.M.; Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 2018, 180, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Prete, G.; Croce, P.; Zappasodi, F.; Tommasi, L.; Capotosto, P. Exploring brain activity for positive and negative emotions by means of EEG microstates. Sci. Rep. 2022, 12, 3404. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Z.; Shu, Q.; Cai, G. Feature extraction based on microstate sequences for EEG–based emotion recognition. Front. Psychol. 2022, 13, 1065196. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Z.; Zhao, H.; Zhang, L.; Li, L.; Huang, G.; Liang, Z. EEG microstate correlates of emotion dynamics and stimulation content during video watching. Cereb. Cortex 2023, 33, 523–542. [Google Scholar] [CrossRef]
- Liu, J.; Hu, X.; Shen, X.; Lv, Z.; Song, S.; Zhang, D. The EEG microstate representation of discrete emotions. Int. J. Psychophysiol. 2023, 186, 33–41. [Google Scholar] [CrossRef]
- Britz, J.; Van De Ville, D.; Michel, C.M. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 2010, 52, 1162–1170. [Google Scholar] [CrossRef]
- Murray, M.M.; Brunet, D.; Michel, C.M. Topographic ERP Analyses: A Step-by-Step Tutorial Review. Brain Topogr. 2008, 20, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Delorme, A.; Makeig, S. EEGLAB: An Open Source Toolbox for Analysis of Single-Trial EEG Dynamics Including Independent Component Analysis. J. Neurosci. Methods 2004, 134, 9–21. [Google Scholar] [CrossRef]
- Lehmann, D.; Skrandies, W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 1980, 48, 609–621. [Google Scholar] [CrossRef]
- Pascual-Marqui, R.; Michel, C.; Lehmann, D. Segmentation of brain electrical activity into microstates: Model estimation and validation. IEEE Trans. Biomed. Eng. 1995, 42, 658–665. [Google Scholar] [CrossRef]
- Navarro, D.J.; Foxcroft, D.R. Comparing Several Means (One-Way ANOVA). Learning Statistics with Jamovi: A Tutorial for Psychology Students and Other Beginners (Version 0.75). 2022, pp. 337–369. Available online: https://www.learnstatswithjamovi.com/ (accessed on 18 November 2022).
- Klimesch, W.; Doppelmayr, M.; Russegger, H.; Pachinger, T.; Schwaiger, J. Induced alpha band power changes in the human EEG and attention. Neurosci. Lett. 1998, 244, 73–76. [Google Scholar] [CrossRef]
- Klimesch, W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn. Sci. 2012, 16, 606–617. [Google Scholar] [CrossRef]
- Milz, P.; Pascual-Marqui, R.; Achermann, P.; Kochi, K.; Faber, P. The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. Neuroimage 2017, 162, 353–361. [Google Scholar] [CrossRef]
- Milz, P.; Faber, P.; Lehmann, D.; Koenig, T.; Kochi, K.; Pascual-Marqui, R. The functional significance of EEG microstates—Associations with modalities of thinking. Neuroimage 2016, 125, 643–656. [Google Scholar] [CrossRef]
- Damborská, A.; Tomescu, M.I.; Honzírková, E.; Barteček, R.; Hořínková, J.; Fedorová, S.; Ondruš, Š.; Michel, C.M. EEG Resting-State Large-Scale Brain Network Dynamics Are Related to Depressive Symptoms. Front. Psychiatry 2019, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Mantini, D.; Perrucci, M.G.; Del Gratta, C.; Romani, G.L.; Corbetta, M. Electrophysiological signatures of resting state networks in the human brain. Proc. Natl. Acad. Sci. USA 2007, 104, 13170–13175. [Google Scholar] [CrossRef] [PubMed]
- Antonova, E.; Holding, M.; Suen, H.C.; Sumich, A.; Maex, R.; Nehaniv, C. EEG microstates: Functional significance and short-term test-retest reliability. Neuroimag. Rep. 2022, 2, 100089. [Google Scholar] [CrossRef]
- Hu, X.; Wang, F.; Zhang, D. Similar brains blend emotion in similar ways: Neural representations of individual difference in emotion profiles. NeuroImage 2022, 247, 118819. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Hu, X.; Liu, S.; Song, S.; Zhang, D. Exploring EEG microstates for affective computing: Decoding valence and arousal expe-riences during video watching. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20–24 July 2020. [Google Scholar] [CrossRef]
- Lian, H.; Li, Y.; Li, Y. Altered EEG microstate dynamics in mild cognitive impairment and Alzheimer’s disease. Clin. Neurophysiol. 2021, 132, 2861–2869. [Google Scholar] [CrossRef]
- Lehmann, D.; Faber, P.L.; Galderisi, S.; Herrmann, W.M.; Kinoshita, T.; Koukkou, M.; Mucci, A.; Pascual-Marqui, R.D.; Saito, N.; Wackermann, J.; et al. EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: A multi-center study. Psychiatry Res. Neuroimaging 2005, 138, 141–156. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Ma, L.; Bo, H.; Soong, F.; Shi, Y. Dual-Threshold-Based Microstate Analysis on Characterizing Temporal Dynamics of Affective Process and Emotion Recognition from EEG Signals. Front. Neurosci. 2021, 15, 689791. [Google Scholar] [CrossRef]
Emotion Condition | ||
---|---|---|
Negative | Positive | |
valence | 3.25 (0.077) | 6.45 (0.196) |
Transition Probability | Emotion and Frequency Band | |||
---|---|---|---|---|
Negative (4–8 Hz) | Positive (4–8 Hz) | Negative (8–13 Hz) | Positive (8–13 Hz) | |
A-B | t = −0.528 p = 0.600 a | w = 348 p = 0.566 b | t = 0.771 p = 0.445 a | t = 0.127 p = 0.899 a |
A-C | t = 1.14 p = 0.262 a | w = 407 p = 0.602 b | t = −0.568 p = 0.573 a | t = −0.967 p = 0.339 a |
A-D | t = −0.909 p = 0.369 a | w = 295 p = 0.189 b | t = −2.21 p = 0.033 a | t = 1.52 p = 0.136 a |
B-A | t = −0.529 p = 0.958 a | t = 0.497 p = 0.622 a | t = 1.19 p = 0.241 a | t = −0.325 p = 0.747 a |
B-C | t = 0.452 p = 0.654 a | t = 0.285 p = 0.777 a | t = 0.487 p = 0.629 a | t = 3.35 p = 0.002 a |
B-D | t = −2.16 p = 0.037 a | t = −3.51 p = 0.001 a | t = 0.419 p = 0.677 a | t = −0.634 p = 0.530 a |
C-A | t = 1.79 p = 0.081 a | t = 1.75 p = 0.088 a | t = 0.151 p = 0.881 a | t = −1.14 p = 0.263 a |
C-B | t = 0.299 p = 0.767 a | t = 0.762 p = 0.451 a | t = −0.981 p = 0.333 a | t = 3.31 p = 0.002 a |
C-D | t = 0.663 p = 0.511 a | t = 1.32 p = 0.193 a | t = 1.76 p = 0.087 a | t = −1.24 p = 0.221 a |
D-A | t = −1.40 p = 0.169 a | t = −0.559 p = 0.597 a | t = −3.20 p = 0.003 a | t = 1.47 p = 0.149 a |
D-B | w = 414 p = 0.746 b | w = 259 p = 0.068 b | t = 0.690 p = 0.494 a | t = −1.27 p = 0.213 a |
D-C | t = 0.109 p = 0.914 a | t = 0.824 p = 0.415 a | t = 0.925 p = 0.361 a | t = −2.05 p = 0.041 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, Y.; Yu, M.; Li, Y. Dynamic Neural Patterns of Human Emotions in Virtual Reality: Insights from EEG Microstate Analysis. Brain Sci. 2024, 14, 113. https://doi.org/10.3390/brainsci14020113
Bai Y, Yu M, Li Y. Dynamic Neural Patterns of Human Emotions in Virtual Reality: Insights from EEG Microstate Analysis. Brain Sciences. 2024; 14(2):113. https://doi.org/10.3390/brainsci14020113
Chicago/Turabian StyleBai, Yicai, Minchang Yu, and Yingjie Li. 2024. "Dynamic Neural Patterns of Human Emotions in Virtual Reality: Insights from EEG Microstate Analysis" Brain Sciences 14, no. 2: 113. https://doi.org/10.3390/brainsci14020113
APA StyleBai, Y., Yu, M., & Li, Y. (2024). Dynamic Neural Patterns of Human Emotions in Virtual Reality: Insights from EEG Microstate Analysis. Brain Sciences, 14(2), 113. https://doi.org/10.3390/brainsci14020113