Animal Approaches to Studying Risk Factors for Parkinson’s Disease: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Parkinson’s Disease
4. Risk Factors for Parkinson’s Disease
5. Neurotoxic and Pharmacological Rodent Models for PD
6. Age
7. Sex
8. Sleep Alterations
9. Depression
10. Conclusions
11. Limitations of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pingale, T.; Gupta, G.L. Classic and evolving animal models in Parkinson’s disease. Pharmacol. Biochem. Behav. 2020, 199, 173060. [Google Scholar] [CrossRef] [PubMed]
- Leão, A.H.F.F.; Sarmento-Silva, A.J.; Santos, J.R.; Ribeiro, A.M.; Silva, R.H. Molecular, Neurochemical, and Behavioral Hallmarks of Reserpine as a Model for Parkinson’s Disease: New Perspectives to a Long-Standing Model. Brain Pathol. 2015, 25, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Ko, W.K.D.; Bezard, E. Experimental animal models of Parkinson’s disease: A transition from assessing symptomatology to α-synuclein targeted disease modification. Exp. Neurol. 2017, 298, 172–179. [Google Scholar] [CrossRef]
- Kin, K.; Yasuhara, T.; Kameda, M.; Date, I. Animal models for Parkinson’s disease research: Trends in the 2000s. Int. J. Mol. Sci. 2019, 20, 5402. [Google Scholar] [CrossRef] [PubMed]
- Gubellini, P.; Kachidian, P. Animal models of Parkinson’s disease: An updated overview. Rev. Neurol. 2015, 171, 750–761. [Google Scholar] [CrossRef]
- Breger, L.S.; Fuzzati Armentero, M.T. Genetically engineered animal models of Parkinson’s disease: From worm to rodent. Eur. J. Neurosci. 2019, 49, 533–560. [Google Scholar] [CrossRef]
- Blandini, F.; Armentero, M.T. Animal models of Parkinson’s disease. FEBS J. 2012, 279, 1156–1166. [Google Scholar] [CrossRef]
- Mantri, S.; Fullard, M.E.; Beck, J.; Willis, A.W. State-level prevalence, health service use, and spending vary widely among Medicare beneficiaries with Parkinson disease. NPJ Park. Dis. 2019, 5, 1. [Google Scholar] [CrossRef]
- Michel, P.P.; Hirsch, E.C.; Hunot, S. Understanding Dopaminergic Cell Death Pathways in Parkinson Disease. Neuron 2016, 90, 675–691. [Google Scholar] [CrossRef]
- Elbaz, A.; Carcaillon, L.; Kab, S.; Moisan, F. Epidemiology of Parkinson’s disease. Rev. Neurol. 2016, 172, 14–26. [Google Scholar] [CrossRef]
- Dorsey, E.R.; Sherer, T.; Okun, M.S.; Bloemd, B.R. The emerging evidence of the Parkinson pandemic. J. Park. Dis. 2018, 8, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Boix, J.; von Hieber, D.; Connor, B. Gait analysis for early detection of motor symptoms in the 6-ohda rat model of parkinson’s disease. Front. Behav. Neurosci. 2018, 12, 39. [Google Scholar] [CrossRef] [PubMed]
- Andica, C.; Kamagata, K.; Hatano, T.; Okuzumi, A.; Saito, A.; Nakazawa, M.; Ueda, R.; Motoi, Y.; Kamiya, K.; Suzuki, M.; et al. Neurite orientation dispersion and density imaging of the nigrostriatal pathway in Parkinson’s disease: Retrograde degeneration observed by tract-profile analysis. Park. Relat. Disord. 2018, 51, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Caminiti, S.P.; Presotto, L.; Baroncini, D.; Garibotto, V.; Moresco, R.M.; Gianolli, L.; Volonté, M.A.; Antonini, A.; Perani, D. Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. NeuroImage Clin. 2017, 14, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Mann, T.; Zilles, K.; Dikow, H.; Hellfritsch, A.; Cremer, M.; Piel, M.; Rösch, F.; Hawlitschka, A.; Schmitt, O.; Wree, A. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection. Neuroscience 2018, 374, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Rana, A.Q.; Qureshi, A.R.M.; Shamli Oghli, Y.; Saqib, Y.; Mohammed, B.; Sarfraz, Z.; Rana, R. Decreased sleep quality in Parkinson’s patients is associated with higher anxiety and depression prevalence and severity, and correlates with pain intensity and quality. Neurol. Res. 2018, 40, 696–701. [Google Scholar] [CrossRef]
- Politis, M.; Wu, K.; Loane, C.; Kiferle, L.; Molloy, S.; Brooks, D.J.; Piccini, P. Staging of serotonergic dysfunction in Parkinson’s Disease: An in vivo 11C-DASB PET study. Neurobiol. Dis. 2010, 40, 216–221. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, Q.; Du, X.; Bi, M.; Han, S.; Jiao, L.; Jiang, H. Investigation of behavioral dysfunctions induced by monoamine depletions in a mouse model of Parkinson’s disease. Front. Cell. Neurosci. 2018, 12, 241. [Google Scholar] [CrossRef]
- Noyce, A.J.; Bestwick, J.P.; Silveira-Moriyama, L.; Hawkes, C.H.; Giovannoni, G.; Lees, A.J.; Schrag, A. Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann. Neurol. 2012, 72, 893–901. [Google Scholar] [CrossRef]
- Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E.; Ioannidis, J.P.A. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Park. Relat. Disord. 2015, 23, 1–9. [Google Scholar] [CrossRef]
- Kieburtz, K.; Wunderle, K.B. Parkinson’s disease: Evidence for environmental risk factors. Mov. Disord. 2013, 28, 8–13. [Google Scholar] [CrossRef]
- Daniela, B. Marker for a preclinical diagnosis of Parkinson’s disease as a basis for neuroprotection. J. Neural. Transm. 2006, 71, 123–132. [Google Scholar]
- O’Sullivan, S.S.; Williams, D.R.; Gallagher, D.A.; Massey, L.A.; Silveira-Moriyama, L.; Lees, A.J. Nonmotor symptoms as presenting complaints in Parkinson’s disease: A clinicopathological study. Mov. Disord. 2008, 23, 101–106. [Google Scholar] [CrossRef]
- Siderowf, A.; Stern, M.B. Premotor Parkinson’s disease: Clinical features, detection, and prospects for treatment. Ann. Neurol. 2008, 64, S139–S147. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.E. A critical appraisal of the premotor symptoms of Parkinson’s disease: Potential usefulness in early diagnosis and design of neuroprotective trials. Mov. Disord. 2011, 26, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Chahine, L.M.; Stern, M.B. Diagnostic markers for Parkinson’s disease. Curr. Opin. Neurol. 2011, 24, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Lerche, S.; Seppi, K.; Behnke, S.; Liepelt-Scarfone, I.; Godau, J.; Mahlknecht, P.; Gaenslen, A.; Brockmann, K.; Srulijes, K.; Huber, H.; et al. Risk factors and prodromal markers and the development of Parkinson’s disease. J. Neurol. 2014, 261, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Delledonne, A.; Klos, K.J.; Fujishiro, H.; Ahmed, Z.; Parisi, J.E.; Josephs, K.A.; Frigerio, R.; Burnett, M.; Wszolek, Z.K.; Uitti, R.J.; et al. Incidental Lewy Body Disease and Preclinical Parkinson Disease. Arch. Neurol. 2008, 65, 1074–1080. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson’s disease: Separating the Wheat from the Chaff. J. Park. Dis. 2017, 7, S71–S85. [Google Scholar] [CrossRef]
- Berg, D.; Marek, K.; Ross, G.W.; Poewe, W. Defining at-risk populations for Parkinson’s disease: Lessons from ongoing studies. Mov. Disord. 2012, 27, 656–665. [Google Scholar] [CrossRef]
- Gaenslen, A.; Swid, I.; Liepelt-Scarfone, I.; Godau, J.; Berg, D. The patients’ perception of prodromal symptoms before the initial diagnosis of Parkinson’s disease. Mov. Disord. 2011, 26, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Reedijk, M.; Huss, A.; Verheij, R.A.; Peeters, P.H.; Vermeulen, R.C.H. Parkinson’s disease case ascertainment in prospective cohort studies through combining multiple health information resources. PLoS ONE 2020, 15, e0234845. [Google Scholar] [CrossRef]
- Pouchieu, C.; Piel, C.; Carles, C.; Gruber, A.; Helmer, C.; Tual, S.; Marcotullio, E.; Lebailly, P.; Baldi, I. Pesticide use in agriculture and Parkinson’s disease in the AGRICAN cohort study. Int. J. Epidemiol. 2018, 47, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Kyrozis, A.; Ghika, A.; Stathopoulos, P.; Vassilopoulos, D.; Trichopoulos, D.; Trichopoulou, A. Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur. J. Epidemiol. 2013, 28, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Bhatia, K.P.; Burn, D.J.; Goetz, C.G.; Lang, A.E.; Mckeith, I.; Quinn, N.; Sethi, K.D.; Shults, C.; Wenning, G.K. Movement Disorders Society Scientific Issues Committee Report SIC Task Force Appraisal of Clinical Diagnostic Criteria for Parkinsonian Disorders. Mov. Disord. 2003, 18, 467–486. [Google Scholar] [CrossRef] [PubMed]
- Kamel, F.; Tanner, C.M.; Umbach, D.M.; Hoppin, J.A.; Alavanja, M.C.R.; Blair, A.; Comyns, K.; Goldman, S.; Korell, M.; Langston, J.; et al. Pesticide exposure and self-reported Parkinson’s disease in the agricultural health study. Am. J. Epidemiol. 2006, 165, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Amboni, M.; Stocchi, F.; Abbruzzese, G.; Morgante, L.; Onofrj, M.; Ruggieri, S.; Tinazzi, M.; Zappia, M.; Attar, M.; Colombo, D.; et al. Prevalence and associated features of self-reported freezing of gait in Parkinson disease: The DEEP FOG study. Park. Relat. Disord. 2015, 21, 644–649. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Ostbye, T.; Stoessl, A.J.; Merskey, H.; Hachinslci, V. Environmental Exposures in Elderly Canadians with Parkinson’s Disease. Can. J. Neurol. Sci. 1995, 22, 232–234. [Google Scholar] [CrossRef]
- Banks, S.J.; Bayram, E.; Shan, G.; LaBelle, D.R.; Bluett, B. Non-motor predictors of freezing of gait in Parkinson’s disease. Gait Posture 2019, 68, 311–316. [Google Scholar] [CrossRef]
- Jain, S.; Ton, T.G.; Perera, S.; Zheng, Y.; Stein, P.K.; Thacker, E.; Strotmeyer, E.S.; Newman, A.B.; Longstreth, W.T., Jr. Cardiovascular physiology in premotor Parkinson’s disease: A neuroepidemiologic study. Mov. Disord. 2012, 27, 988–995. [Google Scholar] [CrossRef]
- Breckenridge, C.B.; Berry, C.; Chang, E.T.; Sielken, R.L.; Mandel, J.S. Association between Parkinson’s disease and cigarette smoking, rural living, well-water consumption, farming and pesticide use: Systematic review and meta-analysis. PLoS ONE 2016, 11, e0151841. [Google Scholar] [CrossRef]
- Pringsheim, T.; Jette, N.; Frolkis, A.; Steeves, T.D.L. The prevalence of Parkinson’s disease: A systematic review and meta-analysis. Mov. Disord. 2014, 29, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Delamarre, A.; Meissner, W.G. Épidémiologie, facteurs de risque environnementaux et génétiques de la maladie de Parkinson. Presse Medicale 2017, 46, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Prajjwal, P.; Flores Sanga, H.S.; Acharya, K.; Tango, T.; John, J.; Rodriguez, R.S.C.; Marsool, M.D.M.; Sulaimanov, M.; Ahmed, A.; Hussin, O.A. Parkinson’s disease updates: Addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Ann. Med. Surg. 2023, 85, 4887–4902. [Google Scholar] [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Noyce, A.J.; Lees, A.J.; Schrag, A.E. The prediagnostic phase of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2016, 87, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Campêlo, C.L.D.C.; Silva, R.H. Genetic Variants in SNCA and the Risk of Sporadic Parkinson’s Disease and Clinical Outcomes: A Review. Park. Dis. 2017, 2017, 4318416. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chan, S.W.; Zhao, H.; Miu, K.K.; Chan, W.Y. Outlook of PINK1/Parkin signaling in molecular etiology of Parkinson’s disease, with insights into Pink1 knockout models. Zool. Res. 2023, 44, 559–576. [Google Scholar] [CrossRef]
- Bastioli, G.; Regoni, M.; Cazzaniga, F.; De Luca, C.M.G.; Bistaffa, E.; Zanetti, L.; Moda, F.; Valtorta, F.; Sassone, J. Animal models of autosomal recessive parkinsonism. Biomedicines 2021, 9, 812. [Google Scholar] [CrossRef]
- Brown, T.P.; Rumsby, P.C.; Capleton, A.C.; Rushton, L.; Levy, L.S. Pesticides and Parkinson’s disease—Is there a link? Environ. Health Perspect. 2006, 114, 156–164. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Khuder, S.A.; Schaub, E.A.; Priyadarshi, S.S. Environmental risk factors and parkinson’s disease: A metaanalysis. Environ. Res. 2001, 86, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Tanner, C.M.; Ross, G.W.; Jewell, S.A.; Hauser, R.A.; Jankovic, J.; Factor, S.A.; Bressman, S.; Deligtisch, A.; Marras, C.; Lyons, K.E.; et al. Occupation and Risk of Parkinsonism A Multicenter Case-Control Study. Arch. Neurol. 2009, 66, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Li, A.A.; Mink, P.J.; McIntosh, L.J.; Teta, M.J.; Finley, B. Evaluation of epidemiologic and animal data associating pesticides with Parkinson’s disease. J. Occup. Environ. Med. 2005, 47, 1059–1087. [Google Scholar] [CrossRef] [PubMed]
- Vellingiri, B.; Chandrasekhar, M.; Sri Sabari, S.; Gopalakrishnan, A.V.; Narayanasamy, A.; Venkatesan, D.; Iyer, M.; Kesari, K.; Dey, A. Neurotoxicity of pes ticides—A link to neurodegeneration. Ecotoxicol. Environ. Saf. 2022, 243, 113972. [Google Scholar] [CrossRef] [PubMed]
- Ibarra-Gutiérrez, M.T.; Serrano-García, N.; Orozco-Ibarra, M. Rotenone-Induced Model of Parkinson’s Disease: Beyond Mitochondrial Complex I Inhibition. Mol. Neurobiol. 2023, 60, 1929–1948. [Google Scholar] [CrossRef] [PubMed]
- Bové, J.; Perier, C. Neurotoxin-based models of Parkinson’s disease. Neuroscience 2012, 211, 51–76. [Google Scholar] [CrossRef] [PubMed]
- Giráldez-Pérez, R.M.; Antolín-Vallespín, M.; Muñoz, M.D.; Sánchez-Capelo, A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol. Commun. 2014, 2, 176. [Google Scholar] [CrossRef]
- Zhang, Z.N.; Zhang, J.S.; Xiang, J.; Yu, Z.H.; Zhang, W.; Cai, M.; Li, X.T.; Wu, T.; Li, W.W.; Cai, D.F. Subcutaneous rotenone rat model of Parkinson’s disease: Dose exploration study. Brain Res. 2017, 1655, 104–113. [Google Scholar] [CrossRef]
- Grossman, J.T.; Filatov, A.; Hammond, T. Parkinson’s Disease: Unanticipated Sequela of an Attempted Suicide. Cureus 2020, 12, e9409. [Google Scholar] [CrossRef]
- Eriguchi, M.; Iida, K.; Ikeda, S.; Osoegawa, M.; Nishioka, K.; Hattori, N.; Nagayama, H.; Hara, H. Parkinsonism relating to intoxication with glyphosate. Intern. Med. 2019, 58, 1935–1938. [Google Scholar] [CrossRef]
- Postuma, R.B.; Gagnon, J.F.; Vendette, M.; Fantini, M.L.; Massicotte-Marquez, J.; Montplaisir, J. Quantifying the risk of neurodegenerative disease in idiopathic REM sleep behavior disorder. Neurology 2009, 72, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Gaenslen, A.; Wurster, I.; Brockmann, K.; Huber, H.; Godau, J.; Faust, B.; Lerche, S.; Eschweiler, G.W.; Maetzler, W.; Berg, D. Prodromal features for Parkinson’s disease—Baseline data from the TREND study. Eur. J. Neurol. 2014, 21, 766–772. [Google Scholar] [CrossRef]
- Rojo, A.; Aguilar, M.; Garolera, M.T.; Cubo, E.; Navas, I.; Quintana, S. Depression in Parkinson’s disease: Clinical correlates and outcome. Park. Relat. Disord. 2003, 10, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Gupta Gupta, M.B.; Thomas, R.; Bruemmer, V.; Sladek, J.; Felten, D. Aged mice are more sensitive to l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment than young adults. Neurosci. Lett. 1986, 70, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Tremblay, M.È.; Saint-Pierre, M.; Bourhis, E.; Lévesque, D.; Rouillard, C.; Cicchetti, F. Neuroprotective effects of cystamine in aged parkinsonian mice. Neurobiol. Aging 2006, 27, 862–870. [Google Scholar] [CrossRef] [PubMed]
- Patki, G.; Che, Y.; Lau, Y.S. Mitochondrial dysfunction in the striatum of aged chronic mouse model of Parkinson’s disease. Front. Aging Neurosci. 2009, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Grimmig, B.; Daly, L.; Subbarayan, M.; Hudson, C.; Williamson, R.; Nash, K.; Bickford, P.C. Astaxanthin is neuroprotective in an aged mouse model of Parkinson’s disease. Oncotarget 2018, 9, 10388–10401. [Google Scholar] [CrossRef]
- Melo, J.E.C.; Santos, T.F.O.; Santos, R.S.; Franco, H.S.; Monteiro, M.C.N.; Bispo, J.M.M.; Mendonça, M.S.; Ribeiro, A.M.; Silva, R.H.; Gois, A.M.; et al. Aging accentuates decrease in tyrosine hydroxylase immunoreactivity associated with the increase in the motor impairment in a model of reserpine-induced parkinsonism. J. Chem. Neuroanat. 2022, 125, 102162. [Google Scholar] [CrossRef]
- Field, E.F.; Metz, G.A.; Pellis, S.M.; Whishaw, I.Q. Sexually dimorphic postural adjustments during vertical behaviour are altered in a unilateral 6-OHDA rat model of Parkinson’s disease. Behav. Brain Res. 2006, 174, 39–48. [Google Scholar] [CrossRef]
- Bispo, J.M.M.; Melo, J.E.C.; Gois, A.M.; Leal, P.C.; Lins, L.C.R.F.; Souza, M.F.; Medeiros, K.A.A.L.; Ribeiro, A.M.; Silva, R.H.; Marchioro, M.; et al. Sex differences in the progressive model of parkinsonism induced by reserpine in rats. Behav. Brain Res. 2019, 363, 23–29. [Google Scholar] [CrossRef]
- Lima, A.C.; Meurer, Y.S.R.; Bioni, V.S.; Cunha, D.M.G.; Gonçalves, N.; Lopes-Silva, L.B.; Becegato, M.; Soares, M.B.L.; Marinho, G.F.; Santos, J.R.; et al. Female Rats Are Resistant to Cognitive, Motor and Dopaminergic Deficits in the Reserpine-Induced Progressive Model of Parkinson’s Disease. Front. Aging Neurosci. 2021, 13, 757714. [Google Scholar] [CrossRef] [PubMed]
- Sakata, M.; Sei, H.; Toida, K.; Fujihara, H.; Urushihara, R.; Morita, Y. Mesolimbic dopaminergic system is involved in diurnal blood pressure q regulation. Brain Res. 2002, 928, 194–201. [Google Scholar] [CrossRef]
- Vo, Q.; Gilmour, T.P.; Venkiteswaran, K.; Fang, J.; Subramanian, T. Polysomnographic features of sleep disturbances and rem sleep behavior disorder in the unilateral 6-OHDA lesioned hemiparkinsonian rat. Park. Dis. 2014, 2014, 852965. [Google Scholar] [CrossRef]
- Qiu, M.H.; Yao, Q.L.; Vetrivelan, R.; Chen, M.C.; Lu, J. Nigrostriatal Dopamine Acting on Globus Pallidus Regulates Sleep. Cereb. Cortex 2016, 26, 1430–1439. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.B.L.; Lopes-Silva, L.B.; Becegato, M.; Bioni, V.S.; Lima, A.C.; Ferreira, G.M.; Meurer, Y.; Silva, R.H. Reserpine-Induced Progressive Parkinsonism in Mice Predisposed and Non-Predisposed to Depressive-Like Behavior. J. Behav. Brain Sci. 2021, 11, 267–279. [Google Scholar] [CrossRef]
- Duty, S.; Jenner, P. Themed Issue: Translational Neuropharmacology-Using Appropriate Animal Models to Guide Clinical Drug Development Animal models of Parkinson’s disease: A source of novel treatments and clues to the cause of the disease. Br. J. Pharmacol. 2011, 164, 1357. [Google Scholar] [CrossRef]
- Schober, A. Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res. 2004, 318, 215–224. [Google Scholar] [CrossRef]
- Jagmag, S.A.; Tripathi, N.; Shukla, S.D.; Maiti, S.; Khurana, S. Evaluation of models of Parkinson’s disease. Front. Neurosci. 2016, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- Narmashiri, A.; Abbaszadeh, M.; Ghazizadeh, A. The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2022, 140, 104792. [Google Scholar] [CrossRef]
- Talpade, D.J.; Greene, J.G.; Higgins, S.; Greenamyre, J.T. In Vivo Labeling of Mitochondrial Complex I (NADH:Ubiquinone Oxidoreductase) in Rat Brain Using [3H]Dihydrorotenone. J. Neurochem. 2000, 75, 2611–2621. [Google Scholar] [CrossRef]
- Srivastava, P.; Panda, D. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J. 2007, 274, 4788–4801. [Google Scholar] [CrossRef] [PubMed]
- Sherer, T.B.; Betarbet, R.; Testa, C.M.; Seo, B.B.; Richardson, J.R.; Kim, J.H.; Miller, G.W.; Yagi, T.; Matsuno-Yagi, A.; Greenamyre, J.T. Mechanism of Toxicity in Rotenone Models of Parkinson’s Disease. J. Neurosci. 2003, 23, 10756–10764. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, A.; Lindqvist, M.; Magnusson, T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957, 180, 1200. [Google Scholar] [CrossRef] [PubMed]
- Verheij, M.M.M.; Cools, A.R. Differential contribution of storage pools to the extracellular amount of accumbal dopamine in high and low responders to novelty: Effects of reserpine. Neurochemistry 2007, 100, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Delfino, M.A.; Stefano, A.V.; Ferrario, J.E.; Taravini, I.R.E.; Murer, M.G.; Gershanik, O.S. Behavioral sensitization to different dopamine agonists in a parkinsonian rodent model of drug-induced dyskinesias. Behav. Brain Res. 2004, 152, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Hornung, J.P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 2003, 26, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.S.; Holmes, C.; Sharabi, Y. Cerebrospinal fluid biomarkers of central catecholamine deficiency in Parkinson’s disease and other synucleinopathies. Brain 2012, 135, 1900–1913. [Google Scholar] [CrossRef]
- Brunnström, H.; Friberg, N.; Lindberg, E.; Englund, E. Differential degeneration of the locus coeruleus in dementia subtypes. Clin. Neuropathol. 2011, 30, 104–110. [Google Scholar] [CrossRef]
- Baskin, P.; Salamone, J.; SALAt, J.; Vacuous, I. Vacuous Jaw Movements in Rats Induced by Acute Reserpine Administration: Interactions with Different Doses of Apomorphine. Pharmacol. Biochem. Behav. 1993, 46, 793–797. [Google Scholar] [CrossRef]
- Colpaert, F.C. Pharmacological characteristics of tremor, rigidity and hypokinesia induced by reserpine in rat. Neuropharmacology 1987, 26, 1431–1440. [Google Scholar] [CrossRef]
- Salamone, J.; Baskin, P.; Baskin, P. Vacuous Jaw Movements Induced by Acute Reserpine and Low-Dose Apomorphine: Possible Model of Parkinsonian Tremor Vacuous jaw movements in rats induced by acute reserpine and low-dose apomor-phine administration: Possible model ofparkinsonian tremor. Pharmacol. Biochem. Behav. 1994, 53, 179–183. [Google Scholar] [CrossRef]
- Santos, J.R.; Cunha, J.A.S.; Dierschnabel, A.L.; Campêlo, C.L.C.; Leão, A.H.F.F.; Silva, A.F.; Engelberth, R.C.; Izídio, G.S.; Cavalcante, J.S.; Abílio, V.C.; et al. Cognitive, motor and tyrosine hydroxylase temporal impairment in a model of parkinsonism induced by reserpine. Behav. Brain Res. 2013, 253, 68–77. [Google Scholar] [CrossRef]
- Fernandes, V.S.; Santos, J.R.; Leão, A.H.F.F.; Medeiros, A.M.; Melo, T.G.; Izídio, G.S.; Cabral, A.; Ribeiro, R.A.; Abílio, V.C.; Ribeiro, A.M.; et al. Repeated treatment with a low dose of reserpine as a progressive model of Parkinson’s disease. Behav. Brain Res. 2012, 231, 154–163. [Google Scholar] [CrossRef]
- Driver, J.A.; Logroscino, G.; Gaziano, J.M.; Kurth, T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology 2009, 72, 432–438. [Google Scholar] [CrossRef]
- Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol. 2003, 157, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.J.; Isidro-Pérez, A.L.; Doering, M.; Llibre-Rodriguez, J.J.; Acosta, I.; Rodriguez Salgado, A.M.; Pinilla-Monsalve, G.D.; Tanner, C.; Llibre-Guerra, J.J.; Prina, M. Prevalence and Incidence of Parkinson’s Disease in Latin America: A Meta-Analysis. Mov. Disord. 2024, 10, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Collier, T.J.; Kanaan, N.M.; Kordower, J.H. Ageing as a primary risk factor for Parkinson’s disease: Evidence from studies of non-human primates. Nat. Rev. Neurosci. 2011, 12, 359–366. [Google Scholar] [CrossRef]
- Pintado, C.; Gavilán, M.P.; Gavilán, E.; García-Cuervo, L.; Gutiérrez, A.; Vitorica, J.; Castaño, A.; Ríos, R.M.; Ruano, D. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J. Neuroinflamm. 2012, 9, 87. [Google Scholar] [CrossRef] [PubMed]
- Moreno-García, A.; Kun, A.; Calero, M.; Calero, O. The neuromelanin paradox and its dual role in oxidative stress and neurodegeneration. Antioxidants 2021, 10, 124. [Google Scholar] [CrossRef] [PubMed]
- Parvand, M.; Rankin, C.H. Is There a Shared Etiology of Olfactory Impairments in Normal Aging and Neurodegenerative Disease? J. Alzheimer’s Dis. 2020, 73, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Piccini, A.; Russo, C.; Gliozzi, A.; Relini, A.; Vitali, A.; Borghi, R.; Giliberto, L.; Armirotti, A.; D’Arrigo, C.; Bachi, A.; et al. β-amyloid is different in normal aging and in Alzheimer disease. J. Biol. Chem. 2005, 280, 34186–34192. [Google Scholar] [CrossRef] [PubMed]
- Kujawska, M.; Chmielarz, P.; Singh, Y. Impact of Aging on Animal Models of Parkinson’s Disease. 2022. Available online: https://www.frontiersin.org/articles/10.3389/fnagi.2022.909273/full (accessed on 13 December 2023).
- Twelves, D.; Perkins, K.S.M.; Counsell, C. Systematic Review of Incidence Studies of Parkinson’s Disease. Mov. Disord. 2003, 18, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Wooten, G.F.; Currie, L.J.; Bovbjerg, V.E.; Lee, J.K.; Patrie, J. Are men at greater risk for Parkinson’s disease than women? J. Neurol. Neurosurg. Psychiatry 2004, 75, 637–639. [Google Scholar] [CrossRef]
- Taylor, K.S.M.; Cook, J.A.; Counsell, C.E. Heterogeneity in male to female risk for Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 905–906. [Google Scholar] [CrossRef] [PubMed]
- Haaxma, C.A.; Bloem, B.R.; Borm, G.F.; Oyen, W.J.G.; Leenders, K.L.; Eshuis, S.; Booij, J.; Dluzen, D.E.; Horstink, M.W. Gender differences in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2007, 78, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P.; Wu, P.H.; Milgram, N.W.; Ivy, G.O. Monoamine Oxidase Inhibition by L-Deprenyl Depends on Both Sex and Route of Administration in the Rat. Neurochem. Res. 1993, 18, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, D.; Hamberg, K.; Hariz, M.; Forsgren, L.; Hariz, G.M. Gender differences in Parkinson’s disease: A clinical perspective. Acta Neurol. Scand. 2017, 136, 570–584. [Google Scholar] [CrossRef]
- Picillo, M.; Amboni, M.; Erro, R.; Longo, K.; Vitale, C.; Moccia, M.; Pierro, A.; Santangelo, G.; De Rosa, A.; De Michele, G.; et al. Gender differences in non-motor symptoms in early, drug naïve Parkinson’s disease. J. Neurol. 2013, 260, 2849–2855. [Google Scholar] [CrossRef]
- Ray Dorsey, E.; Elbaz, A.; Nichols, E.; Abd-Allah, F.; Abdelalim, A.; Adsuar, J.C.; Ansha, M.G.; Brayne, C.; Choi, J.-Y.J.; Collado-Mateo, D.; et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018, 17, 939–953. [Google Scholar] [CrossRef]
- Hirsch, L.; Jette, N.; Frolkis, A.; Steeves, T.; Pringsheim, T. The Incidence of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology 2016, 46, 292–300. [Google Scholar] [CrossRef]
- Patel, R.; Kompoliti, K. Sex and Gender Differences in Parkinson’s Disease. Neurol. Clin. 2023, 41, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, K.M.; Brann, D.W. Role of astrocytes in estrogen-mediated neuroprotection. Exp. Gerontol. 2007, 42, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Cimarosti, H.; Siqueira, I.R.; Zamin, L.L.; Nassif, M.; Balk, R.; Frozza, R.; Dalmaz, C.; Netto, C.A.; Salbego, C. Neuroprotection and protein damage prevention by estradiol replacement in rat hippocampal slices exposed to oxygen-glucose deprivation. Neurochem. Res. 2005, 30, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Shulman, L.M. Is there a connection between estrogen and Parkinson’s disease? Park. Relat. Disord. 2002, 8, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Rugbjerg, K.; Christensen, J.; Tjønneland, A.; Olsen, J.H. Exposure to estrogen and women’s risk for Parkinson’s disease: A prospective cohort study in Denmark. Park. Relat. Disord. 2013, 19, 457–460. [Google Scholar] [CrossRef] [PubMed]
- Rocca, W.A.; Bower, J.H.; Maraganore, D.M.; Ahlskog, J.E.; Grossardt, B.R.; De Andrade, M.; Melton, L.J. Increased risk of parkinsonism in women who underwent oophorectomy before menopause. Neurology 2008, 70, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.D.; Maraganore, D.M.; Bower, J.H.; McDonnell, S.K.; Peterson, B.J.; Ahlskog, J.E.; Schaid, D.J.; Rocca, W.A. Hysterectomy, menopause, and estrogen use preceding Parkinson’s disease: An exploratory case-control study. Mov. Disord. 2001, 16, 830–837. [Google Scholar] [CrossRef]
- Ross, O.A.; Conneely, K.N.; Wang, T.; Vilarino-Guell, C.; Soto-Ortolaza, A.I.; Rajput, A.; Wszolek, Z.K.; Uitti, R.J.; Louis, E.D.; Clark, L.N.; et al. Genetic variants of α-synuclein are not associated with essential tremor. Mov. Disord. 2011, 26, 2552–2556. [Google Scholar] [CrossRef]
- Shen, Y.; Huang, J.Y.; Li, J.; Liu, C.F. Excessive Daytime Sleepiness in Parkinson’s Disease: Clinical Implications and Management. Chin. Med. J. 2018, 131, 974–981. [Google Scholar] [CrossRef]
- Yadav, S.K.; Pandey, S.; Singh, B. Role of estrogen and levodopa in 1-methyl-4-pheny-l-1,2,3,6-tetrahydropyridine (mptp)-induced cognitive deficit in Parkinsonian ovariectomized mice model: A comparative study. J. Chem. Neuroanat. 2017, 85, 50–59. [Google Scholar] [CrossRef]
- Pedersen, A.L.; Brownrout, J.L.; Saldanha, C.J. Neuroinflammation and neurosteroidogenesis: Reciprocal modulation during injury to the adult zebra finch brain. Physiol. Behav. 2018, 187, 51–56. [Google Scholar] [CrossRef]
- Nilsen, J.; Chen, S.; Irwin, R.W.; Iwamoto, S.J.; Brinton, R.D. Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci. 2006, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Grimm, A.; Schmitt, K.; Lang, U.E.; Mensah-Nyagan, A.G.; Eckert, A. Improvement of neuronal bioenergetics by neurosteroids: Implications for age-related neurodegenerative disorders. Biochim. Biophys. Acta Mol. Basis Dis. 2014, 1842, 2427–2438. [Google Scholar] [CrossRef] [PubMed]
- Mohajeri, M.; Martín-Jiménez, C.; Barreto, G.E.; Sahebkar, A. Effects of estrogens and androgens on mitochondria under normal and pathological conditions. Prog. Neurobiol. 2019, 176, 54–72. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.E.; Finch, C.E. Astrocytic estrogen receptors and impaired neurotrophic responses in a rat model of perimenopause. Front. Aging Neurosci. 2015, 7, 179. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, Y.; Gao, K.; Rudd, J.A.; Fang, M. Ovarian hormones ameliorate memory impairment, cholinergic deficit, neuronal apoptosis and astrogliosis in a rat model of Alzheimer’s disease. Exp. Ther. Med. 2016, 11, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Arbo, B.D.; Bennetti, F.; Ribeiro, M.F. Astrocytes as a target for neuroprotection: Modulation by progesterone and dehydroepiandrosterone. Prog. Neurobiol. 2016, 144, 27–47. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Su, C. Progesterone and neuroprotection. Horm. Behav. 2013, 63, 284–290. [Google Scholar] [CrossRef]
- Ishrat, T.; Sayeed, I.; Atif, F.; Hua, F.; Stein, D.G. Progesterone and allopregnanolone attenuate blood-brain barrier dysfunction following permanent focal ischemia by regulating the expression of matrix metalloproteinases. Exp. Neurol. 2010, 226, 183–190. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, R.; Cai, W.; Bai, Y.; Sokabe, M.; Chen, L. Treatment with progesterone after focal cerebral ischemia suppresses proliferation of progenitor cells but enhances survival of newborn neurons in adult male mice. Neuropharmacology 2010, 58, 930–939. [Google Scholar] [CrossRef]
- De Nicola, A.F.; Garay, L.I.; Meyer, M.; Guennoun, R.; Sitruk-Ware, R.; Schumacher, M.; Gonzalez Deniselle, M.C. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J. Neuroendocr. 2018, 30, e12502. [Google Scholar] [CrossRef] [PubMed]
- Shahrokhi, N.; Haddad, M.K.; Joukar, S.; Shabani, M.; Keshavarzi, Z.; Shahozehi, B. Neuroprotective antioxidant effect of sex steroid hormones in traumatic brain injury. Pak. J. Pharm. Sci. 2012, 25, 219–225. [Google Scholar] [PubMed]
- Guennoun, R.; Fréchou, M.; Gaignard, P.; Liere, P.; Slama, A.; Schumacher, M.; Denier, C.; Mattern, C. Intranasal administration of progesterone: A potential efficient route of delivery for cerebroprotection after acute brain injuries. Neuropharmacology 2019, 145, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.L.; Puskar, A.; Hoffman, G.E.; Murphy, A.Z.; Saraswati, M.; Fiskum, G. Physiologic progesterone reduces mitochondrial dysfunction and hippocampal cell loss after traumatic brain injury in female rats. Exp. Neurol. 2006, 197, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Liao, F.; Li, W.; Han, Y.; Liao, D. Progesterone alters Nogo-A, GFAP and GAP-43 expression in a rat model of traumatic brain injury. Mol. Med. Rep. 2014, 9, 1225–1231. [Google Scholar] [CrossRef] [PubMed]
- Monderer, R.; Thorpy, M. Sleep Disorders and Daytime Sleepiness in Parkinson’s Disease. Curr. Neurol. Neurosci. Rep. 2009, 9, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Videnovic, A.; Marlin, C.; Alibiglou, B.L.; Planetta, P.J.; Vaillancourt, D.E.; Mackinnon, C.D. Increased REM sleep without atonia in Parkinson disease with freezing of gait. Neurology 2013, 81, 1030–1035. [Google Scholar] [CrossRef] [PubMed]
- Wade, R.; Pachana, N.A.; Dissanayaka, N. Factors Related to Sleep Disturbances for Informal Carers of Individuals with PD and Dyadic Relationship: A Rural Perspective. J. Geriatr. Psychiatry Neurol. 2021, 34, 389–396. [Google Scholar] [CrossRef]
- Gros, P.; Videnovic, A. Overview of Sleep and Circadian Rhythm Disorders in Parkinson Disease. Clin. Geriatr. Med. 2020, 36, 119–130. [Google Scholar] [CrossRef]
- Hurt, C.S.; Rixon, L.; Chaudhuri, K.R.; Moss-Morris, R.; Samuel, M.; Brown, R.G. Identifying barriers to help-seeking for non-motor symptoms in people with Parkinson’s disease. J. Health Psychol. 2019, 24, 561–571. [Google Scholar] [CrossRef]
- Lu, J.; Sorooshyari, S.K. Machine Learning Identifies a Rat Model of Parkinson’s Disease via Sleep-Wake Electroencephalogram. Neuroscience 2023, 510, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Barber, T.R.; Muhammed, K.; Drew, D.; Bradley, K.M.; McGowan, D.R.; Klein, J.C.; Manohar, S.G.; Hu, M.T.M.; Husain, M. Reward insensitivity is associated with dopaminergic deficit in rapid eye movement sleep behaviour disorder. Brain 2023, 146, 2502–2511. [Google Scholar] [CrossRef] [PubMed]
- Clarenbach, P. Parkinson’s Disease and Sleep. 2000. Available online: https://link.springer.com/article/10.1007/PL00022915 (accessed on 13 December 2023).
- Abbott, R.D.; Ross, G.W.; White, L.R.; Tanner, C.M.; Masaki, K.H.; Nelson, J.S.; Curb, J.D.; Petrovitch, H. Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 2005, 65, 1442–1446. [Google Scholar] [CrossRef]
- Medeiros, C.A.M.; Carvalhedo De Bruin, P.F.; Lopes, L.A.; Magalhães, M.C.; De Lourdes Seabra, M.; Sales De Bruin, V.M. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease: A randomized, double blind, placebo-controlled study. J. Neurol. 2007, 254, 459–464. [Google Scholar] [CrossRef] [PubMed]
- Rahayel, S.; Gaubert, M.; Postuma, R.B.; Montplaisir, J.; Carrier, J.; Monchi, O.; Rémillard-Pelchat, D.; Bourgouin, P.A.; Panisset, M.; Chouinard, S.; et al. Brain atrophy in Parkinson’s disease with polysomnographyconfirmed REM sleep behavior disorder. Sleep 2019, 42, zsz062. [Google Scholar] [CrossRef] [PubMed]
- Vetrivelan, R.; Bandaru, S.S. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr. Neurol. Neurosci. Rep. 2023, 23, 907–923. [Google Scholar] [CrossRef] [PubMed]
- Gjerstad, M.D.; Tysnes, O.B.; Larsen, J.P. Increased risk of leg motor restlessness but not RLS in early Parkinson disease. Neurology 2011, 77, 1941–1946. [Google Scholar] [CrossRef]
- Verbaan, D.; van Rooden, S.M.; van Hilten, J.J.; Rijsman, R.M. Prevalence and clinical profile of restless legs syndrome in Parkinson’s disease. Mov. Disord. 2010, 25, 2142–2147. [Google Scholar] [CrossRef]
- De Castro Medeiros, D.; Plewnia, C.; Mendes, R.V.; Pisanò, C.A.; Boi, L.; Moraes, M.F.D.; Aguiar, C.L.; Fisone, G. A mouse model of sleep disorders in Parkinson’s disease showing distinct effects of dopamine D2-like receptor activation. Prog. Neurobiol. 2023, 231, 102536. [Google Scholar]
- Wishart, S.; Macphee, G.J.A. Evaluation and management of the non-motor features of Parkinson’s disease. Ther. Adv. Chronic Dis. 2011, 2, 69–85. [Google Scholar] [CrossRef]
- Iranzo, A.; Molinuevo, J.L.; Santamaría, J.; Serradell, M.; Martí, M.J.; Valldeoriola, F.; Tolosa, E. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: A descriptive study. Lancet Neurol. 2006, 5, 572–577. [Google Scholar] [CrossRef]
- Postuma, R.B.; Berg, D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 2016, 12, 622–634. [Google Scholar] [CrossRef]
- Onofrj, M.; Thomas, A.; D’Andreamatteo, G.; Iacono, D.; Luciano, A.L.; Di Rollo, A.; Di Mascio, R.; Ballone, E.; Di Iorio, A. Incidence of RBD and hallucination in patients affected by Parkinson’s disease: 8-year follow-up. Neurol. Sci. 2002, 23, S91–S94. [Google Scholar] [CrossRef]
- Jørgensen, J.T.; Schernhammer, E.; Papantoniou, K.; Hansen, J.; Westendorp, R.G.J.; Stayner, L.; Simonsen, M.K.; Andersen, Z.J. Night work and incidence of Parkinson’s disease in the Danish Nurse Cohort. Occup. Environ. Med. 2021, 78, 419–425. [Google Scholar] [CrossRef]
- Schernhammer, E.S.; Lassen, C.F.; Kenborg, L.; Ritz, B.; Olsen, J.H.; Hansen, J. Occupational history of night shift work and Parkinson’s disease in Denmark. Scand. J. Work. Environ. Health 2015, 41, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Schernhammer, E.; Schwarzschild, M.A.; Ascherio, A. A prospective study of night shift work, sleep duration, and risk of Parkinson’s disease. Am. J. Epidemiol. 2006, 163, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Chesselet, M.F.; Richter, F.; Zhu, C.; Magen, I.; Watson, M.B.; Subramaniam, S.R. A Progressive Mouse Model of Parkinson’s Disease: The Thy1-aSyn (“Line 61”) Mice. Neurotherapeutics 2012, 9, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, T.; Ikuno, M.; Yamakado, H.; Takahashi, R. Animal model for prodromal Parkinson’s disease. Int. J. Mol. Sci. 2020, 21, 1961. [Google Scholar] [CrossRef] [PubMed]
- Willison, L.D.; Kudo, T.; Loh, D.H.; Kuljis, D.; Colwell, C.S. Circadian dysfunction may be a key component of the non-motor symptoms of Parkinson’s disease: Insights from a transgenic mouse model. Exp. Neurol. 2013, 243, 57–66. [Google Scholar] [CrossRef] [PubMed]
- De Castro Medeiros, D.; Aguiar, C.L.; Moraes, M.F.D.; Fisone, G. Sleep disorders in rodent models of Parkinson’s disease. Front. Pharmacol. 2019, 10, 1414. [Google Scholar] [CrossRef] [PubMed]
- Chikatimalla, R.; Dasaradhan, T.; Koneti, J.; Cherukuri, S.P.; Kalluru, R.; Gadde, S. Depression in Parkinson’s Disease: A Narrative Review. Cureus 2022, 14, e27750. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.; Lim, J.; Choi, H.J. Recent advances in the pathology of prodromal non-motor symptoms olfactory deficit and depression in Parkinson’s disease: Clues to early diagnosis and effective treatment. Arch. Pharmacal Res. 2021, 44, 588–604. [Google Scholar] [CrossRef] [PubMed]
- Débora Silberman, C.; Laks, J.; Figueiredo Capitão, C.; Soares Rodrigues, C.; Moreira, I.; Engelhardt, E. Accuracy and specificity of two depression rating scale. Arq. Neuro-Psiquiatr. 2006, 64, 407–411. [Google Scholar] [CrossRef]
- Custodio, N.; Alva-Diaz, C.; Morán-Mariños, C.; Mejía-Rojas, K.; Lira, D.; Montesinos, R.; Herrera-Pérez, E.; Castro-Suárez, S.; Bardales, Y. Factors associated with depression in patients with Parkinson’s disease: A multicenter study in Lima, Peru. Dement. Neuropsychol. 2018, 12, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Agüera-Ortiz, L.; García-Ramos, R.; Grandas Pérez, F.J.; López-Álvarez, J.; Montes Rodríguez, J.M.; Olazarán Rodríguez, F.J.; Olivera Pueyo, J.; Pelegrín Valero, C.; Porta-Etessam, J. Focus on Depression in Parkinson’s Disease: A Delphi Consensus of Experts in Psychiatry, Neurology, and Geriatrics. Park. Dis. 2021, 2021, 6621991. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, A. Managing the neuropsychiatric symptoms of Parkinson’s disease. Neurology 1998, 50, S33–S38. [Google Scholar] [CrossRef] [PubMed]
- Starkstein, S.E.; Mayberg, H.S.; Leiguarda, R.; Preziosi, T.J.; Robinson, R.G. A prospective longitudinal study of depression, cognitive decline, and physical impairments in patients with Parkinson’s disease. Neurosurg. Psychiatry 1992, 55, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Kuzis, G.; Sabe, L.; Tiberti, C.; Leiguarda, R.; Starkstein, S.E. Cognitive Functions in Major Depression and Parkinson Disease. Arch. Neurol. 1997, 54, 982–986. [Google Scholar] [CrossRef]
- Schäbitz, W.R.; Glatz, K.; Schuhan, C.; Sommer, C.; Berger, C.; Schwaninger, M.; Hartmann, M.; Hilmar Goebel, H.; Meinck, H.M. Severe Forward Flexion of the Trunk in Parkinson’s Disease: Focal Myopathy of the Paraspinal Muscles Mimicking Camptocormia. Mov. Disord. 2003, 18, 408–414. [Google Scholar] [CrossRef]
- Schuurman, A.G.; Van Den Akker, M.; Ensinck, K.T.J.L.; Metsemakers, J.F.M.; Knottnerus, J.A.; Leentjens, A.F.G.; Buntinx, F. Increased risk of Parkinson’s disease after depression A retrospective cohort study. Neurology 2002, 58, 1501–1504. [Google Scholar] [CrossRef]
- Ishihara, L.; Brayne, C. A systematic review of depression and mental illness preceding Parkinson’s disease. Acta Neurol. Scand. 2006, 113, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Kim, H.; Joo, J.H.; Jang, S.I.; Park, E.C. Association between depression and risk of Parkinson’s disease in South Korean adults. J. Affect. Disord. 2021, 292, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Diwan, A. Depression and Parkinson’s disease: A Chicken-Egg story. AIMS Neurosci. 2022, 9, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Colman, I.; Ataullahjan, A. Life Course Perspectives on the Epidemiology of Depression. Can. J. Psychiatry 2010, 55, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Vink, D.; Aartsen, M.J.; Schoevers, R.A. Risk factors for anxiety and depression in the elderly: A review. J. Affect. Disord. 2008, 106, 29–44. [Google Scholar] [CrossRef] [PubMed]
- Van Eekelen, J.A.M.; Ellis, J.A.; Pennell, C.E.; Craig, J.; Saffery, R.; Mattes, E.; Olsson, C.A. Stress-sensitive neurosignalling in depression: An integrated network biology approach to candidate gene selection for genetic association analysis. Ment. Illn. 2012, 4, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, E.; Nenic, K.; Milanovic, V.; Knezevic, N.N. The Role of Cortisol in Chronic Stress, Neurodegenerative Diseases, and Psychological Disorders. Cells. Cells 2023, 12, 2726. [Google Scholar] [CrossRef]
- Kibel, A.; Drenjančević-Perić, I. Impact of glucocorticoids and chronic stress on progression of Parkinson’s disease. Med. Hypotheses 2008, 71, 952–956. [Google Scholar] [CrossRef]
- Zou, K.; Guo, W.; Tang, G.; Zheng, B.; Zheng, Z. Acase of early onset Parkinson’s disease after major stress. Neuropsychiatr. Dis. Treat. 2013, 9, 1067–1069. [Google Scholar]
- Chinta, S.J.; Lieu, C.A.; Demaria, M.; Laberge, R.M.; Campisi, J.; Andersen, J.K. Environmental stress, ageing and glial cell senescence: A novel mechanistic link to parkinson’s disease? J. Intern. Med. 2013, 273, 429–436. [Google Scholar] [CrossRef]
- Djamshidian, A.; Lees, A.J. Can stress trigger Parkinson’s disease? J. Neurol. Neurosurg. Psychiatry 2014, 85, 879–882. [Google Scholar] [CrossRef] [PubMed]
- Fontoura, J.L.; Baptista, C.; Pedroso, F.D.B.; Pochapski, J.A.; Miyoshi, E.; Ferro, M.M. Depression in Parkinson’s Disease: The Contribution from Animal Studies. Park. Dis. 2017, 2017, 9124160. [Google Scholar] [CrossRef] [PubMed]
- Faivre, F.; Joshi, A.; Bezard, E.; Barrot, M. The hidden side of Parkinson’s disease: Studying pain, anxiety and depression in animal models. Neurosci. Biobehav. Rev. 2019, 96, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Serretti, A. Anhedonia and Depressive Disorders. Clin. Psychopharmacol. Neurosci. 2023, 21, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Primo, M.J.; Fonseca-Rodrigues, D.; Almeida, A.; Teixeira, P.M.; Pinto-Ribeiro, F. Sucrose preference test: A systematic review of protocols for the assessment of anhedonia in rodents. Eur. Neuropsychopharmacol. 2023, 77, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Riano, C.; Saiz, J.; Barbas, C.; Bergareche, A.; Huerta, J.M.; Ardanaz, E.; Konjevod, M.; Mondragon, E.; Erro, M.E.; Chirlaque, M.D. Prognostic biomarkers of Parkinson’s disease in the Spanish EPIC cohort: A multiplatform metabolomics approach. NPJ Park. Dis. 2021, 7, 73. [Google Scholar] [CrossRef] [PubMed]
- Siderowf, A.; Concha-Marambio, L.; Lafontant, D.E.; Farris, C.M.; Ma, Y.; Urenia, P.A.; Nguyen, H.; Alcalay, R.N.; Chahine, L.M.; Foroud, T. Assessment of heterogeneity among participants in the Parkinson’s Progression Markers Initiative cohort using α-synuclein seed amplification: A cross-sectional study. Lancet Neurol. 2023, 22, 407–417. [Google Scholar] [CrossRef]
- Christodoulou, C.C.; Onisiforou, A.; Zanos, P.; Papanicolaou, E.Z. Unraveling the transcriptomic signatures of Parkinson’s disease and major depression using single-cell and bulk data. Front. Aging Neurosci. 2023, 15, 1273855. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, L.; Liu, H.; Yang, J.; Yu, F.; Cui, C.; Huang, D. A Diagnostic Model for Parkinson’s Disease Based on Anoikis-Related Genes. Mol. Neurobiol. 2023. [Google Scholar] [CrossRef]
- Vallianatou, T.; Nilsson, A.; Bjärterot, P.; Shariatgorji, R.; Slijkhuis, N.; Aerts, J.T.; Jansson, E.T. Rapid Metabolic Profiling of 1 μL Crude Cerebrospinal Fluid by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Can Differentiate De Novo Parkinson’s Disease. Anal. Chem. 2023, 95, 18352–18360. [Google Scholar] [CrossRef]
- Yan, S.; Jiang, C.; Janzen, A.; Barber, T.R.; Seger, A.; Sommerauer, M.; Davis, J.J.; Marek, K.; Hu, M.T.; Oertel, W.H.; et al. Neuronally Derived Extracellular Vesicle α-Synuclein as a Serum Biomarker for Individuals at Risk of Developing Parkinson Disease. JAMA Neurol. 2024, 81, 59–68. [Google Scholar] [CrossRef]
Model | First Publication (Year) | Number of Published Studies | Percentage (%) |
---|---|---|---|
Reserpine | 1950 | 530 | 2.58 |
Haloperidol | 1962 | 963 | 4.69 |
6-OHDA | 1975 | 5242 | 25.50 |
Genetic | 1977 | 2869 | 13.96 |
Cell culture | 1979 | 2367 | 11.52 |
MPTP | 1983 | 6735 | 32.77 |
Rotenone | 1987 | 1847 | 8.99 |
Investigated Factor | Strain | Pharmacological Model | Measures | Outcomes | Publication |
---|---|---|---|---|---|
Age | Male mice C57BL/6 | MPTP injection in elderly and young animals | Histological | Reduction in fluorescence in noradrenergic neurons of the locus coerulus and dopaminergic neurons of SNpc and VTA. | Gupta et al., 1986 [64] |
Male mice C57BL/6 | MPTP injection in elderly animals | Histological | Reduction of immunostaining for tyrosine hydroxylase in the striatum, as well as Nurr1 gene expression, and increased density of dopamine transporter in SN. | Tremblay et al., 2006 [65] | |
Male mice C57BL/6 | MPTP injection in elderly and young animals | The mitochondrial content of ATP; Histological; and Behavioral test | Deficits in the activity of the respiratory chain in mitochondria, decreased antioxidant enzymes and cytochrome c, and a significant reduction in TH and DA uptake transporter. In addition, the older animals had impaired movement when compared to younger mice. | Patki et al., 2009 [66] | |
Male mice C57BL/6 | MPTP injection in elderly and young animals | Histological | Loss of tyrosine hydroxylase throughout the nigro-striatal circuit compared to young mice. | Grimmig et al., 2018 [67] | |
Male Wistar rats | Repeated injections of a low dose of reserpine | Histological and Behavioral tests | Elderly animals were more susceptible to the effects of the treatment compared to adult animals. Elderly rats developed motor deficits earlier than adult rats. Elderly rats showed a reduction in tyrosine hydroxylase immunoreactivity in SNpc, striatum, and VTA. | Melo et al., 2022 [68] | |
Sex | Female and Male Long-Evans rats | 6-OHDA injection | Histological and Behavioral tests | Male animals reduced the use of their hind limbs compared to females, despite the deficit in forelimb movements being similar between sexes. In addition, males were more likely to contact the cylinder wall with their dorsal surface to keep an erect posture. Female animals had a less severe reduction in the number of dopaminergic cells compared to males. | Field et al., 2006 [69] |
Female and Male Wistar rats | Repeated injections of a low dose of reserpine | Histological and Behavioral tests | Females were more resistant to the deleterious effects of the treatment. Indeed, this sex did not present reduced TH immunoreactivity in the dorsal striatum and VTA. | Bispo et al., 2019 [70] | |
Female and Male Wistar rats | Repeated injections of a low dose of reserpine | Histological and Behavioral tests | Female animals did not present cognitive alterations and TH immunoreactivity reduction. In addition, females presented attenuated motor impairment compared to males. | Lima et al., 2021 [71] | |
Sleep | Male Wistar rats | 6-OHDA injection | Polysomnographic recordings | Rats with bilateral 6-OHDA lesion in the VTA show reduced REM sleep during the light period and an increase in total sleep time during the dark phase. | Sakata et al., 2002 [72] |
Male Sprague-Dawley rats | 6-OHDA injection | Polysomnographic and video recordings | Rats with a unilateral 6-OHDA lesion of the medial forebrain bundle show decreased sleep time during their inactive phase (light) of the 24 h light–dark cycle. | Vo et al., 2014 [73] | |
Male Sprague-Dawley rats | 6-OHDA injection | Polysomnographic recordings | Rats with bilateral 6-OHDA lesion in the caudoputamen increased wake time during the 12 h dark cycle. These animals exhibited sleep–wake fragmentation and reduced diurnal variability of sleep. | Qiu et al., 2016 [74] | |
Depression | Mael Swiss mice | Repeated injections of a low dose of reserpine | Behavioral test | No differences were observed between animals with different depressive-like behavior profiles. | Soares et al., 2021 [75] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.H.; Lopes-Silva, L.B.; Cunha, D.G.; Becegato, M.; Ribeiro, A.M.; Santos, J.R. Animal Approaches to Studying Risk Factors for Parkinson’s Disease: A Narrative Review. Brain Sci. 2024, 14, 156. https://doi.org/10.3390/brainsci14020156
Silva RH, Lopes-Silva LB, Cunha DG, Becegato M, Ribeiro AM, Santos JR. Animal Approaches to Studying Risk Factors for Parkinson’s Disease: A Narrative Review. Brain Sciences. 2024; 14(2):156. https://doi.org/10.3390/brainsci14020156
Chicago/Turabian StyleSilva, R. H., L. B. Lopes-Silva, D. G. Cunha, M. Becegato, A. M. Ribeiro, and J. R. Santos. 2024. "Animal Approaches to Studying Risk Factors for Parkinson’s Disease: A Narrative Review" Brain Sciences 14, no. 2: 156. https://doi.org/10.3390/brainsci14020156
APA StyleSilva, R. H., Lopes-Silva, L. B., Cunha, D. G., Becegato, M., Ribeiro, A. M., & Santos, J. R. (2024). Animal Approaches to Studying Risk Factors for Parkinson’s Disease: A Narrative Review. Brain Sciences, 14(2), 156. https://doi.org/10.3390/brainsci14020156