Toe Grip Strength Is Associated with Improving Gait Function in Patients with Subacute Stroke
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Toe Strength Measure
2.3. Other Behavioral Measurements
2.4. Statistics
3. Results
3.1. Baseline Demographic and Clinical Characteristics of the Participants
3.2. Change in Functional Indicators after Three Months
3.3. Correlation Analysis between the Walking Speed and the Functional Factors
3.4. Association between Toe Grip Strength and Gait Function Improvement
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chao, B.-H.; Tu, W.-J.; Wang, L.-D. Initial establishment of a stroke management model in China: 10 years (2011–2020) of Stroke Prevention Project Committee, National Health Commission. Chin. Med. J. 2021, 134, 2418–2420. [Google Scholar] [CrossRef]
- Smith, M.C.; Barber, P.A.; Stinear, C.M. The TWIST Algorithm Predicts Time to Walking Independently after Stroke. Neurorehabil. Neural Repair. 2017, 31, 955–964. [Google Scholar] [CrossRef]
- Chang, W.H.; Kim, M.S.; Huh, J.P.; Lee, P.K.; Kim, Y.H. Effects of robot-assisted gait training on cardiopulmonary fitness in subacute stroke patients: A randomized controlled study. Neurorehabil. Neural Repair. 2012, 26, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Cirstea, C.M. Gait Rehabilitation after Stroke: Should We Re-Evaluate Our Practice? Stroke 2020, 51, 2892–2894. [Google Scholar] [CrossRef] [PubMed]
- Preston, E.; Ada, L.; Stanton, R.; Mahendran, N.; Dean, C.M. Prediction of Independent Walking in People Who Are Nonambulatory Early after Stroke: A Systematic Review. Stroke 2021, 52, 3217–3224. [Google Scholar] [CrossRef]
- Ishiwatari, M.; Tani, M.; Isayama, R.; Honaga, K.; Hayakawa, M.; Takakura, T.; Tanuma, A.; Kurosu, A.; Hatori, K.; Wada, F.; et al. Prediction of gait independence using the Trunk Impairment Scale in patients with acute stroke. Ther. Adv. Neurol. Disord. 2022, 15, 17562864221140180. [Google Scholar] [CrossRef] [PubMed]
- Enzinger, C.; Johansen-Berg, H.; Dawes, H.; Bogdanovic, M.; Collett, J.; Guy, C.; Ropele, S.; Kischka, U.; Wade, D.; Fazekas, F.; et al. Functional MRI correlates of lower limb function in stroke victims with gait impairment. Stroke 2008, 39, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Francisco, G.E.; Zhou, P. Post-stroke Hemiplegic Gait: New Perspective and Insights. Front. Physiol. 2018, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, S.; Fong Yan, A.; Sinclair, P.; Hunt, A. The evidence for improving balance by strengthening the toe flexor muscles: A systematic review. Gait Posture 2020, 81, 56–66. [Google Scholar] [CrossRef]
- Uritani, D.; Fukumoto, T.; Matsumoto, D.; Shima, M. The Relationship Between Toe Grip Strength and Dynamic Balance or Functional Mobility Among Community-Dwelling Japanese Older Adults: A Cross-Sectional Study. J. Aging Phys. Act. 2016, 24, 459–464. [Google Scholar] [CrossRef]
- Kusagawa, Y.; Kurihara, T.; Imai, A.; Maeo, S.; Sugiyama, T.; Kanehisa, H.; Isaka, T. Toe flexor strength is associated with mobility in older adults with pronated and supinated feet but not with neutral feet. J. Foot Ankle Res. 2020, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Fujii, K.; Maekawa, A.; Komoda, T.; Kawabe, N.; Nishimura, R.; Sakakibara, Y.; Fukumoto, T.; Stolt, M. Foot Problems and Their Associations with Toe Grip Strength and Walking Speed in Community-Dwelling Older Individuals Using Day Services: A Cross-Sectional Study. Nurs. Rep. 2023, 13, 697–720. [Google Scholar] [CrossRef] [PubMed]
- Yokozuka, M.; Sato, S. Differences in toe flexor strength and foot morphology between wheelchair dependent and ambulant older people in long-term care: A cross-sectional study. J. Foot Ankle Res. 2021, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Kojima, K.; Kamai, D.; Yamamoto, A.; Tsuchitani, Y.; Kataoka, H. The Effect of Toe-grasping Exercises on Balance Ability in Home-based Rehabilitation: A Randomized Controlled Trial by Block Randomization. Phys. Ther. Res. 2021, 24, 272–279. [Google Scholar] [CrossRef]
- Nakano, H.; Murata, S.; Nakae, H.; Soma, M.; Isida, H.; Maruyama, Y.; Nagara, H.; Nagara, Y. Effects of Insole with Toe-Grip Bar on Barefoot Balance and Walking Function in Patients with Parkinson’s Disease: A Randomized Controlled Trial. Geriatrics 2022, 7, 128. [Google Scholar] [CrossRef]
- Uritani, D.; Fukumoto, T.; Matsumoto, D.; Shima, M. Reference values for toe grip strength among Japanese adults aged 20 to 79 years: A cross-sectional study. J. Foot Ankle Res. 2014, 7, 28. [Google Scholar] [CrossRef]
- Hosoi, Y.; Kamimoto, T.; Sakai, K.; Yamada, M.; Kawakami, M. Estimation of minimal detectable change in the 10-meter walking test for patients with stroke: A study stratified by gait speed. Front. Neurol. 2023, 14, 1219505. [Google Scholar] [CrossRef]
- Cheng, D.K.; Nelson, M.; Brooks, D.; Salbach, N.M. Validation of stroke-specific protocols for the 10-meter walk test and 6-minute walk test conducted using 15-meter and 30-meter walkways. Top. Stroke Rehabil. 2020, 27, 251–261. [Google Scholar] [CrossRef]
- Liu, G.; Xue, Y.; Wang, S.; Zhang, Y.; Geng, Q. Association between hand grip strength and stroke in China: A prospective cohort study. Aging 2021, 13, 8204–8213. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Sung, K.-S.; Ham, H.; Yi, Y.G.; Shin, H.-I. Knee Extensor Strength Measurement in Patients with Limited Physical Activity Using a Supine Dynamometer Anchoring Frame. Ann. Rehabil. Med. 2020, 44, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Duncan Millar, J.; van Wijck, F.; Pollock, A.; Ali, M. Outcome measures in post-stroke arm rehabilitation trials: Do existing measures capture outcomes that are important to stroke survivors, carers, and clinicians? Clin. Rehabil. 2019, 33, 737–749. [Google Scholar] [CrossRef] [PubMed]
- Hernández, E.D.; Forero, S.M.; Galeano, C.P.; Barbosa, N.E.; Sunnerhagen, K.S.; Alt Murphy, M. Intra- and inter-rater reliability of Fugl-Meyer Assessment of Lower Extremity early after stroke. Braz. J. Phys. Ther. 2021, 25, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.W.; Hu, M.H.; Tang, P.F.; Sheu, C.F.; Hsieh, C.L. A comparison of psychometric properties of the smart balance master system and the postural assessment scale for stroke in people who have had mild stroke. Arch. Phys. Med. Rehabil. 2007, 88, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Barranco, C.; Cano-de-la-Cuerda, R.; Abuín-Porras, V.; Molina-Rueda, F. Postural Assessment Scale for Stroke Patients in Acute, Subacute and Chronic Stage: A Construct Validity Study. Diagnostics 2021, 11, 365. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, J.P.; Sanno, M.; Willwacher, S.; Heinrich, K.; Brüggemann, G.P. The potential of toe flexor muscles to enhance performance. J. Sports Sci. 2013, 31, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Jacob, H.A. Forces acting in the forefoot during normal gait--an estimate. Clin. Biomech. Bristol Avon 2001, 16, 783–792. [Google Scholar] [CrossRef]
- Burnfield, J.M.; Few, C.D.; Mohamed, O.S.; Perry, J. The influence of walking speed and footwear on plantar pressures in older adults. Clin. Biomech. Bristol Avon 2004, 19, 78–84. [Google Scholar] [CrossRef]
- Kamasaki, T.; Tabira, T.; Suenaga, T.; Yoshida, T.; Shimokihara, S.; Maruta, M.; Han, G.; Akasaki, Y.; Hidaka, Y.; Otao, H. Association between toe pressure strength in the standing position and postural control capability in healthy adults. Gait Posture 2023, 103, 86–91. [Google Scholar] [CrossRef]
- Lee, K.; Lee, D.; Hong, S.; Shin, D.; Jeong, S.; Shin, H.; Choi, W.; An, S.; Lee, G. The relationship between sitting balance, trunk control and mobility with predictive for current mobility level in survivors of sub-acute stroke. PLoS ONE 2021, 16, e0251977. [Google Scholar] [CrossRef]
- Uwatoko, H.; Nakamori, M.; Imamura, E.; Imura, T.; Okada, K.; Matsumae, Y.; Okamoto, H.; Wakabayashi, S. Prediction of Independent Gait in Acute Stroke Patients with Hemiplegia Using the Ability for Basic Movement Scale II Score. Eur. Neurol. 2020, 83, 49–55. [Google Scholar] [CrossRef]
- Endo, M.; Ashton-Miller, J.A.; Alexander, N.B. Effects of age and gender on toe flexor muscle strength. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M392–M397. [Google Scholar] [CrossRef] [PubMed]
- Selves, C.; Stoquart, G.; Lejeune, T. Gait rehabilitation after stroke: Review of the evidence of predictors, clinical outcomes and timing for interventions. Acta Neurol. Belg. 2020, 120, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Han, S.J.; Yun, Y.H.; Choi, H.C.; Jung, S.; Cho, S.J.; Yu, K.H.; Lee, S.M.; Hwang, S.H.; Song, H.K.; et al. Posterior circulation ischemic stroke in Korean population. Eur. J. Neurol. 2006, 13, 742–748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Z.; Liu, L.; Pu, Y.; Zou, X.; Yan, H.; Pan, Y.; Zhao, X.; Wang, Y.; Wang, Y. Posterior circulation stroke due to intracranial artery disease in the Chinese population. Brain Behav. 2022, 12, e2717. [Google Scholar] [CrossRef]
- Nouh, A.; Remke, J.; Ruland, S. Ischemic posterior circulation stroke: A review of anatomy, clinical presentations, diagnosis, and current management. Front. Neurol. 2014, 5, 30. [Google Scholar] [CrossRef]
Factor | Value (n = 98) | |
---|---|---|
Age | (years) | 67.5 ± 9.5 |
Sex | Male | 43 |
Female | 55 | |
Stroke type | Ischemic | 68 |
Hemorrhagic | 30 | |
Lesion side | Right | 45 |
Left | 53 | |
Period after stroke onset | (days) | 14.3 ± 5.2 |
NIHSS score | (onset) | 9.1 ± 4.1 |
Comorbidity | Hypertension | 91 |
Diabetes | 38 | |
Hyperlipidemia | 62 | |
K-MMSE | (at the beginning of the study) | 20.1 ± 6.9 |
AFO | Yes | 60 |
No | 38 | |
Walking-assistance device | No device | 7 |
Single cane | 39 | |
Quad cane | 44 | |
Walker | 8 | |
MAS of ankle and fingers | 0 | 84 |
1 | 14 | |
1+ | 0 | |
2 | 0 | |
3 | 0 | |
4 | 0 |
Factors | Baseline | After 3 Months | p-Value † |
---|---|---|---|
10 m walk test (s) | 30 ± 9 | 13 ± 3 | <0.001 * |
Toe grip strength, affected (kg) | 5.5 ± 3.0 | 6.8 ± 3.4 | 0.032 * |
Toe grip strength, unaffected (kg) | 9.1 ± 3.2 | 9.2 ± 3.2 | 0.915 |
Toe grip strength ratio (%) | 60 ± 8 | 74 ± 9 | <0.001 * |
Hand grip strength, affected (kg) | 2.8 ± 1.5 | 3.1 ± 1.2 | 0.101 |
Hand grip strength, unaffected (kg) | 6.3 ± 2.7 | 6.1 ± 2.6 | 0.496 |
Hand grip strength ratio (%) | 44 ± 12 | 47 ± 13 | 0.091 |
Knee extensor strength, affected (N) | 42 ± 16 | 46 ± 19 | 0.081 |
Knee extensor strength, unaffected (N) | 91 ± 28 | 90 ± 32 | 0.517 |
Knee extensor strength ratio (%) | 46 ± 19 | 51 ± 24 | 0.024 * |
FMA_LE | 18 ± 4 | 23 ± 4 | 0.004 * |
PASS | 13 ± 1 | 19 ± 4 | <0.001 * |
Pearson Correlation Coefficient (r) | Δ10MWT | ΔToe Grip Strength, Affected | ΔToe Grip Strength Ratio | Δknee Extensor Strength Ratio | ΔFMA_LE | ΔPASS | Age |
---|---|---|---|---|---|---|---|
ΔToe grip strength, affected | −0.43 | - | - | - | - | - | - |
ΔToe grip strength ratio | −0.61 * | 0.86 * | - | - | - | - | - |
ΔKnee extensor strength ratio | −0.43 | 0.29 | 0.51 | - | - | - | - |
ΔFMA_LE | −0.58 * | 0.40 * | 0.55 * | 0.49 * | - | - | - |
ΔPASS | −0.67 * | 0.58 | 0.62 * | 0.39 | 0.33 | - | - |
Age | −0.49 * | −0.46 * | −0.40 | −0.38 | −0.34 * | −0.44 | - |
Independent Variable | Unstandardized Coefficient (B) | Standardized Coefficient (β) | t | p-Value | VIF |
---|---|---|---|---|---|
ΔToe grip strength ratio | −0.099 | −0.113 | −2.093 | <0.001 * | 1.492 |
ΔFMA_LE | −0.083 | −0.142 | −1.315 | 0.004 * | 1.601 |
ΔPASS | −0.166 | −0.213 | −3.275 | <0.001 * | 1.883 |
Age | −0.208 | −0.252 | −0.159 | 0.004 * | 1.922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.-W.; Hwang, I.-S.; Jin, S.; Kim, S.-A.; Kim, M.-S. Toe Grip Strength Is Associated with Improving Gait Function in Patients with Subacute Stroke. Brain Sci. 2024, 14, 215. https://doi.org/10.3390/brainsci14030215
Ryu J-W, Hwang I-S, Jin S, Kim S-A, Kim M-S. Toe Grip Strength Is Associated with Improving Gait Function in Patients with Subacute Stroke. Brain Sciences. 2024; 14(3):215. https://doi.org/10.3390/brainsci14030215
Chicago/Turabian StyleRyu, Jin-Whan, In-Su Hwang, Sol Jin, Soo-A Kim, and Min-Su Kim. 2024. "Toe Grip Strength Is Associated with Improving Gait Function in Patients with Subacute Stroke" Brain Sciences 14, no. 3: 215. https://doi.org/10.3390/brainsci14030215
APA StyleRyu, J.-W., Hwang, I.-S., Jin, S., Kim, S.-A., & Kim, M.-S. (2024). Toe Grip Strength Is Associated with Improving Gait Function in Patients with Subacute Stroke. Brain Sciences, 14(3), 215. https://doi.org/10.3390/brainsci14030215