Morphosyntactic Abilities and Cognitive Performance in Multiple Sclerosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Linguistic Tasks
- -
- Morphology: The Perfective Past Tense Test (PPTT) [33] was used to detect possible morphologic deficits. Specifically, the existing verbs subpart was employed for this study. This is an elicited production task supported by pictures, and it consists of 20 existing verbs. Among these 20 verbs, 10 are regular (sigmatic) past tense, e.g., grafo–egrapsa (write–wrote), and 10 are irregular (non-sigmatic) past tense, e.g., pleno–eplyna (wash–washed). Regular past tense is referred to as sigmatic, because the suffix -s is added by rule, while irregular past tense is referred to as non-sigmatic, because there is no suffix -s, and instead, a stem change occurs in comparison to the present stem. The examiner showed each participant a pair of two pictures. The examiner described the first picture by indicating what the person shown is doing in that picture. Then they asked the participant what the person shown in the first picture did in the second picture. The participant had to answer in past tense by using the verb they heard in the examiner’s first sentence.
- -
- Syntax: A test consisting of 36 sentences in total was employed to detect possible syntactic deficits [34]. These 36 sentences are divided in the following groups: (a) 24 subject and object relatives, (b) 8 reversible passives and (c) 4 reflexives. The examiner showed each participant four pictures, among which only one picture matched each sentence. The examiner read each sentence aloud, and the participant then had to point to the picture which best matched the spoken sentence.
2.3. Cognitive Tasks
- -
- Symbol Digit Modalities Test (SDMT): The SDMT assesses information processing speed [37,38]. Each participant was given a sheet with numbers and symbols that were matched to each other and was required to substitute the symbols to their numbers in 1.5 min. The oral version was used. This test has been proven to be a fast and reliable cognitive screening tool in MS [4,38].
- -
- Greek Verbal Learning Test (GVLT): The GVLT assesses verbal learning [39]. Only the immediate recall sessions on the test are included in the BICAMS battery. According to the current literature, these sessions may assess some aspects of VWM [40]. The examiner read out a list of 16 goods that the participant should hypothetically buy from the supermarket on a Monday. The participant then had to repeat the objects listed by the examiner. The examiner listed the objects 5 times, and the participant was requested to recall them in any order an equal number of times. This task is considered to assess verbal working memory.
- -
- Brief Visuospatial Memory Test-Revised (BVMT-R): The BVMT-R assesses visuospatial memory [41]. The examiner required the participant to look at 6 geometric shapes for 10 s and redraw them thrice as precisely as possible.
2.4. Clinical and Other Evaluations
- -
- -
- Beck Depression Inventory-Fast Screen (BDI-FS): The BDI-FS [46] is a fast self-administered screening tool for the quantification of mood and is valid for use in PwMS [47]. It consists of 7 questions, each with 3 possible answers, with a total range of 0–21. Higher scores represent worse mood disturbances.
2.5. Statistical Analysis
3. Results
3.1. Between Group Comparisons I: PwMS vs. HCs
3.2. Between Group Comparisons II: HC, RRMS, and PMS Patients
3.3. Regression Analysis I: Logistic Regression
3.4. Regression Analysis II: Linear Regression
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atlas of MS, 2023 Update. Available online: https://www.atlasofms.org/map/global/epidemiology/number-of-people-with-ms (accessed on 6 July 2023).
- Rolak, L.A.; Fleming, J.O. The Differential Diagnosis of Multiple Sclerosis. Neurologist 2007, 13, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Bakirtzis, C.; Grigoriadou, E.; Boziki, M.K.; Kesidou, E.; Siafis, S.; Moysiadis, T.; Tsakona, D.; Thireos, E.; Nikolaidis, I.; Pourzitaki, C.; et al. The Administrative Prevalence of Multiple Sclerosis in Greece on the Basis of a Nationwide Prescription Database. Front. Neurol. 2020, 11, 1012. [Google Scholar] [CrossRef] [PubMed]
- Bakirtzis, C.; Ioannidis, P.; Messinis, L.; Nasios, G.; Konstantinopoulou, E.; Papathanasopoulos, P.; Grigoriadis, N. The Rationale for Monitoring Cognitive Function in Multiple Sclerosis: Practical Issues for Clinicians. Open Neurol. J. 2018, 12, 31–40. [Google Scholar] [CrossRef] [PubMed]
- De Meo, E.; Portaccio, E.; Giorgio, A.; Ruano, L.; Goretti, B.; Niccolai, C.; Patti, F.; Chisari, C.G.; Gallo, P.; Grossi, P.; et al. Identifying the Distinct Cognitive Phenotypes in Multiple Sclerosis. JAMA Neurol. 2021, 78, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Kouvatsou, Z.; Masoura, E.; Kimiskidis, V. Working Memory Deficits in Multiple Sclerosis: An Overview of the Findings. Front. Psychol. 2022, 13, 1–4. [Google Scholar] [CrossRef]
- Yalachkov, Y.; Soydaş, D.; Bergmann, J.; Frisch, S.; Behrens, M.; Foerch, C.; Gehrig, J. Determinants of quality of life in relapsing-remitting and progressive multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 30, 33–37. [Google Scholar] [CrossRef]
- Brochet, B.; Ruet, A. Cognitive Impairment in Multiple Sclerosis with Regards to Disease Duration and Clinical Phenotypes. Front. Neurol. 2019, 10, 261. [Google Scholar] [CrossRef]
- Clemens, L.; Langdon, D. How does cognition relate to employment in multiple sclerosis? A systematic review. Mult. Scler. Relat. Disord. 2018, 26, 183–191. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Priore, R.L.; Miller, C.; Munschauer, F.; Jacobs, L. Personality Disorder in Multiple Sclerosis Correlates with Cognitive Impairment. J. Neuropsychiatry Clin. Neurosci. 2001, 13, 70–76. [Google Scholar] [CrossRef]
- Figved, N.; Myhr, K.M.; Larsen, J.P.; Aarsland, D. Caregiver burden in multiple sclerosis: The impact of neuropsychiatric symptoms. J. Neurol. Neurosurg. Psychiatry 2007, 78, 1097–1102. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Kalb, R.; Beier, M.; Benedict, R.H.; Charvet, L.; Costello, K.; Feinstein, A.; Gingold, J.; Goverover, Y.; Halper, J.; Harris, C.; et al. Recommendations for cognitive screening and management in multiple sclerosis care. Mult. Scler. 2018, 24, 1665–1680. [Google Scholar] [CrossRef] [PubMed]
- Carotenuto, A.; Arcara, G.; Orefice, G.; Cerillo, I.; Giannino, V.; Rasulo, M.; Iodice, R.; Bambini, V. Communication in Multiple Sclerosis: Pragmatic Deficit and its Relation with Cognition and Social Cognition. Arch. Clin. Neuropsychol. 2018, 33, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Fyndanis, V.; Messinis, L.; Nasios, G.; Dardiotis, E.; Martzoukou, M.; Pitopoulou, M.; Malefaki, S. Impaired verb-related morphosyntactic production in multiple sclerosis: Evidence from Greek. Front. Psychol. 2020, 11, 2051. [Google Scholar] [CrossRef]
- Sonkaya, A.R.; Bayazit, Z.Z. Language Aspects of Patients with Multiple Sclerosis. EJMI 2018, 2, 133–138. [Google Scholar] [CrossRef]
- Lethlean, J.B.; Murdoch, B.E. Naming errors in multiple sclerosis: Support for a combined semantic/perceptual deficit. J. Neurolinguist. 2014, 8, 207–223. [Google Scholar] [CrossRef]
- Drake, M.A.; Allegri, R.F.; Carrá, A. Language abnormalities in patients with multiple sclerosis. Neurologia 2002, 17, 12–16. [Google Scholar]
- Renauld, S.; Mohamed-Saïd, L.; Macoir, J. Language disorders in multiple sclerosis: A systematic review. Mult. Scler. Relat. Disord. 2016, 10, 103–111. [Google Scholar] [CrossRef]
- Plotas, P.; Nanousi, V.; Kantanis, A.; Tsiamaki, E.; Papadopoulos, A.; Tsapara, A.; Glyka, A.; Mani, E.; Roumelioti, F.; Strataki, G.; et al. Speech deficits in multiple sclerosis: A narrative review of the existing literature. Eur. J. Med. Res. 2023, 28, 252. [Google Scholar] [CrossRef]
- Kujala, P.; Portin, R.; Ruutiainen, J. Language functions in incipient cognitive decline in multiple sclerosis. J. Neurol. Sci. 1996, 141, 79–86. [Google Scholar] [CrossRef]
- Smirnova, D.; Smirnova, T.; Cumming, P. Language Impairments in Dementia: From Word-Finding Difficulties to Everyday Conversation in a Dementia-Friendly Community; Shankardass, M.K., Ed.; Dementia Care; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Mahendra, N.; Scullion, A.; Hamerschlag, C. Cognitive-Linguistic Interventions for Persons with Dementia: A Practitioner’s Guide to 3 Evidence-Based Techniques. Top. Geriatr. Rehabil. 2011, 27, 278–288. [Google Scholar] [CrossRef]
- Ivanova, M.V.; Dragoy, O.V.; Kuptsova, S.V.; Ulicheva, A.S.; Laurinavichyute, A.K. The contribution of working memory to language comprehension: Differential effect of aphasia type. Aphasiology 2011, 29, 645–664. [Google Scholar] [CrossRef]
- Caplan, D.; Michaud, J.; Hufford, R. Short-term memory, working memory, and syntactic comprehension in aphasia. Cogn. Neuropsychol. 2013, 30, 77–109. [Google Scholar] [CrossRef]
- Lynda, F. Linguistic performance during monologues and correlates of neuropsychological function for adults with multiple sclerosis. Aphasiology 2023, 37, 1484–1507. [Google Scholar] [CrossRef]
- Thothathiri, M.; Mauro, K.L. The relationship between short-term memory, conflict resolution, and sentence comprehension impairments in aphasia. Aphasiology 2018, 32, 64–289. [Google Scholar] [CrossRef]
- Salmons, I.; Muntané-Sánchez, H.; Gavarró, A. Short-term memory and sentence comprehension in Catalan aphasia. Front. Psychol. 2022, 13, 6104. [Google Scholar] [CrossRef]
- Fitzhugh, M.C.; LaCroix, A.N.; Rogalsky, C. Distinct Contributions of Working Memory and Attentional Control to Sentence Comprehension in Noise in Persons With Stroke. J. Speech Lang. Hear. Res. 2021, 64, 3230–3241. [Google Scholar] [CrossRef] [PubMed]
- Varkanitsa, M.; Caplan, D. On the association between memory capacity and sentence comprehension: Insights from a systematic review and meta-analysis of the aphasia literature. J. Neurolinguist. 2018, 48, 4–25. [Google Scholar] [CrossRef]
- Huettig, F.; Janse, E. Individual differences in working memory and processing speed predict anticipatory spoken language processing in the visual world. Lang. Cogn. Neurosci. 2016, 31, 80–93. [Google Scholar] [CrossRef]
- University of California, San Fransisco MS-EPIC Team; Cree, B.A.; Gourraud, P.A.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hertman, E.; Gelfand, J.M.; Goodin, D.S.; Graves, J.; Green, A.J.; et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann. Neurol. 2016, 80, 499–510. [Google Scholar] [CrossRef] [PubMed]
- Stavrakaki, S.; Clahsen, H. Inflection in William’s Syndrome: The Perfective Past Tense Test in Greek. Ment. Lex. 2009, 4, 215–238. [Google Scholar] [CrossRef]
- Talli, I.; Stavrakaki, S. Short-term memory, working memory and linguistic abilities in bilingual children with Developmental Language Disorder. First Lang. 2020, 40, 437–460. [Google Scholar] [CrossRef]
- Langdon, D.W.; Amato, M.P.; Boringa, J.; Brochet, B.; Foley, F.; Fredrikson, S.; Hämäläinen, P.; Hartung, H.P.; Krupp, L.; Penner, I.K.; et al. Recommendations for a Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS). Mult. Scler. 2011, 18, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Polychroniadou, E.; Bakirtzis, C.; Langdon, D.; Lagoudaki, R.; Kesidou, E.; Theotokis, P.; Tsalikakis, D.; Poulatsidou, K.; Kyriazis, O.; Boziki, M.; et al. Validation of the Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in Greek population with multiple sclerosis. Mult. Scler. Relat. Disord. 2016, 9, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Smith, A. Symbol Digit Modalities Test (SDMT) Manual, Revised; Western Psychological Services: Los Angeles, CA, USA, 1982. [Google Scholar]
- Messinis, L.; Bakirtzis, C.; Kosmidis, M.H.; Economou, A.; Nasios, G.; Anyfantis, E.; Konitsiotis, S.; Ntoskou, A.; Peristeri, E.; Dardiotis, E.; et al. Symbol Digit Modalities Test: Greek Normative Data for the Oral and Written Version and Discriminative Validity in Patients with Multiple Sclerosis. Arch. Clin. Neuropsychol. 2021, 36, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Vlahou, C.H.; Kosmidou, M.H.; Dardagani, A.; Tsotsi, S.; Giannakou, M.; Giazkoulidou, A.; Zervoudakis, E.; Pontikakis, N. Development of the Greek Verbal Learning Test: Reliability, Construct Validity, and Normative Standards. Arch. Clin. Neuropsychol. 2012, 28, 52–64. [Google Scholar] [CrossRef]
- Clough, M.; Bartholomew, J.; White, O.B.; Fielding, J. Working Memory Phenotypes in Early Multiple Sclerosis: Appraisal of Phenotype Frequency, Progression and Test Sensitivity. J. Clin. Med. 2022, 11, 2936. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Schretlen, D.; Groninger, L.; Dobraski, M.; Shpritz, B. Revision of the Brief Visuospatial Test: Studies of normal performance, reliability, and validity. Psychol. Assess. 2006, 8, 145–153. [Google Scholar] [CrossRef]
- Lalioti, M.; Stavrakaki, S.; Manouilidou, C.; Talli, I. Subject–verb agreement and verbal short-term memory: A perspective from Greek children with specific language impairment. First Lang. 2016, 36, 279–294. [Google Scholar] [CrossRef]
- Kurtzke, J.F. Rating neurological impairment in multiple sclerosis: An expanded disability status scale. Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef]
- Learmonth, Y.C.; Dlugonski, D.; Pilutti, L.A.; Sandroff, B.M.; Klaren, R.; Motl, R.W. Psychometric properties of the Fatigue Severity Scale and the Modified Fatigue Impact Scale. J. Neurol. Sci. 2013, 331, 102–107. [Google Scholar] [CrossRef]
- Bakalidou, D.; Voumvourakis, K.; Tsourti, Z.; Papageorgiou, E.; Poulios, A.; Giannopoulos, S. Validity and reliability of the Greek version of the Modified Fatigue Impact Scale in multiple sclerosis patients. Int. J. Rehabil. Res. 2014, 37, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Beck, A.T.; Steer, R.A.; Brown, G.K. BDI-Fast Screen for Medical Patients; Manual Psychological Corporation: San Antonio, TX, USA, 2000. [Google Scholar]
- Benedict, R.H.B.; Fishman, I.; McClellan, M.M.; Bakshi, R.; Weinstock-Guttman, B. Validity of the Beck Depression Inventory-Fast Screen in multiple sclerosis. Mult. Scler. 2003, 9, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Balestroni, G.; Bertolotti, G. EuroQol-5D (EQ-5D): An instrument for measuring quality of life. Monaldi Arch. Chest Dis. 2012, 78, 155–159. [Google Scholar] [CrossRef]
- Kontodimopoulos, N.; Pappa, E.; Niakas, D.; Yfantopoulos, J.; Dimitrakaki, C.; Tountas, Y. Validity of the EuroQoL (EQ-5D) instrument in a Greek general population. Value Health 2008, 11, 1162–1169. [Google Scholar] [CrossRef]
- Ntoskou, K.; Messinis, L.; Nasios, G.; Martzoukou, M.; Makris, G.; Panagiotopoulos, E.; Papathanasopoulos, P. Cognitive and Language Deficits in Multiple Sclerosis: Comparison of Relapsing Remitting and Secondary Progressive Subtypes. Open Neurol. J. 2018, 12, 19–30. [Google Scholar] [CrossRef]
- Artemiadis, A.; Bakirtzis, C.; Ifantopoulou, P.; Zis, P.; Bargiotas, P.; Grigoriadis, N.; Hadjigeorgiou, G. The role of cognitive reserve in multiple sclerosis: A cross-sectional study in 526 patients. Mult. Scler. Relat. Disord. 2020, 41, 102047. [Google Scholar] [CrossRef]
- Planche, V.; Gibelin, M.; Cregut, D.; Pereira, B.; Clavelou, P. Cognitive impairment in a population-based study of patients with multiple sclerosis: Differences between late relapsing-remitting, secondary progressive and primary progressive multiple sclerosis. Eur. J. Neurol. 2016, 23, 282–289. [Google Scholar] [CrossRef]
- Ruet, A.; Deloire, M.; Charré-Morin, J.; Hamel, D.; Brochet, B. Cognitive impairment differs between primary progressive and relapsing-remitting MS. Neurology 2013, 80, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Baetge, S.J.; Filser, M.; Renner, A.; Ulrich, S.; Lassek, C.; Penner, I.K. On the validity of single tests, two-test combinations and the full Brief International Cognitive Assessment for Multiple Sclerosis (BICAMS) in detecting patients with cognitive impairment. Mult. Scler. 2020, 26, 1919–1928. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.H.B.; Cookfair, D.; Gavett, R.; Gunther, M.; Munschauer, F.; Carg, N.; Guttman-Weinstock, B. Validity of the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). J. Int. Neuropsychol. Soc. 2006, 12, 549–558. [Google Scholar] [CrossRef]
- Verhagen, J.; Leseman, P. How do verbal short-term memory and working memory relate to the acquisition of vocabulary and grammar? A comparison between first and second language learners. J. Exp. Child Psychol. 2016, 141, 65–82. [Google Scholar] [CrossRef]
- Velázquez-Cardoso, J.; Marosi-Holczberger, E.; Rodríguez-Agudelo, Y.; Yañez-Tellez, G.Y.; Chávez-Oliveros, M. Recall strategies for the verbal fluency test in patients with multiple sclerosis. Neurologia 2014, 29, 139–145. [Google Scholar] [CrossRef]
- Barwood, C.H.; Murdoch, B.E. Cognitive linguistic deficits in relapsing–remitting multiple sclerosis. Aphasiology 2013, 27, 1459–1471. [Google Scholar] [CrossRef]
- Warmbier, W.A.; Popiel, M.; Guzik, A.; Drużbicki, M.; Bartosik-Psujek, H. Objective assessment of dysarthric disorders in patients with multiple sclerosis depending on sex, age, and type of text read. Front. Neurol. 2023, 14, 1225754. [Google Scholar] [CrossRef]
- Pinker, S.; Ullman, M.T. The past and future of the past tense. Trends Cogn. Sci. 2002, 6, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Carnie, A. Syntax: A Generative Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Philippaki-Warburton, I. Introduction to Theoretical Linguistics [Eisagogi sti Theoretiki Glossologia]; Nefeli: Athens, Greece, 1992. [Google Scholar]
- Parmenter, B.A.; Weinstock-Guttman, B.; Garg, N.; Munschauer, F.; Benedict, R.H.B. Screening for cognitive impairment in multiple sclerosis using the Symbol Digit Modalities Test. Mult. Scler. 2007, 13, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Aveledo, F.; Higueras, Y.; Marinis, T.; Bose, A.; Pliatsikas, C.; Meldaña-Rivera, A.; Martínez-Ginés, M.L.; García-Domínguez, J.M.; Lozano-Ros, A.; Pablo Cuello, J.; et al. Multiple sclerosis and bilingualism. Linguist. Approaches Biling. 2021, 11, 551–577. [Google Scholar] [CrossRef]
- Chen, M.H.; Goverover, Y.; Genova, H.M.; DeLuca, J. Cognitive Efficacy of Pharmacologic Treatments in Multiple Sclerosis: A Systematic Review. CNS Drugs 2020, 34, 599–628. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, J.; Chiaravalloti, N.D.; Sandroff, B.M. Treatment and management of cognitive dysfunction in patients with multiple sclerosis. Nat. Rev. Neurol. 2020, 16, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Deldar, Z.; Gevers-Montoro, C.; Khatibi, A.; Ghazi-Saidi, L. The interaction between language and working memory: A systematic review of fMRI studies in the past two decades. AIMS Neurosci. 2020, 8, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Baddeley, A. Working memory and language: An overview. J. Commun. Disord. 2003, 36, 189–208. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Taft, M. Influences of Cognitive Processing Capacities on Speech Perception in Young Adults. Front. Psychol. 2017, 8, 266. [Google Scholar] [CrossRef] [PubMed]
PwMS | HCs | p-Value | |
---|---|---|---|
n | 78 | 78 | |
Females, n (%) | 60 (76.9%) | 54 (69.2%) | 0.28 |
Age (mean, SD) | 37.5 ± 9.8 | 35.7 ± 11.3 | 0.28 |
Education (years) | 14.9 ± 2.3 | 15.4 ± 2.3 | 0.19 |
12 (n, %) | 24 (30.8%) | 19 (24.3%) | 0.4 |
13–16 (n, %) | 30 (38.5%) | 30 (38.5%) | 1.0 |
17+ (n, %) | 24 (30.8%) | 29 (37.2%) | 0.4 |
MS disease characteristics | |||
Disease duration (mean, SD) | 9.2 ± 6.9 | ||
EDSS (median, min–max) | 2.0 (1–7.5) | ||
Type of MS | |||
RRMS (n, %) | 61 (78.2%) | ||
SPMS (n, %) | 8 (10.3%) | ||
PPMS (n, %) | 9 (11.5%) |
RRMS | PMS | p-Value | |
---|---|---|---|
n | 61 | 17 | |
Females, n (%) | 62 | 16 | 0.20 |
Age (mean, SD) | 35.6 ± 9.6 | 44.9 ± 7.6 | <0.001 |
Education (years) | 15 ± 2.4 | 14.6 ± 1.96 | 0.52 |
MS disease characteristics | |||
Disease duration (mean, SD) | 8.72 ± 6.60 | 11.75 ± 7.73 | 0.12 |
EDSS (median, min-max) | 2.22 (1–6) | 5.47 (3.5–7.5) | <0.001 |
Currently under DMT | 59 (96.7%) | 8 (35.2%) | <0.001 |
PwMS, n: 78 (MEAN, SD) | HCs, n: 78 (MEAN, SD) | p-Value | |
---|---|---|---|
BICAMS | |||
SDMT | 50.5 ± 11.2 | 56.6 ± 11.5 | 0.001 |
GVLT | 56.9 ± 11.5 | 58.5 ± 11.2 | 0.4 |
BVMT-R | 27.3 ± 6.3 | 31.0 ± 5.3 | <0.001 |
VSTM | |||
Total score | 26.0 ± 6.2 | 30.4 ± 5.1 | <0.001 |
MORPHOLOGY TEST (PPTT) | |||
Total score | 14.2 ± 6.3 | 17.6 ± 3.4 | <0.001 |
Regular | 7.4 ± 3.3 | 9.2 ± 1.7 | <0.001 |
Irregular | 6.8 ± 3.1 | 8.4 ± 1.9 | <0.001 |
SYNTAX TEST | |||
Total score | 31.7 ± 3.5 | 32.7 ± 3.2 | 0.8 |
Subject relatives | 7.0 ± 1.0 | 7.3 ± 1.1 | 0.2 |
Object relatives | 14.1 ± 1.6 | 14.5 ± 1.7 | 0.3 |
Passives | 6.7 ± 1.2 | 7.1 ± 1.0 | 0.02 |
Reflexives | 3.7 ± 0.4 | 3.8 ± 0.4 | 0.2 |
BDI-FS | 3.3 ± 3.4 | 2.2 ± 1.9 | 0.01 |
MFIS | 26.8 ± 17.1 | 20.8 ± 13.1 | 0.01 |
EQ-5D | |||
5 items score | 7.4 ± 1.8 | 6.2 ± 1.3 | <0.001 |
VAS | 75.5 ± 18.3 | 83.5 ± 13.2 | 0.002 |
HC, n: 78 (Mean, SD) | RRMS, n: 61 (Mean, SD) | PMS, n: 17 (Mean, SD) | p-Value (ANCOVA) | p-Value (Bonferroni’s Post Hoc) * | |
---|---|---|---|---|---|
BICAMS | |||||
SDMT | 56.6 ± 11.5 | 52.4 ± 10.1 | 43.3 ± 12.7 | 0.001 | 0.06; 0.003; 0.156 |
GVLT | 58.5 ± 11.2 | 57.6 ± 11.6 | 54.6 ± 11.0 | 0.611 | N/A |
BVMT-R | 31.0 ± 5.3 | 28.1 ± 5.8 | 24.4 ± 7.5 | <0.001 | 0.008; 0.003; 0.417 |
VSTM | |||||
Total score | 30.4 ± 5.1 | 27.0 ± 6.0 | 22.6 ± 6.0 | <0.001 | <0.001; <0.001; 0.21 |
PPTT | |||||
Total score | 17.6 ± 3.4 | 14.5 ± 6.2 | 13.2 ± 6.5 | <0.001 | 0.001; 0.054; 1 |
Regular | 9.2 ± 1.7 | 7.5 ± 3.4 | 6.9 ± 3.3 | <0.001 | <0.001; 0.056; 1 |
Irregular | 8.4 ± 1.9 | 7.0 ± 3.1 | 6.3 ± 3.5 | <0.001 | 0.003; 0.079; 1 |
SYNTAX TEST | |||||
Total score | 32.7 ± 3.2 | 32.3 ± 3.4 | 29.6 ± 3.4 | 0.009 | 1; 0.007; 0.028 |
Subject relatives | 7.3 ± 1.1 | 7.1 ± 1.1 | 6.8 ± 1.0 | 0.305 | N/A |
Object relatives | 14.5 ± 1.7 | 14.5 ± 1.5 | 12.8 ± 1.7 | <0.001 | 1; <0.001; <0.001 |
Passives | 7.1 ± 1.0 | 6.8 ± 1.2 | 6.1 ± 1.5 | 0.026 | 0.448; 0.029; 0.264 |
Reflexives | 3.8 ± 0.4 | 3.8 ± 0.5 | 3.8 ± 0.4 | 0.631 | N/A |
BDI-FS | 2.2 ± 1.9 | 3.2 ± 3.3 | 4.3 ± 3.7 | 0.016 | 0.159; 0.031; 0.487 |
MFIS | 20.8 ± 13.1 | 25.0 ± 17.2 | 34.0 ± 14.6 | 0.02 | 0.227; 0.031; 0.413 |
EQ-5D | |||||
5 items score | 6.2 ± 1.3 | 7.0 ± 1.6 | 9.5 ± 1.4 | <0.001 | 0.006; <0.001; <0.001 |
VAS | 83.5 ± 13.2 | 79.7 ± 16.2 | 58.7 ± 16.4 | <0.001 | 0.415; <0.001; <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigoriadis, P.; Bakirtzis, C.; Nteli, E.; Boziki, M.-K.; Kotoumpa, M.; Theotokis, P.; Kesidou, E.; Stavrakaki, S. Morphosyntactic Abilities and Cognitive Performance in Multiple Sclerosis. Brain Sci. 2024, 14, 237. https://doi.org/10.3390/brainsci14030237
Grigoriadis P, Bakirtzis C, Nteli E, Boziki M-K, Kotoumpa M, Theotokis P, Kesidou E, Stavrakaki S. Morphosyntactic Abilities and Cognitive Performance in Multiple Sclerosis. Brain Sciences. 2024; 14(3):237. https://doi.org/10.3390/brainsci14030237
Chicago/Turabian StyleGrigoriadis, Panagiotis, Christos Bakirtzis, Elli Nteli, Marina-Kleopatra Boziki, Maria Kotoumpa, Paschalis Theotokis, Evangelia Kesidou, and Stavroula Stavrakaki. 2024. "Morphosyntactic Abilities and Cognitive Performance in Multiple Sclerosis" Brain Sciences 14, no. 3: 237. https://doi.org/10.3390/brainsci14030237
APA StyleGrigoriadis, P., Bakirtzis, C., Nteli, E., Boziki, M. -K., Kotoumpa, M., Theotokis, P., Kesidou, E., & Stavrakaki, S. (2024). Morphosyntactic Abilities and Cognitive Performance in Multiple Sclerosis. Brain Sciences, 14(3), 237. https://doi.org/10.3390/brainsci14030237