The Prognostic Role of Candidate Serum Biomarkers in the Post-Acute and Chronic Phases of Disorder of Consciousness: A Preliminary Study †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Biomarkers Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BBB | Blood Brain Barrier |
BDNF | Brain-derived neurotrophic factor |
CAMs | Cell adhesion molecules protein |
CNS | central nervous system |
CRS-R | Coma Recovery Scale-Revised |
CSF | cerebrospinal fluid |
CV | Coefficient of Variation |
Doc | Disorders of Consciousness |
DRS | Disability Rating Scale |
e-MCS | exit MCS |
FDA | Food and Drug administration |
GFAP | Glial Fibrillary Acidic Protein |
ICAM-1 | intercellular adhesion molecule 1 |
IL | interleukin |
IQR | interquartile range |
kDa | kilodalton |
LIS | locked-in syndrome |
LLOQ | Lower Limit of Quantification |
LOD | Limit of Detection |
MAP | Microtubule-associated protein |
MCS | Minimally Consciousness State |
MicroRNAs | miRNAs |
NF-L | Neurofilament Light |
p-DoC | prolonged Disorders of Consciousness |
sABI | severe Acquired Brain Injury |
TBI | traumatic brain injury |
TNF | tumor necrosis factor |
T-Tau | Total Tau |
UCH-L1 | Ubiquitin C-terminal Hydrolase |
UWS | Unresponsive Wakefulness Syndrome |
VS | Vegetative State |
References
- Owen, A.M. Disorders of Consciousness. Ann. N. Y. Acad. Sci. 2008, 1124, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Laureys, S.; Owen, A.M.; Schiff, N. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 2004, 3, 537–546. [Google Scholar] [CrossRef]
- Laureys, S.; Celesia, G.G.; Cohadon, F.; Lavrijsen, J.; León-Carrión, J.; Sannita, W.G.; Sazbon, L.; Schmutzhard, E.; von Wild, K.R.; Zeman, A.; et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Multi-Society Task Force on PVS. Medical aspects of the persistent vegetative state (1). N. Engl. J. Med. 1994, 330, 1499–1508. [Google Scholar] [CrossRef]
- Giacino, J.T.; Fins, J.J.; Laureys, S.; Schiff, N.D. Disorders of consciousness after acquired brain injury: The state of the science. Nat. Rev. Neurol. 2014, 10, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Giacino, J.T.; Katz, D.I.; Schiff, N.D.; Whyte, J.; Ashman, E.J.; Ashwal, S.; Barbano, R.; Hammond, F.M.; Laureys, S.; Ling, G.S.F.; et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology 2018, 91, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Kondziella, D.; Bender, A.; Diserens, K.; van Erp, W.; Estraneo, A.; Formisano, R.; Laureys, S.; Naccache, L.; Ozturk, S.; Rohaut, B.; et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 2020, 27, 741–756. [Google Scholar] [CrossRef]
- Giacino, J.T.; Ashwal, S.; Childs, N.; Cranford, R.; Jennett, B.; Katz, D.I.; Kelly, J.P.; Rosenberg, J.H.; Whyte, J.; Zafonte, R.D.; et al. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002, 58, 349–353. [Google Scholar] [CrossRef]
- Bruno, M.-A.; Vanhaudenhuyse, A.; Thibaut, A.; Moonen, G.; Laureys, S. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness. J. Neurol. 2011, 258, 1373–1384. [Google Scholar] [CrossRef]
- Bruno, M.-A.; Majerus, S.; Boly, M.; Vanhaudenhuyse, A.; Schnakers, C.; Gosseries, O.; Boveroux, P.; Kirsch, M.; Demertzi, A.; Bernard, C.; et al. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 2012, 259, 1087–1098. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, J.; Heine, L.; Huang, W.; Wang, J.; Hu, N.; Hu, X.; Fang, X.; Huang, S.; Laureys, S.; et al. Personalized objects can optimize the diagnosis of EMCS in the assessment of functional object use in the CRS-R: A double blind, randomized clinical trial. BMC Neurol. 2018, 18, 38. [Google Scholar] [CrossRef]
- Zasler, N.D.; Aloisi, M.; Contrada, M.; Formisano, R. Disorders of Consciousness Terminology: History, Evolution and Future Directions. Brain Inj. 2019, 33, 1684–1689. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.; Berson, A.; Cook, T.; Bollegala, N.; Seto, E.; Tursanski, S.; Kim, J.; Sockalingam, S.; Rajput, A.; Krishnadev, N.; et al. Treatment of agitation following traumatic brain injury: A review of the literature. NeuroRehabilitation 2005, 20, 279–306. [Google Scholar] [CrossRef] [PubMed]
- Fleminger, S.; Greenwood, R.J.; Oliver, D.L. Pharmacological management for agitation and aggression in people with acquired brain injury. Cochrane Database Syst. Rev. 2006, CD003299. [Google Scholar] [CrossRef] [PubMed]
- Fann, J.R.; Hart, T.; Schomer, K.G. Treatment for depression after traumatic brain injury: A systematic review. J. Neurotrauma 2009, 26, 2383–2402. [Google Scholar] [CrossRef] [PubMed]
- Whyte, J. Pharmacologic treatment of cognitive and behavioral sequelae of traumatic brain injury: Practicing in the absence of strong evidence. Eur. J. Phys. Rehabil. Med. 2010, 46, 557–562. [Google Scholar] [PubMed]
- Formisano, R.; Giustini, M.; Aloisi, M.; Contrada, M.; Schnakers, C.; Zasler, N.; Estraneo, A. An International survey on diagnostic and prognostic protocols in patients with disorder of consciousness. Brain Inj. 2019, 33, 974–984. [Google Scholar] [CrossRef] [PubMed]
- Pisa, F.E.; Cosano, G.; Giangreco, M.; Giorgini, T.; Biasutti, E.; Barbone, F.; Group for the Study of Medication Use in Centers for Post-acute Brain Injury Rehabilitation. Prescribing practice and off-label use of psychotropic medications in post-acute brain injury rehabilitation centres: A cross-sectional survey. Brain Inj. 2015, 29, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Bossù, P.; Salani, F.; Cacciari, C.; Picchetto, L.; Cao, M.; Bizzoni, F.; Rasura, M.; Caltagirone, C.; Robinson, R.G.; Orzi, F.; et al. Disease outcome, alexithymia and depression are differently associated with serum IL-18 levels in acute stroke. Curr. Neurovasc. Res. 2009, 6, 163–170. [Google Scholar] [CrossRef]
- Merrill, J.E.; Benveniste, E.N. Cytokines in inflammatory brain lesions: Helpful and harmful. Trends Neurosci. 1996, 19, 331–338. [Google Scholar] [CrossRef]
- Ziebell, J.M.; Morganti-Kossmann, M.C. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiologyof traumatic brain injury. Neuroterapeutics 2010, 7, 22–30. [Google Scholar] [CrossRef]
- Kumar, A.; Loane, D.J. Neuroinflammation after traumatic brain injury: Opportunities for therapeutic intervention. Brain Behav. Immun. 2012, 26, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Yatsiv, I.; Morganti-Kossmann, M.C.; Perez, D.; Dinarello, C.A.; Novick, D.; Rubinstein, M.; Otto, V.I.; Rancan, M.; Kossmann, T.; Redaelli, C.A.; et al. Elevated intracranial IL-18 in humans and mice after traumatic brain injury and evidence of neuroprotective effects of IL-18—Binding protein after experimental closed head injury. J. Cereb. Blood Flow. Metab. 2002, 22, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, A.; Della Vedova, C.; Salani, F.; Viganotti, M.; D’Ippolito, M.; Caltagirone, C.; Formisano, R.; Sabatini, U.; Bossù, P. Increased levels of serum IL-18 are associated with the long-term outcome of severe traumatic brain injury. Neuroimmunomodulation 2014, 21, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Musso, N.; Bivona, D.; Bonomo, C.; Bonacci, P.; D’Ippolito, M.E.; Boccagni, C.; Rubino, F.; De Tanti, A.; Lucca, L.F.; Pingue, V.; et al. Investigating microRNAs as biomarkers in disorders of consciousness: A longitudinal multicenter study. Sci. Rep. 2023, 13, 18415. [Google Scholar] [CrossRef] [PubMed]
- Formisano, R.; Grelli, S.; Matteucci, C.; Santilli, V.V.; Vinicola, V.V.; Scivoletto, G.; Castellano, V.V.; D’Agostini, C.; Mastino, A.; Favalli, C. Immunological and endocrinological disturbances in patients after prolonged coma following head injury. Eur. J. Neurol. 1998, 5, 151–158. [Google Scholar] [CrossRef]
- Pistoia, F.; Sacco, S.; Franceschini, M.; Sarà, M.; Pistarini, C.; Cazzulani, B.; Simonelli, I.; Pasqualetti, P.; Carolei, A. Comorbidities: A key issue in patients with disorders of consciousness. J. Neurotrauma 2015, 32, 682–688. [Google Scholar] [CrossRef]
- Estraneo, A.; Masotta, O.; Bartolo, M.; Pistoia, F.; Perin, C.; Marino, S.; Lucca, L.; Pingue, V.; Casanova, E.; Romoli, A.; et al. Multi-center study on overall clinical complexity of patients with prolonged disorders of consciousness of different etiologies. Brain Inj. 2021, 35, 1–7. [Google Scholar] [CrossRef]
- Maccioni, R.B.; Cambiazo, V. Role of microtubule-associated proteins in the control of microtubule assembly. Physiol. Rev. 1995, 75, 835–864. [Google Scholar] [CrossRef]
- Mondello, S.; Gabrielli, A.; Catani, S.; D’Ippolito, M.; Jeromin, A.; Ciaramella, A.; Bossù, P.; Schmid, K.; Tortella, F.; Wang, K.K.; et al. Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Inj. 2012, 26, 1629–1635. [Google Scholar] [CrossRef]
- Bagnato, S.; Boccagni, C. Cerebrospinal Fluid and Blood Biomarkers in Patients with Post-Traumatic Disorders of Consciousness: A Scoping Review. Brain Sci. 2023, 13, 364. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA 2020, 324, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, R.; Fryatt, G.; Cleal, M.; Obst, J.; Pipi, E.; Monzón-Sandoval, J.; Ribe, E.; Winchester, L.; Webber, C.; Nevado, A.; et al. CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice. Brain 2019, 142, 3243–3264. [Google Scholar] [CrossRef] [PubMed]
- Molloy, C.; Conroy, R.M.; Cotter, D.R.; Cannon, M. Is traumatic brain injury a risk factor for schizophrenia? A meta-analysis of case-controlled population-based studies. Schizophr. Bull. 2011, 37, 1104–1110. [Google Scholar] [CrossRef] [PubMed]
- Brett, B.L.; Gardner, R.C.; Godbout, J.; Dams-O’Connor, K.; Keene, C.D. Traumatic Brain Injury and Risk of Neurodegenerative Disorder. Biol. Psychiatry 2022, 91, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Dadas, A.; Washington, J.; Diaz-Arrastia, R.; Janigro, D. Biomarkers in traumatic brain injury (TBI): A review. Neuropsychiatr. Dis. Treat. 2018, 14, 2989–3000. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, R.; Chang, B.; Yue, J.K.; Chiu, A.; Winkler, E.A.; Puccio, A.M.; Diaz-Arrastia, R.; Yuh, E.L.; Mukherjee, P.; Valadka, A.B.; et al. Comparing plasma phospho tau, total tau, and phospho tau-total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurol. 2017, 74, 1063–1072. [Google Scholar] [CrossRef]
- Edwards, G., III; Zhao, J.; Dash, P.K.; Soto, C.; Moreno-Gonzalez, I. Traumatic brain injury induces tau aggregation and spreading. J. Neurotrauma 2020, 37, 80–92. [Google Scholar] [CrossRef]
- Coppola, L.; Mirabelli, P.; Baldi, D.; Smaldone, G.; Estraneo, A.; Soddu, A.; Grimaldi, A.M.; Mele, G.; Salvatore, M.; Cavaliere, C. An innovative approach for the evaluation of prolonged disorders of consciousness using NF-L and GFAP biomarkers: A pivotal study. Sci. Rep. 2022, 12, 18446. [Google Scholar] [CrossRef]
- Coppola, L.; Smaldone, G.; Grimaldi, A.M.; Estraneo, A.; Magliacano, A.; Soddu, A.; Ciccarelli, G.; Salvatore, M.; Cavaliere, C. Peripheral blood BDNF and soluble CAM proteins as possible markers of prolonged disorders of consciousness: A pilot study. Sci. Rep. 2024, 14, 341. [Google Scholar] [CrossRef]
- McBride, W.R.; Conlan, C.E.; Barylski, N.A.; Warneryd, A.C.; Swanson, R.L. Blood Biomarkers in Brain Injury Medicine. Curr. Phys. Med. Rehabil. Rep. 2022, 10, 114–121. [Google Scholar] [CrossRef]
- Wang, K.K.; Munoz Pareja, J.C.; Mondello, S.; Diaz-Arrastia, R.; Wellington, C.; Kenney, K.; Puccio, A.M.; Hutchison, J.; McKinnon, N.; Okonkwo, D.O.; et al. Blood-based traumatic brain injury biomarkers—Clinical utilities and regulatory pathways in the United States, Europe and Canada. Expert. Rev. Mol. Diagn. 2021, 21, 1303–1321. [Google Scholar] [CrossRef] [PubMed]
- Shahim, P.; Tegner, Y.; Wilson, D.H.; Randall, J.; Skillbäck, T.; Pazooki, D.; Kallberg, B.; Blennow, K.; Zetterberg, H. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 2014, 71, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Gafson, A.R.; Barthelemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.P.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; et al. Neurofilaments: Neurobiological foundations for biomarker applications. Brain 2020, 143, 1975–1998. [Google Scholar] [CrossRef] [PubMed]
- Al Nimer, F.; Thelin, E.; Nyström, H.; Dring, A.M.; Svenningsson, A.; Piehl, F.; Nelson, D.W.; Bellander, B.M. Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light. PLoS ONE 2015, 10, e0132177. [Google Scholar] [CrossRef] [PubMed]
- Newcombe, V.F.J.; Ashton, N.J.; Posti, J.P. Post-acute blood biomarkers and disease progression in traumatic brain injury. Brain 2022, 145, 2064–2076. [Google Scholar] [CrossRef] [PubMed]
- Bishop, P.; Rocca, D.; Henley, J.M. Ubiquitin C-terminal hydrolase L1 (UCH-L1): Structure, distribution and roles in brain function and dysfunction. Biochem. J. 2016, 473, 2453–2462. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef]
- Mondello, S.; Sorinola, A.; Czeiter, E.; Vámos, Z.; Amrein, K.; Synnot, A.; Donoghue, E.; Sándor, J.; Wang, K.K.W.; Diaz-Arrastia, R.; et al. Blood-Based Protein Biomarkers for the Management of Traumatic Brain Injuries in Adults Presenting to Emergency Departments with Mild Brain Injury: A Living Systematic Review and Meta-Analysis. J. Neurotrauma 2021, 38, 1086–1106. [Google Scholar] [CrossRef]
- Kobeissy, F.; Arja, R.D.; Munoz, J.C.; Shear, D.A.; Gilsdorf, J.; Zhu, J.; Yadikar, H.; Haskins, W.; Tyndall, J.A.; Wang, K.K. The game changer: UCH-L1 and GFAP-based blood test as the first marketed in vitro diagnostic test for mild traumatic brain injury. Expert. Rev. Mol. Diagn 2024, 24, 66–77. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Li, A.M.; He, S.L.; Yao, X.D.; Zhu, J.; Zhang, Z.W.; Sheng, Z.Y.; Yao, Y.M. Serum Total Cholinesterase Activity on Admission Is Associated with Disease Severity and Outcome in Patients with Traumatic Brain Injury. PLoS ONE 2015, 10, e0129082. [Google Scholar] [CrossRef] [PubMed]
- Risetti, M.; Formisano, R.; Toppi, J.; Quitadamo, L.R.; Bianchi, L.; Astolfi, L.; Cincotti, F.; Mattia, D. On ERPs detection in disorders of consciousness rehabilitation. Front. Hum. Neurosci. 2013, 7, 775. [Google Scholar] [CrossRef]
- Falletta Caravasso, C.; de Pasquale, F.; Ciurli, P.; Catani, S.; Formisano, R.; Sabatini, U. The Default Mode Network Connectivity Predicts Cognitive Recovery in Severe Acquired Brain Injured Patients: A Longitudinal Study. J. Neurotrauma 2016, 33, 1247–1262. [Google Scholar] [CrossRef]
- Monti, M.M.; Vanhaudenhuyse, A.; Coleman, M.R.; Boly, M.; Pickard, J.D.; Tshibanda, L.; Owen, A.M.; Laureys, S. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 2010, 362, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Schiff, N.D. Recovery of consciousness after brain injury: A mesocircuit hypothesis. Trends Neurosci. 2010, 33, 1–9. [Google Scholar] [CrossRef]
- Medical Disability Society. Report of a Working Party on the Management of Traumatic Brain Injury; The Development Trust for the Young Disabled: London, UK, 1988. [Google Scholar]
- Giacino, J.T.; Kalmar, K.; Whyte, J. The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 2004, 85, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Rappaport, M.; Hall, K.M.; Hopkins, K.; Belleza, T.; Cope, D.N. Disability Rating Scale for severe head trauma: Coma to community. Arch. Phys. Med. Rehabil. 1982, 63, 118–123. [Google Scholar]
- Korley, F.K.; Nikolian, V.C.; Williams, A.M.; Dennahy, I.S.; Weykamp, M.; Alam, H.B. Valproic Acid Treatment Decreases Serum Glial Fibrillary Acidic Protein and Neurofilament Light Chain Levels in Swine Subjected to Traumatic Brain Injury. J. Neurotrauma 2018, 35, 1185–1191. [Google Scholar] [CrossRef]
- Asken, B.M.; Yang, Z.; Xu, H.; Weber, A.G.; Hayes, R.L.; Bauer, R.M.; DeKosky, S.T.; Jaffee, M.S.; Wang, K.K.W.; Clugston, J.R. Acute Effects of Sport-Related Concussion on Serum Glial Fibrillary Acidic Protein, Ubiquitin C-Terminal Hydrolase L1, Total Tau, and Neurofilament Light Measured by a Multiplex Assay. J. Neurotrauma 2020, 37, 1537–1545. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences, 5th ed.; Houghton Mifflin: Boston, MA, USA, 2003. [Google Scholar]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Clopper, C.J.; Pearson, E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934, 26, 404–413. [Google Scholar] [CrossRef]
- Formisano, R.; D’Ippolito, M.; Catani, S. Functional locked-in syndrome as recovery phase of vegetative state. Brain Inj. 2013, 27, 1332. [Google Scholar] [CrossRef] [PubMed]
- Edlow, B.L.; Claassen, J.; Schiff, N.D.; Greer, D.M. Recovery from disorders of consciousness: Mechanisms, prognosis and emerging therapies. Nat. Rev. Neurol. 2021, 17, 135–156. [Google Scholar] [CrossRef]
- Cavaliere, C.; Aiello, M.; Di Perri, C.; Fernandez-Espejo, D.; Owen, A.M.; Soddu, A. Diffusion tensor imaging and white matter abnormalities in patients with disorders of consciousness. Front. Human. Neurosci. 2015, 8, 1028. [Google Scholar] [CrossRef]
- Brammer, M. The role of neuroimaging in diagnosis and personalized medicine–current position and likely future directions. Dialogues Clin. Neurosci. 2009, 11, 389–396. [Google Scholar] [CrossRef]
- Mele, G.; Cavaliere, C.; Alfano, V.; Orsini, M.; Salvatore, M.; Aiello, M. Simultaneous EEG-fMRI for functional neurological assessment. Front. Neurol. 2019, 10, 848. [Google Scholar] [CrossRef]
- Estraneo, A.; Fiorenza, S.; Magliacano, A.; Formisano, R.; Mattia, D.; Grippo, A.; Romoli, A.M.; Angelakis, E.; Cassol, H.; Thibaut, A.; et al. Multicenter prospective study on predictors of short-term outcome in disorders of consciousness. Neurology 2020, 95, e1488–e1499. [Google Scholar] [CrossRef]
- Bagnato, S.; Boccagni, C.; Prestandrea, C.; Sant’Angelo, A.; Castiglione, A.; Galardi, G. Prognostic value of standard EEG in traumatic and non-traumatic disorders of consciousness following coma. Clin. Neurophysiol. 2010, 121, 274–280. [Google Scholar] [CrossRef]
- Bagnato, S.; Boccagni, C.; Sant’Angelo, A.; Prestandrea, C.; Mazzilli, R.; Galardi, G. EEG predictors of outcome in patients with disorders of consciousness admitted for intensive rehabilitation. Clin. Neurophysiol. 2015, 126, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Toppi, J.; Mattia, D.; Risetti, M.; Formisano, R.; Babiloni, F.; Astolfi, L. Testing the significance of connectivity networks: Comparison of different assessing procedures. IEEE Trans. Biomed. Eng. 2016, 63, 2461–2473. [Google Scholar] [CrossRef]
- Ren, C.; Kobeissy, F.; Alawieh, A.; Li, N.; Li, N.; Zibara, K.; Zoltewicz, S.; Guingab-Cagmat, J.; Larner, S.F.; Ding, Y.; et al. Assessment of Serum UCH-L1 and GFAP in Acute Stroke Patients. Sci. Rep. 2016, 6, 24588. [Google Scholar] [CrossRef]
- Brophy, G.M.; Mondello, S.; Papa, L.; Robicsek, S.A.; Gabrielli, A.; Tepas, J., 3rd; Buki, A.; Robertson, C.; Tortella, F.C.; Hayes, R.L.; et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J. Neurotrauma 2011, 28, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Zoltewicz, J.S.; Mondello, S.; Yang, B.; Newsom, K.J.; Kobeissy, F.; Yao, C.; Lu, X.C.; Dave, J.R.; Shear, D.A.; Schmid, K.; et al. Biomarkers track damage after graded injury severity in a rat model of penetrating brain injury. J. Neurotrauma 2013, 30, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Mondello, S.; Shear, D.A.; Bramlett, H.M.; Dixon, C.E.; Schmid, K.E.; Dietrich, W.D.; Wang, K.K.; Hayes, R.L.; Glushakova, O.; Catania, M.; et al. Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers: Operation Brain Trauma Therapy. J. Neurotrauma 2016, 33, 595–605. [Google Scholar] [CrossRef] [PubMed]
Socio-Demographic Data | Values |
---|---|
Gender (M; %) | 68% |
Age (yrs; ±sd) | 42.8 ± 17.28 |
Educational level (%) | |
University degree | 20% |
High School diploma | 32% |
Lower secondary school diploma | 48% |
Clinical Data | Values |
---|---|
Coma length in days (mean ± sd) | 28.1 ± 15.00 |
Time since injury in days (mean ± sd) | 197 ± 150.45 |
Aetiology (%) | |
TBI | 40% |
non-TBI | 60% |
Diagnosis (%) | |
UWS | 24% |
MCS− | 40% |
MCS+ | 32% |
LIS | 4% |
Percutaneous Endoscopic Gastrostomy or Nasogastric Tube (%) | 88% |
TBI Patients | Non TBI Patients | p (2 Sided) | |
---|---|---|---|
Age (Years, median) | 25.3 | 48.0 | 0.0042 |
Gender (% Female) | 10.0% | 46.7% | 0.0540 |
DRS at t1 (median) | 22 | 21 | 0.7481 |
DRS at t2 (median) | 18.5 | 21 | 0.1710 |
CRS-R at t1 (median) | 10.5 | 10 | 1.0000 |
CRS-R at t2 (median) | 21 | 21 | 0.5583 |
Coma length (days, median) | 31.5 | 15 | 0.0516 |
Time interval between t0 and t1 (days, median) | 136 | 156 | 0.6830 |
Time interval between t1 and t2 (days, median) | 303.5 | 176.5 | 0.0858 |
t1 | t2 | |||||
---|---|---|---|---|---|---|
MCS (Median) | UWS (Median) | p (One Side) | MCS (Median) | UWS (Median) | p (One Side) | |
GFAP | 209.244 | 677.673 | 0.037 | 186.062 | 488.717 | 0.009 |
NF-L | 240.041 | 199.255 | 0.354 | 36.107 | 101.809 | 0.004 |
UCH L1 | 39.785 | 51.191 | 0.304 | 21.503 | 45.963 | 0.000 |
T-Tau | 1.704 | 1.008 | 0.088 | 0.906 | 2.074 | 0.001 |
(a) | |||||||||
Age | Gender | Aetiology | DRS | CRS-R | GFAP | NFL | UCH L1 | T-Tau | |
Age | 1.000 | ||||||||
Gender | 0.186 | 1.000 | |||||||
Aetiology | 0.448 | 0.428 | 1.000 | ||||||
DRS | −0.356 | −0.168 | 0.024 | 1.000 | |||||
CRS-R | 0.177 | 0.119 | −0.249 | −0.737 | 1.000 | ||||
GFAP | −0.255 | 0.330 | 0.319 | 0.181 | −0.404 | 1.000 | |||
NF-L | −0.152 | 0.248 | 0.123 | −0.232 | 0.036 | 0.572 | 1.000 | ||
UCH L1 | −0.283 | 0.014 | −0.016 | −0.103 | −0.179 | 0.681 | 0.837 | 1.000 | |
T-Tau | −0.119 | 0.303 | −0.052 | −0.485 | 0.223 | 0.510 | 0.842 | 0.660 | 1.000 |
(b) | |||||||||
Age | Gender | Aetiology | DRS | CRS-R | GFAP | NFL | UCH L1 | T-Tau | |
Age | 1.000 | ||||||||
Gender | 0.209 | 1.000 | |||||||
Aetiology | 0.483 | 0.406 | 1.000 | ||||||
DRS | −0.010 | 0.067 | 0.313 | 1.000 | |||||
CRS-R | −0.097 | 0.109 | −0.232 | −0.872 | 1.000 | ||||
GFAP | 0.039 | 0.551 | 0.496 | 0.405 | −0.334 | 1.000 | |||
NF-L | 0.478 | 0.372 | 0.539 | 0.426 | −0.515 | 0.562 | 1.000 | ||
UCH L1 | 0.249 | 0.045 | 0.334 | 0.521 | −0.564 | 0.513 | 0.689 | 1.000 | |
T-Tau | 0.079 | 0.000 | 0.113 | 0.577 | −0.608 | 0.362 | 0.528 | 0.664 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formisano, R.; D’Ippolito, M.; Giustini, M.; Catani, S.; Mondello, S.; Piccolino, I.; Iannuzzi, F.; Wang, K.K.; Hayes, R.L. The Prognostic Role of Candidate Serum Biomarkers in the Post-Acute and Chronic Phases of Disorder of Consciousness: A Preliminary Study. Brain Sci. 2024, 14, 239. https://doi.org/10.3390/brainsci14030239
Formisano R, D’Ippolito M, Giustini M, Catani S, Mondello S, Piccolino I, Iannuzzi F, Wang KK, Hayes RL. The Prognostic Role of Candidate Serum Biomarkers in the Post-Acute and Chronic Phases of Disorder of Consciousness: A Preliminary Study. Brain Sciences. 2024; 14(3):239. https://doi.org/10.3390/brainsci14030239
Chicago/Turabian StyleFormisano, Rita, Mariagrazia D’Ippolito, Marco Giustini, Sheila Catani, Stefania Mondello, Iliana Piccolino, Filomena Iannuzzi, Kevin K. Wang, and Ronald L. Hayes. 2024. "The Prognostic Role of Candidate Serum Biomarkers in the Post-Acute and Chronic Phases of Disorder of Consciousness: A Preliminary Study" Brain Sciences 14, no. 3: 239. https://doi.org/10.3390/brainsci14030239
APA StyleFormisano, R., D’Ippolito, M., Giustini, M., Catani, S., Mondello, S., Piccolino, I., Iannuzzi, F., Wang, K. K., & Hayes, R. L. (2024). The Prognostic Role of Candidate Serum Biomarkers in the Post-Acute and Chronic Phases of Disorder of Consciousness: A Preliminary Study. Brain Sciences, 14(3), 239. https://doi.org/10.3390/brainsci14030239