Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review
Abstract
:1. Introduction
2. Lucid Dreams: Definition and Neurophysiology
3. Pharmacological Induction of Lucid Dreams
3.1. Cholinergic Substances
3.2. Dopaminergic Substances
3.3. Case Reports with Other Substances
4. Plants with the Potential to Intensify Oneiric Activity
4.1. Papaver somniferum
4.2. Calea ternifolia
4.3. Celastrus paniculatus
4.4. Silene capensis
4.5. Artemisia vulgaris
4.6. Withania somnifera
4.7. Nootropics and Ayurvedic Medicine
5. General Discussion of the Neuropsychopharmacological Induction of Lucid Dreams
6. Limitations, Perspectives, and Conclusions
- Research agenda:
- Future studies should focus on how the aforementioned drugs and plants have an impact on sleep and dreaming. In addition, there is a potential influence of the chronobiological effects of time on the administration of these drugs; some of them (e.g., nootropics) mostly affect the waking state, but also might impact nocturnal consciousness. The literature on this type of information is scarce.
- The pharmacodynamics of plants and drugs should also be researched, mostly those that have similar pharmacological, cognitive, behavioral, and neurophysiological aspects to LD.
- Sesquiterpenes from known plants, which possibly already have approval for human testing (to reduce bureaucracy), should be researched using Ellman’s method. This allows for the elaboration of an AChEI’s concentration and efficacy, which can be compared to medications such as galantamine and donepezil.
- Better understanding how sesquiterpenes influence DA and ACh concentrations in the brain would be a great step, allowing for inferring its action in specific brain areas.
- Pharmacological protocols for the understanding of the synergism between potential drugs/plants to induce LD is crucial. In this way, a combination can be used to enhance the probability of LD and to know whether there are side effects
- Depending on the focus of future studies, many methodologies can be created. A mixture of induction techniques, including behavioral and pharmacological, should be combined to enhance the probability of achieving dream lucidity in a controlled environment. In addition, the eye-signal technique to flag LD and neuroimaging techniques could be used in conjunction.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- La Berge, S.P. Lucid Dreaming as a Learnable Skill: A Case Study. Percept. Mot. Ski. 1980, 51, 1039–1042. [Google Scholar] [CrossRef]
- La Berge, S.P.; Nagel, L.E.; Dement, W.C.; Zarcone, V.P. Lucid Dreaming Verified by Volitional Communication during Rem Sleep. Percept. Mot. Ski. 1981, 52, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rolim, S.A. On Moving the Eyes to Flag Lucid Dreaming. Front. Neurosci. 2020, 14, 361. [Google Scholar] [CrossRef] [PubMed]
- Stumbrys, T.; Erlacher, D. Lucid dreaming during NREM sleep: Two case reports. Int. J. Dream Res. 2012, 5, 151–155. [Google Scholar] [CrossRef]
- Mota Rolim, S.A.; Brandão, D.S.; Andrade, K.C.; de Queiroz, C.M.T.; Araujo, J.F.; de Araujo, D.B.; Ribeiro, S. Neurophysiological Features of Lucid Dreaming during N1 and N2 Sleep Stages: Two Case Reports. Sleep Sci. 2015, 8, 215. [Google Scholar] [CrossRef]
- Gackenbach, J.; Moorecroft, W.; Alexander, C.; LaBerge, S. “Consciousness” During Sleep in a TM Practitioner: Heart Rate, Respiration, and Eye Movement. Lucidity Lett. 1987, 6. [Google Scholar]
- Mason, L.I.; Orme-Johnson, D. Transcendental consciousness wakes up in dreaming and deep sleep. Int. J. Dream Res. 2010, 3, 28–32. [Google Scholar] [CrossRef]
- Parker, S.; Bharati, S.V.; Fernandez, M. Defining yoga-nidra: Traditional accounts, physiological research, and future directions. Int. J. Yoga Ther. 2013, 23, 11–16. [Google Scholar] [CrossRef]
- Mota-Rolim, S.A.; Bulkeley, K.; Campanelli, S.; Lobão-Soares, B.; de Araujo, D.B.; Ribeiro, S. The Dream of God: How Do Religion and Science See Lucid Dreaming and Other Conscious States During Sleep? Front. Psychol. 2020, 11, 555731. [Google Scholar] [CrossRef] [PubMed]
- Dresler, M.; Wehrle, R.; Spoormaker, V.I.; Koch, S.P.; Holsboer, F.; Steiger, A.; Obrig, H.; Sämann, P.G.; Czisch, M. Neural correlates of dream lucidity obtained from contrasting lucid versus non-lucid REM sleep: A combined EEG/fMRI case study. Sleep 2012, 35, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- LaBerge, S.; Rheingold, H. Exploring the World of Lucid Dreaming, 4/27/94 ed.; Ballantine Books: New York, NY, USA, 1991. [Google Scholar]
- Hobson, J.A.; Pace-Schott, E.F. The cognitive neuroscience of sleep: Neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 2002, 3, 679–693. [Google Scholar] [CrossRef] [PubMed]
- Filevich, E.; Dresler, M.; Brick, T.R.; Kühn, S. Behavioral/Cognitive Metacognitive Mechanisms Underlying Lucid Dreaming. J. Neurosci. 2015, 35, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Baird, B.; Castelnovo, A.; Gosseries, O.; Tononi, G. Frequent lucid dreaming associated with increased functional connectivity between frontopolar cortex and temporoparietal association areas. Sci. Rep. 2018, 8, 17798. [Google Scholar] [CrossRef] [PubMed]
- Baird, B.; Mota-Rolim, S.A.; Dresler, M. The cognitive neuroscience of lucid dreaming. Neurosci. Biobehav. Rev. 2019, 100, 305–323. [Google Scholar] [CrossRef] [PubMed]
- Stumbrys, T.; Erlacher, D.; Schädlich, M.; Schredl, M. Induction of lucid dreams: A systematic review of evidence. Conscious. Cogn. 2012, 21, 1456–1475. [Google Scholar] [CrossRef] [PubMed]
- Houghton, P.J.; Ren, Y.; Howes, M.-J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Kumar, V.; Mal, M.; Houghton, P.J. Acetylcholinesterase inhibitors from plants. Phytomed. Int. J. Phytother. Phytopharm. 2007, 14, 289–300. [Google Scholar] [CrossRef]
- Khan, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.A.; Hamerski, L. Chapter 8—Alkaloids as Potential Multi-Target Drugs to Treat Alzheimer’s Disease. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 61, pp. 301–334. [Google Scholar] [CrossRef]
- Zemek, F.; Drtinova, L.; Nepovimova, E.; Sepsova, V.; Korabecny, J.; Klimes, J.; Kuca, K. Outcomes of Alzheimer’s disease therapy with acetylcholinesterase inhibitors and memantine. Expert Opin. Drug Saf. 2014, 13, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Overview | Donepezil, Galantamine, Rivastigmine and Memantine for the Treatment of Alzheimer’s Disease | Guidance | NICE. Available online: https://www.nice.org.uk/guidance/ta217 (accessed on 25 November 2023).
- Rösler, M.; Anand, R.; Cicin-Sain, A.; Gauthier, S.; Agid, Y.; Dal-Bianco, P.; Stähelin, H.B.; Hartman, R.; Gharabawi, M.; Bayer, T. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: International randomised controlled trial. BMJ 1999, 318, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Lazarova, M.I.; Tsekova, D.S.; Tancheva, L.P.; Kirilov, K.T.; Uzunova, D.N.; Vezenkov, L.T.; Tsvetanova, E.R.; Alexandrova, A.V.; Georgieva, A.P.; Gavrilova, P.T.; et al. New Galantamine Derivatives with Inhibitory Effect on Acetylcholinesterase Activity. J. Alzheimer’s Dis. 2021, 83, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Maelicke, A.; Albuquerque, E.X. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur. J. Pharmacol. 2000, 393, 165–170. [Google Scholar] [CrossRef] [PubMed]
- File:Galanthus Nivalis.jpg—Simple English Wikipedia, the Free Encyclopedia. Available online: https://commons.wikimedia.org/wiki/File:Galanthus_nivalis.jpg (accessed on 25 November 2023).
- Gott, J.A.; Stücker, S.; Kanske, P.; Haaker, J.; Dresler, M. Acetylcholine and metacognition during sleep. Conscious. Cogn. 2024, 117, 103608. [Google Scholar] [CrossRef]
- LaBerge, S. Substances That Enhance Recall and Lucidity during Dreaming. U.S. Patent 20040266659A1, 30 December 2004. Available online: https://patents.google.com/patent/US20040266659A1/en (accessed on 25 November 2023).
- LaBerge, S.; LaMarca, K.; Baird, B. Pre-sleep treatment with galantamine stimulates lucid dreaming: A double-blind, placebo-controlled, crossover study. PLoS ONE 2018, 13, e0201246. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, G.; Hurd, R.; Carlson, R.; Molina, A. Exploring the effects of galantamine paired with meditation and dream reliving on recalled dreams: Toward an integrated protocol for lucid dream induction and nightmare resolution. Conscious. Cogn. 2018, 63, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Kern, S.; Appel, K.; Schredl, M.; Pipa, G. No effect of α-GPC on lucid dream induction or dream content. Somnologie 2017, 21, 180–186. [Google Scholar] [CrossRef]
- Schilström, B.; Ivanov, V.B.; Wiker, C.; Svensson, T.H. Galantamine enhances dopaminergic neurotransmission in vivo via allosteric potentiation of nicotinic acetylcholine receptors. Neuropsychopharmacology 2007, 32, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, T.W.; Bertelsen, C.; Piccini, P.; Brooks, D.; Alving, J.; Lou, H.C. Increased dopamine tone during meditation-induced change of consciousness. Cogn. Brain Res. 2002, 13, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Saraswati, S.S. Yoga Nidra, 6th ed.; Yoga Publications Trust: Munger, India, 2002. [Google Scholar]
- Pandi-Perumal, S.R.; Spence, D.W.; Srivastava, N.; Kanchibhotla, D.; Kumar, K.; Sharma, G.S.; Gupta, R.; Batmanabane, G. The Origin and Clinical Relevance of Yoga Nidra. Sleep Vigil. 2022, 6, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Datta, K.; Mallick, H.N.; Tripathi, M.; Ahuja, N.; Deepak, K.K. Electrophysiological Evidence of Local Sleep During Yoga Nidra Practice. Front. Neurol. 2022, 13, 910794. [Google Scholar] [CrossRef] [PubMed]
- Frohlich, J.; Mediano, P.A.M.; Bavato, F.; Gharabaghi, A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun. Biol. 2023, 6, 654. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.C.; Rømer Thomsen, K.; Changeux, J.P. The Molecular Organization of Self-awareness: Paralimbic Dopamine-GABA Interaction. Front. Syst. Neurosci. 2020, 14, 3. [Google Scholar] [CrossRef]
- Sodré, M.E.; Wießner, I.; Irfan, M.; Schenck, C.H.; Mota-Rolim, S.A. Awake or Sleeping? Maybe Both… A Review of Sleep-Related Dissociative States. J. Clin. Med. 2023, 12, 3876. [Google Scholar] [CrossRef] [PubMed]
- Joensson, M.; Thomsen, K.R.; Andersen, L.M.; Gross, J.; Mouridsen, K.; Sandberg, K.; Østergaard, L.; Lou, H.C. Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex. Hum. Brain Mapp. 2015, 36, 1866–1877. [Google Scholar] [CrossRef] [PubMed]
- Murphy, D.L. Mental effects of L-dopa. Annu. Rev. Med. 1973, 24, 209–216. [Google Scholar] [CrossRef]
- Trenado, C.; Boschheidgen, M.; Rübenach, J.; N’Diaye, K.; Schnitzler, A.; Mallet, L.; Wojtecki, L. Assessment of Metacognition and Reversal Learning in Parkinson’s Disease: Preliminary Results. Front. Hum. Neurosci. 2018, 12, 343. [Google Scholar] [CrossRef] [PubMed]
- Cipolli, C.; Bolzani, R.; Massetani, R.; Murri, L.; Muratorio, A. Dream structure in Parkinson’s patients. J. Nerv. Ment. Dis. 1992, 180, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Partinen, M. Sleep disorder related to Parkinson’s disease. J. Neurol. 1997, 244, S3–S6. [Google Scholar] [CrossRef] [PubMed]
- Sharf, B.; Moskovitz, C.; Lupton, M.D.; Klawans, H.L. Dream phenomena induced by chronic levodopa therapy. J. Neural Transm. 1978, 43, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, C.; Moses, H.; Klawans, H.L. Levodopa-induced psychosis: A kindling phenomenon. Am. J. Psychiatry 1978, 135, 669–675. [Google Scholar] [CrossRef]
- Borek, L.L.; Kohn, R.; Friedman, J.H. Phenomenology of dreams in Parkinson’s disease. Mov. Disord. 2007, 22, 198–202. [Google Scholar] [CrossRef] [PubMed]
- De Gennaro, L.; Lanteri, O.; Piras, F.; Scarpelli, S.; Assogna, F.; Ferrara, M.; Caltagirone, C.; Spalletta, G. Dopaminergic system and dream recall: An MRI study in Parkinson’s disease patients. Hum. Brain Mapp. 2016, 37, 1136–1147. [Google Scholar] [CrossRef]
- Pinter, M.M.; Pogarell, O.; Oertel, W.H. Efficacy, safety, and tolerance of the non-ergoline dopamine agonist pramipexole in the treatment of advanced Parkinson’s disease: A double blind, placebo controlled, randomised, multicentre study. J. Neurol. Neurosurg. Psychiatry 1999, 66, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Haas, M.F.; Latchman, J.; Guastella, A.M.; Craig, D.S.; Chang, Y.D. Lucid Dreams Associated with Pregabalin: Implications for Clinical Practice. J. Pain Palliat. Care Pharmacother. 2022, 36, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Mousailidis, G.; Papanna, B.; Salmon, A.; Sein, A.; Al-Hillawi, Q. Pregabalin induced visual hallucinations—A rare adverse reaction. BMC Pharmacol. Toxicol. 2020, 21, 16. [Google Scholar] [CrossRef] [PubMed]
- Biehl, J. Foods and substances influencing (lucid) dreams. Int. J. Dream Res. 2022, 15, 224–234. [Google Scholar] [CrossRef]
- Sergio, W. Use of DMAE (2-dimethylaminoethanol) in the induction of lucid dreams. Med. Hypotheses 1988, 26, 255–257. [Google Scholar] [CrossRef]
- Malík, M.; Tlustoš, P. Nootropics as Cognitive Enhancers: Types, Dosage and Side Effects of Smart Drugs. Nutrients 2022, 14, 3367. [Google Scholar] [CrossRef]
- Richter, J. Dietary Supplement and a Method to Enhance Sleep and Lucid Dreaming. U.S. Patent US8092840B2, 10 January 2012. [Google Scholar]
- Zhdanova, I.V.; Wurtman, R.J. Efficacy of melatonin as a sleep-promoting agent. J. Biol. Rhythm. 1997, 12, 644–650. [Google Scholar] [CrossRef]
- Stone, B.M.; Turner, C.; Mills, S.L.; Nicholson, A.N. Hypnotic activity of melatonin. Sleep 2000, 23, 663–669. [Google Scholar] [CrossRef]
- Kahan, T.; Hays, J.; Hirashima, B.; Johnston, K. Effects of melatonin on dream bizarreness among male and female college students. Psychology 2000, 2, 74–83. [Google Scholar]
- Ebben, M.; Lequerica, A.; Spielman, A. Effects of pyridoxine on dreaming: A preliminary study. Percept. Mot. Ski. 2002, 94, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Aspy, D.J.; Madden, N.A.; Delfabbro, P. Effects of Vitamin B6 (Pyridoxine) and a B Complex Preparation on Dreaming and Sleep. Percept. Mot. Ski. 2018, 125, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Laios, K.; Lytsikas-Sarlis, P.; Manes, K.; Kontaxaki, M.-I.; Karamanou, M.; Androutsos, G. Drugs for mental illnesses in ancient greek medicine. Psychiatriki 2019, 30, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Mathianaki, K.; Tzatzarakis, M.; Karamanou, M. Poppies as a sleep aid for infants: The “Hypnos” remedy of Cretan folk medicine. Toxicol. Rep. 2021, 8, 1729–1733. [Google Scholar] [CrossRef] [PubMed]
- Presley, C.C.; Lindsley, C.W. DARK Classics in Chemical Neuroscience: Opium, a Historical Perspective. ACS Chem. Neurosci. 2018, 9, 2503–2518. [Google Scholar] [CrossRef] [PubMed]
- Scarborough, J. The opium poppy in Hellenistic and Roman medicine. In Drugs and Narcotics in History; Teich, M., Porter, R., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 4–23. [Google Scholar] [CrossRef]
- Tekiner, H.; Kosar, M. The opium poppy as a symbol of sleep in Bertel Thorvaldsen’s relief of 1815. Sleep Med. 2016, 19, 123–125. [Google Scholar] [CrossRef] [PubMed]
- Laux-Biehlmann, A.; Mouheiche, J.; Vérièpe, J.; Goumon, Y. Endogenous morphine and its metabolites in mammals: History, synthesis, localization and perspectives. Neuroscience 2013, 233, 95–117. [Google Scholar] [CrossRef] [PubMed]
- Mayagoitia, L.; Díaz, J.L.; Contreras, C.M. Psychopharmacologic analysis of an alleged oneirogenic plant: Calea zacatechichi. J. Ethnopharmacol. 1986, 18, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.L. Ethnopharmacology and taxonomy of Mexican psychodysleptic plants. J. Psychedelic Drugs 1979, 11, 71–101. [Google Scholar] [CrossRef] [PubMed]
- Mata, R.; Contreras-Rosales, A.J.; Gutiérrez-González, J.A.; Villaseñor, J.L.; Pérez-Vásquez, A. Calea ternifolia Kunth, the Mexican “dream herb”, a concise review. Botany 2022, 100, 261–274. [Google Scholar] [CrossRef]
- Arya, A.; Chahal, R.; Rao, R.; Rahman, M.H.; Kaushik, D.; Akhtar, M.F.; Saleem, A.; Khalifa, S.M.A.; El-Seedi, H.R.; Kamel, M.; et al. Acetylcholinesterase Inhibitory Potential of Various Sesquiterpene Analogues for Alzheimer’s Disease Therapy. Biomolecules 2021, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhao, W. Polyesterified Sesquiterpenoids from the Seeds of Celastrus paniculatus as Lifespan-Extending Agents for the Nematode Caenorhabditis elegans. J. Nat. Prod. 2020, 83, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Bhagya, V.; Jaideep, S. Neuropharmacological and Cognitive Effects of Celastrus paniculatus—A Comprehensive Review. Int. J. Pharm. Sci. Rev. Res. 2020, 65, 92–97. [Google Scholar] [CrossRef]
- Nagpal, K.; Garg, M.; Arora, D.; Dubey, A.; Grewal, A.S. An extensive review on phytochemistry and pharmacological activities of Indian medicinal plant Celastrus paniculatus Willd. Phytother. Res. 2022, 36, 1930–1951. [Google Scholar] [CrossRef] [PubMed]
- Hirst, M. Dreams and Medicines: The Perspective of Xhosa Diviners and Novices in the Eastern Cape. Indo-Pac. J. Phenomenol. 2005, 5, 1–22. [Google Scholar] [CrossRef]
- Stepnik, K.; Kukula-Koch, W. In Silico Studies on Triterpenoid Saponins Permeation through the Blood–Brain Barrier Combined with Postmortem Research on the Brain Tissues of Mice Affected by Astragaloside IV Administration. Int. J. Mol. Sci. 2020, 21, 2534. [Google Scholar] [CrossRef] [PubMed]
- Larhsini, M.; Marston, A.; Hostettmann, K. Triterpenoid saponins from the roots of Silene cucubalus. Fitoterapia 2003, 74, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Bechkri, S.; Alabdul Magid, A.; Sayagh, C.; Berrehal, D.; Harakat, D.; Voutquenne-Nazabadioko, L.; Kabouche, Z.; Kabouche, A. Triterpene saponins from Silene gallica collected in North-Eastern Algeria. Phytochemistry 2020, 172, 112274. [Google Scholar] [CrossRef]
- Lacaille-Dubois, M.A.; Hanquet, B.; Cui, Z.H.; Lou, Z.C.; Wagner, H. Acylated triterpene saponins from Silene jenisseensis. Phytochemistry 1995, 40, 509–514. [Google Scholar] [CrossRef]
- Sobiecki, J.F. Psychoactive Ubulawu Spiritual Medicines and Healing Dynamics in the Initiation Process of Southern Bantu Diviners. J. Psychoact. Drugs 2012, 44, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Ekiert, H.; Pajor, J.; Klin, P.; Rzepiela, A.; Slesak, H.; Szopa, A. Significance of Artemisia Vulgaris L. (Common Mugwort) in the History of Medicine and Its Possible Contemporary Applications Substantiated by Phytochemical and Pharmacological Studies. Molecules 2020, 25, 4415. [Google Scholar] [CrossRef] [PubMed]
- Bashir, A.; Nabi, M.; Tabassum, N.; Afzal, S.; Ayoub, M. An updated review on phytochemistry and molecular targets of Withania somnifera (L.) Dunal (Ashwagandha). Front. Pharmacol. 2023, 14, 1049334. [Google Scholar] [CrossRef]
- Singh, M.; Ramassamy, C. In vitro screening of neuroprotective activity of Indian medicinal plant Withania somnifera. J. Nutr. Sci. 2017, 6, e54. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J.; Chouhan, S.; Yadav, S.K.; Westfall, S.; Rai, S.N.; Singh, S.P. Withania somnifera Alleviates Parkinsonian Phenotypes by Inhibiting Apoptotic Pathways in Dopaminergic Neurons. Neurochem. Res. 2014, 39, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
- Cheah, K.L.; Norhayati, M.N.; Yaacob, L.H.; Rahman, R.A. Effect of Ashwagandha (Withania somnifera) extract on sleep: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0257843. [Google Scholar] [CrossRef] [PubMed]
- Gopukumar, K.; Thanawala, S.; Somepalli, V.; Rao, T.S.S.; Thamatam, V.B.; Chauhan, S. Efficacy and Safety of Ashwagandha Root Extract on Cognitive Functions in Healthy, Stressed Adults: A Randomized, Double-Blind, Placebo-Controlled Study. Evid.-Based Complement. Altern. Med. 2021, 2021, 8254344. [Google Scholar] [CrossRef]
- Choudhary, D.; Bhattacharyya, S.; Bose, S. Efficacy and Safety of Ashwagandha (Withania somnifera (L.) Dunal) Root Extract in Improving Memory and Cognitive Functions. J. Diet. Suppl. 2017, 14, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Yancheva, S.; Ihl, R.; Nikolova, G.; Panayotov, P.; Schlaefke, S.; Hoerr, R. Ginkgo biloba extract EGb 761®, donepezil or both combined in the treatment of Alzheimer’s disease with neuropsychiatric features: A randomised, double-blind, exploratory trial. Aging Ment. Health 2009, 13, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mehla, J.; Gupta, P.; Pahuja, M.; Diwan, D.; Diksha, D. Indian Medicinal Herbs and Formulations for Alzheimer’s Disease, from Traditional Knowledge to Scientific Assessment. Brain Sci. 2020, 10, 964. [Google Scholar] [CrossRef] [PubMed]
- de Macêdo, T.C.F.; Ferreira, G.H.; de Almondes, K.M.; Kirov, R.; Mota-Rolim, S.A. My Dream, My Rules: Can Lucid Dreaming Treat Nightmares? Front. Psychol. 2019, 10, 2618. [Google Scholar] [CrossRef] [PubMed]
- Kraehenmann, R. Dreams and Psychedelics: Neurophenomenological Comparison and Therapeutic Implications. Curr. Neuropharmacol. 2017, 15, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Mota, N.B.; Resende, A.; Mota-Rolim, S.A.; Copelli, M.; Ribeiro, S. Psychosis and the control of lucid dreaming. Front. Psychol. 2016, 7, 294. [Google Scholar] [CrossRef] [PubMed]
- Dresler, M.; Wehrle, R.; Spoormaker, V.I.; Steiger, A.; Holsboer, F.; Czisch, M.; Hobson, J.A. Neural correlates of insight in dreaming and psychosis. Sleep Med. Rev. 2015, 20, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Fan, J. A systematic review of new empirical data on lucid dream induction techniques. J. Sleep Res. 2023, 32, e13786. [Google Scholar] [CrossRef] [PubMed]
- Stumbrys, T.; Erlacher, D. Mindfulness and Lucid Dream Frequency Predicts the Ability to Control Lucid Dreams. Imagin. Cogn. Pers. 2016, 36, 229–239. [Google Scholar] [CrossRef]
- Stumbrys, T.; Erlacher, D.; Malinowski, P. Meta-Awareness During Day and Night: The Relationship Between Mindfulness and Lucid Dreaming. Imagin. Cogn. Pers. 2015, 34, 415–433. [Google Scholar] [CrossRef]
- Baird, B.; Riedner, B.A.; Boly, M.; Davidson, R.J.; Tononi, G. Increased lucid dream frequency in long-term meditators but not following mindfulness-based stress reduction training. Psychol. Conscious. Theory Res. Pract. 2019, 6, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Reichert, C.F.; Deboer, T.; Landolt, H.P. Adenosine, caffeine, and sleep–wake regulation: State of the science and perspectives. J. Sleep Res. 2022, 31, e13597. [Google Scholar] [CrossRef] [PubMed]
- Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef] [PubMed]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.; Quan, S.F. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specification; American Academy of Sleep Medicine: Westchester, NY, USA, 2007. [Google Scholar]
- Adamantidis, A.R.; Gutierrez Herrera, C.; Gent, T.C. Oscillating circuitries in the sleeping brain. Nat. Rev. Neurosci. 2019, 20, 746–762. [Google Scholar] [CrossRef] [PubMed]
- Siclari, F.; Valli, K.; Arnulf, I. Dreams and nightmares in healthy adults and in patients with sleep and neurological disorders. Lancet Neurol. 2020, 19, 849–859. [Google Scholar] [CrossRef]
- Patel, A.K.; Reddy, V.; Shumway, K.R.; Araujo, J.F. Physiology, Sleep Stages; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Ratna, D.; Mondal, A.C.; Mallick, B.N. Modulation of dopamine from ventral tegmental area neurons by the LC-REM-OFF and PPT-REM-ON neurons in REMS regulation in freely moving rats. Neuropharmacology 2023, 237, 109621. [Google Scholar] [CrossRef]
- Hobson, J.A. REM sleep and dreaming: Towards a theory of protoconsciousness. Nat. Rev. Neurosci. 2009, 10, 803–814. [Google Scholar] [CrossRef] [PubMed]
- Pace-Schott, E.F.; Hobson, J.A. The Neurobiology of Sleep: Genetics, cellular physiology and subcortical networks. Nat. Rev. Neurosci. 2002, 3, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Vazquez, J.; Baghdoyan, H.A. Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R598–R601. [Google Scholar] [CrossRef] [PubMed]
- Vanini, G.; Torterolo, P. Sleep-Wake Neurobiology. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2021; Volume 1297, pp. 65–82. [Google Scholar] [CrossRef]
- Gottesmann, C. The involvement of noradrenaline in rapid eye movement sleep mentation. Front. Neurol. 2011, 2, 81. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Bjorkum, A.A.; Xu, M.; Gaus, S.E.; Shiromani, P.J.; Saper, C.B. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J. Neurosci. Off. J. Soc. Neurosci. 2002, 22, 4568–4576. [Google Scholar] [CrossRef] [PubMed]
- Carboni, E.; Silvagni, A. Dopamine reuptake by norepinephrine neurons: Exception or rule? Crit. Rev. Neurobiol. 2004, 16, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Solms, M. Dreaming and REM sleep are controlled by different brain mechanisms. Behav. Brain Sci. 2000, 23, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Mota-Rolim, S.; Ribeiro, S. Bases Biológicas da Atividade Onírica. 2013, pp. 201–227. Available online: https://repositorio.ufrn.br/bitstream/1/11723/1/SidartaRibeiro_ICE_Bases_biologicas_atividade_onirica.pdf (accessed on 22 March 2024).
- Perogamvros, L.; Baird, B.; Seibold, M.; Riedner, B.; Boly, M.; Tononi, G. The Phenomenal Contents and Neural Correlates of Spontaneous Thoughts across Wakefulness, NREM Sleep, and REM Sleep. J. Cogn. Neurosci. 2017, 29, 1766–1777. [Google Scholar] [CrossRef] [PubMed]
- Csiernik, R.; Pirie, M. A primer on sleeping, dreaming, and psychoactive agents. J. Soc. Work Pract. Addict. 2023, 23, 3–23. [Google Scholar] [CrossRef]
Authors (Year) | Study Design | Substances/Techniques | Mechanism of Action | Results | Commentary |
---|---|---|---|---|---|
LaBerge (2004) [28] | Patent | Donepezil, Rivastigmine, Galantamine, and Huperzine | Acetylcholinesterase inhibitors (AChEIs) | Donepezil: 90% of subjects induced LD. Similar dose-dependent results were encountered for rivastigmine and galantamine, with fewer side effects. The same for huperzine, but the dosage was inconclusive. | Reports a series of methods utilizing memory enhancing drugs such as those used for Alzheimer’s disease—AChEIs. Other possible mechanisms cited: cholinergic agonists; muscarinic receptor agonists; allosteric modulators of ACh and nicotinic receptors. |
LaBerge et al. (2018) [29] | Experimental study | Galantamine, WBTB, MILD, lectures about LD for recognizing dream cues | AChEI | 62% reported LD: 14% on placebo; 27% with 4 mg; and 42% with 8 mg. | Galantamine induces LD in a dose-dependent manner. The integrated protocol seems to be effective in induction. Authors comment that galantamine may impact REM sleep, reducing latency and increasing phasic activity. Galantamine enhances dopaminergic neurotransmission, which might be involved in metacognition and conscious self-monitoring. |
Sparrow et al. (2018) [30] | Experimental study | Galantamine, MDR, WBTB | AChEI | LD was reported by 40% of participants on WBTB + galantamine; 34% reported LD on MDR + galantamine. | MDR condition might expose traumas and conflicts, possibly for resolution. |
Kern et al. (2017) [31] | Experimental study | L-alpha glycerylphosphorylcholine (α-GPC) | ACh precursor | No significant results. | No cognitive techniques were explicitly used in combination, which might impact results. |
Haas et al. (2022) [50] | Case study | Pregabalin | Binding to alpha-2-delta sites, reducing excitatory neurotransmission. Anti-glutamatergic reports | Patient with multiple myeloma and history of chronic pain. Drug was administered causing lucid nightmares; after discontinuation, it ceased. | Abnormal dreams and visual hallucinations are uncommon symptoms of pregabalin. |
Biehl (2022) [52] | Survey study | Vitamin intake, fish, fruit, and chili consumption, and antidepressants | Omega-3 (fish, which might contain DMAE), capsaicin (chili), antidepressants (availability of serotonin and receptors) | Significant correlations of the substances with LD. | Many of the substances affected dreaming, nightmares, LD, and hypnagogic state. |
Sergio (1988) [53] | Self-case report | DMAE | Converted to choline by the body, stimulating reticular formation | Combining WBTB and visualization techniques, the author has suggested that it has great effects on inducing LD. | The lactate salt is the most effective, followed by the p-acetamidobenzoate salt, and the tartrate salt is the least effective. |
Richter (2007) [55] | Patent | Primary ingredients of the supplement: Calea ternifolia, L-5-HTP, and vinpocetine | Calea ternifolia: AchEI L-5-HTP: increases serotonin Vinpocetine: anti-oxidant | The author gives two examples of people with recurrent nightmares. When taking the supplement, subjects started resolving conflicts through enhanced vividness and lucidity during dreams. | Secondary ingredient: melatonin; tertiary ingredients: wild lettuce extract, Mugwort extract (Artemisia vulgaris), DMAE, passionflower extract, and green tea extract. |
Ebben et al. (2002) [59] | Experimental study | Pyridoxine (B6) | Co-factor for production of 5-HT | Increased recall and vividness in dreams. | High levels of serotonin before sleep suppress REM, causing rebound at the end of the night. |
Aspy et al. (2018) [60] | Experimental study | Pyridoxine and B Complex | Co-factor for production of 5-HT (B6) | Increased oneiric content recalled for B6. B complex worsened sleep quality. | Besides serotonin, nootropics derivatives from B6, like pyritinol, might combine effects for LD induction. |
Mayagoitia et al. (1986) [67] | Experimental study | Calea zacatechichi | AChEI (sesquiterpene lactones) | Individuals reported increased light sleep; vividly hypnagogic imagery; less REM and deep sleep; more recalled and vivid dreams; and less content. | Many sesquiterpene lactones have been found in this plant. The Asteraceae family, including Calea, Artemisia, and Eclipta plants, have a potential role in the modulation of the cholinergic system to induce LD. |
Hirst (2005) [74] | Ethnography study | Silene capensis | Saponins—AChEI | Main effects reported by diviners and novices were lucid and prophetic dreams. | Ubulawu drinks containing medicinal plants, which some have triterpenoid saponins for AChEIs, are used in rituals for divination for medicinal purposes. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oldoni, A.A.; Bacchi, A.D.; Mendes, F.R.; Tiba, P.A.; Mota-Rolim, S. Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sci. 2024, 14, 426. https://doi.org/10.3390/brainsci14050426
Oldoni AA, Bacchi AD, Mendes FR, Tiba PA, Mota-Rolim S. Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sciences. 2024; 14(5):426. https://doi.org/10.3390/brainsci14050426
Chicago/Turabian StyleOldoni, Abel A., André D. Bacchi, Fúlvio R. Mendes, Paula A. Tiba, and Sérgio Mota-Rolim. 2024. "Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review" Brain Sciences 14, no. 5: 426. https://doi.org/10.3390/brainsci14050426
APA StyleOldoni, A. A., Bacchi, A. D., Mendes, F. R., Tiba, P. A., & Mota-Rolim, S. (2024). Neuropsychopharmacological Induction of (Lucid) Dreams: A Narrative Review. Brain Sciences, 14(5), 426. https://doi.org/10.3390/brainsci14050426