The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Search Protocol
2.2. Inclusion/Exclusion Criteria
2.3. Methodological Quality Assesement
2.4. Data Extraction and Synthesis of the Finding
3. Results
3.1. Literature Search and Methodological Quality
3.2. Participant Characteristics and Study Design
3.3. Results of Therapeutic Interventions
3.3.1. Effect of ELF-MFs on Laboratory Tests Measures
3.3.2. Effect of ELF-MFs on Functional Status and Upper Limb Function and Ischemic Lesion
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coscia, M.; Wessel, M.J.; Chaudary, U.; Del Millán, J.R.; Micera, S.; Guggisberg, A.; Vuadens, P.; Donoghue, J.; Birbaumer, N.; Hummel, F.C. Neurotechnology-aided interventions for upper limb motor rehabilitation in severe chronic stroke. Brain 2019, 142, 2182–2197. [Google Scholar] [CrossRef] [PubMed]
- Maciejczyk, M.; Gerreth, P.; Zalewska, A.; Hojan, K.; Gerreth, K. Salivary Gland Dysfunction in Stroke Patients Is Associated with Increased Protein Glycoxidation and Nitrosative Stress. Oxid. Med. Cell. Longev. 2020, 2020, 6619439. [Google Scholar] [CrossRef] [PubMed]
- Wafa, H.A.; Wolfe, C.D.A.; Emmett, E.; Roth, G.A.; Johnson, C.O.; Wang, Y. Burden of Stroke in Europe: Thirty-Year Projections of Incidence, Prevalence, Deaths, and Disability-Adjusted Life Years. Stroke 2020, 51, 2418–2427. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Yin, M.; Cai, Z. Research and application advances in rehabilitation assessment of stroke. J. Zhejiang Univ. Sci. B 2022, 23, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Dąbrowski, J.; Czajka, A.; Zielińska-Turek, J.; Jaroszyński, J.; Furtak-Niczyporuk, M.; Mela, A.; Poniatowski, Ł.A.; Drop, B.; Dorobek, M.; Barcikowska-Kotowicz, M.; et al. Brain Functional Reserve in the Context of Neuroplasticity after Stroke. Neural Plast. 2019, 2019, 9708905. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Lu, C.; Wu, X.; Nie, D.; Yu, H. Neuroplasticity of Acupuncture for Stroke: An Evidence-Based Review of MRI. Neural Plast. 2021, 2021, 2662585. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.; Abo, M. New Treatment Strategy Using Repetitive Transcranial Magnetic Stimulation for Post-Stroke Aphasia. Diagnostics 2021, 11, 1853. [Google Scholar] [CrossRef] [PubMed]
- Fan, H.; Song, Y.; Cen, X.; Yu, P.; Bíró, I.; Gu, Y. The Effect of Repetitive Transcranial Magnetic Stimulation on Lower-Limb Motor Ability in Stroke Patients: A Systematic Review. Front. Hum. Neurosci. 2021, 15, 620573. [Google Scholar] [CrossRef] [PubMed]
- Ueno, S.; Sekino, M. Figure-Eight Coils for Magnetic Stimulation: From Focal Stimulation to Deep Stimulation. Front. Hum. Neurosci. 2021, 15, 805971. [Google Scholar] [CrossRef]
- Cha, H.G.; Kim, M.K. Effects of strengthening exercise integrated repetitive transcranial magnetic stimulation on motor function recovery in subacute stroke patients: A randomized controlled trial. Technol. Health Care 2017, 25, 521–529. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985, 1, 1106–1107. [Google Scholar] [CrossRef] [PubMed]
- Celik, M.S.; Gur, A.; Akdağ, Z.; Akpolat, V.; Guven, K.; Celik, Y.; Sarac, A.J.; Otçu, S. The effects of long-term exposure to extremely low-frequency magnetic fields on bone formation in ovariectomized rats. Bioelectromagnetics 2012, 33, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Di Lazzaro, V.; Capone, F.; Apollonio, F.; Borea, P.A.; Cadossi, R.; Fassina, L.; Grassi, C.; Liberti, M.; Paffi, A.; Parazzini, M.; et al. A consensus panel review of central nervous system effects of the exposure to low-intensity extremely low-frequency magnetic fields. Brain Stimul. 2013, 6, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Nicolas, S.M.; Manjarrez, E. Low-field thoracic magnetic stimulation increases peripheral oxygen saturation levels in coronavirus disease (COVID-19) patients: A single-blind, sham-controlled, crossover study. Medicine 2021, 100, e27444. [Google Scholar] [CrossRef] [PubMed]
- Mooshekhian, A.; Sandini, T.; Wei, Z.; van Bruggen, R.; Li, H.; Li, X.-M.; Zhang, Y. Low-field magnetic stimulation improved cuprizone-induced depression-like symptoms and demyelination in female mice. Exp. Ther. Med. 2022, 23, 210. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.; Zhang, Y.; Miranzadeh Mahabadi, H.; Parvizi, A.; Taghibiglou, C. Low-Field Magnetic Stimulation Restores Cognitive and Motor Functions in the Mouse Model of Repeated Traumatic Brain Injury: Role of Cellular Prion Protein. J. Neurotrauma 2019, 36, 3103–3114. [Google Scholar] [CrossRef]
- Dolgova, N.; Wei, Z.; Spink, B.; Gui, L.; Hua, Q.; Truong, D.; Zhang, Z.; Zhang, Y. Low-Field Magnetic Stimulation Accelerates the Differentiation of Oligodendrocyte Precursor Cells via Non-canonical TGF-β Signaling Pathways. Mol. Neurobiol. 2021, 58, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Capone, F.; Salati, S.; Vincenzi, F.; Liberti, M.; Aicardi, G.; Apollonio, F.; Varani, K.; Cadossi, R.; Di Lazzaro, V. Pulsed Electromagnetic Fields: A Novel Attractive Therapeutic Opportunity for Neuroprotection After Acute Cerebral Ischemia. Neuromodulation 2022, 25, 1240–1247. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, Y.; Wu, D.; Cun, Y.; Zhang, C.; Peng, Y.; Chen, N.; Yang, X.; Zhang, S.; Ning, R.; et al. Current evidence, clinical applications, and future directions of transcranial magnetic stimulation as a treatment for ischemic stroke. Front. Neurosci. 2023, 17, 1177283. [Google Scholar] [CrossRef]
- Capone, F.; Liberti, M.; Apollonio, F.; Camera, F.; Setti, S.; Cadossi, R.; Quattrocchi, C.C.; Di Lazzaro, V. An open-label, one-arm, dose-escalation study to evaluate safety and tolerability of extremely low frequency magnetic fields in acute ischemic stroke. Sci. Rep. 2017, 7, 12145. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef]
- Effective Public Health Practice Project, EPHPP. Quality Assessment Tool for Quantitative Studies. Available online: http://www.ephpp.ca/tools.html (accessed on 21 March 2024).
- Thomas, B.H.; Ciliska, D.; Dobbins, M.; Micucci, S. A process for systematically reviewing the literature: Providing the research evidence for public health nursing interventions. Worldviews Evid. Based Nurs. 2004, 1, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Weisinger, B.; Pandey, D.P.; Saver, J.L.; Hochberg, A.; Bitton, A.; Doniger, G.M.; Lifshitz, A.; Vardi, O.; Shohami, E.; Segal, Y.; et al. Frequency-tuned electromagnetic field therapy improves post-stroke motor function: A pilot randomized controlled trial. Front. Neurol. 2022, 13, 1004677. [Google Scholar] [CrossRef]
- Cichoń, N.; Bijak, M.; Czarny, P.; Miller, E.; Synowiec, E.; Sliwinski, T.; Saluk-Bijak, J. Increase in Blood Levels of Growth Factors Involved in the Neuroplasticity Process by Using an Extremely Low Frequency Electromagnetic Field in Post-stroke Patients. Front. Aging Neurosci. 2018, 10, 294. [Google Scholar] [CrossRef]
- Cichoń, N.; Czarny, P.; Bijak, M.; Miller, E.; Śliwiński, T.; Szemraj, J.; Saluk-Bijak, J. Benign Effect of Extremely Low-Frequency Electromagnetic Field on Brain Plasticity Assessed by Nitric Oxide Metabolism during Poststroke Rehabilitation. Oxid. Med. Cell. Longev. 2017, 2017, 2181942. [Google Scholar] [CrossRef]
- Cichoń, N.; Bijak, M.; Miller, E.; Saluk, J. Extremely low frequency electromagnetic field (ELF-EMF) reduces oxidative stress and improves functional and psychological status in ischemic stroke patients. Bioelectromagnetics 2017, 38, 386–396. [Google Scholar] [CrossRef]
- Cichoń, N.; Rzeźnicka, P.; Bijak, M.; Miller, E.; Miller, S.; Saluk, J. Extremely low frequency electromagnetic field reduces oxidative stress during the rehabilitation of post-acute stroke patients. Adv. Clin. Exp. Med. 2018, 27, 1285–1293. [Google Scholar] [CrossRef] [PubMed]
- Cichoń, N.; Bijak, M.; Synowiec, E.; Miller, E.; Sliwinski, T.; Saluk-Bijak, J. Modulation of antioxidant enzyme gene expression by extremely low frequency electromagnetic field in post-stroke patients. Scand. J. Clin. Lab. Investig. 2018, 78, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Cichoń, N.; Saluk-Bijak, J.; Miller, E.; Sliwinski, T.; Synowiec, E.; Wigner, P.; Bijak, M. Evaluation of the effects of extremely low frequency electromagnetic field on the levels of some inflammatory cytokines in post-stroke patients. J. Rehabil. Med. 2019, 51, 854–860. [Google Scholar] [CrossRef]
- Cichoń, N.; Synowiec, E.; Miller, E.; Sliwinski, T.; Ceremuga, M.; Saluk-Bijak, J.; Bijak, M. Effect of Rehabilitation with Extremely Low Frequency Electromagnetic Field on Molecular Mechanism of Apoptosis in Post-Stroke Patients. Brain Sci. 2020, 10, 266. [Google Scholar] [CrossRef]
- Medina-Fernandez, F.J.; Escribano, B.M.; Agüera, E.; Aguilar-Luque, M.; Feijoo, M.; Luque, E.; Garcia-Maceira, F.I.; Pascual-Leone, A.; Drucker-Colin, R.; Tunez, I. Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radic. Res. 2017, 51, 460–469. [Google Scholar] [CrossRef] [PubMed]
- Klimek, A.; Rogalska, J. Extremely Low-Frequency Magnetic Field as a Stress Factor-Really Detrimental?-Insight into Literature from the Last Decade. Brain Sci. 2021, 11, 174. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yan, X.; Liu, J.; Li, L.; Hu, X.; Sun, H.; Tian, J. Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem. Int. 2014, 75, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Ding, G.-R.; Nakahara, T.; Hirose, H.; Koyama, S.; Takashima, Y.; Miyakoshi, J. Extremely low frequency magnetic fields and the promotion of H2O2-induced cell death in HL-60 cells. Int. J. Radiat. Biol. 2004, 80, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Pirozzoli, M.C.; Marino, C.; Lovisolo, G.A.; Laconi, C.; Mosiello, L.; Negroni, A. Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics 2003, 24, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.-H.; He, H.-Y.; Yang, L.-Q.; Zhang, P.-Y. Dynamic changes in neuronal autophagy and apoptosis in the ischemic penumbra following permanent ischemic stroke. Neural Regen. Res. 2016, 11, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk, L.; Szelenberger, R.; Cichon, N.; Saluk-Bijak, J.; Bijak, M.; Miller, E. Biomarkers of Angiogenesis and Neuroplasticity as Promising Clinical Tools for Stroke Recovery Evaluation. Int. J. Mol. Sci. 2021, 22, 3949. [Google Scholar] [CrossRef] [PubMed]
- Toricelli, M.; Pereira, A.A.R.; Souza Abrao, G.; Malerba, H.N.; Maia, J.; Buck, H.S.; Viel, T.A. Mechanisms of neuroplasticity and brain degeneration: Strategies for protection during the aging process. Neural Regen. Res. 2021, 16, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Muresanu, D.F. Neuroprotection and neuroplasticity—A holistic approach and future perspectives. J. Neurol. Sci. 2007, 257, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Muresanu, D.F.; Buzoianu, A.; Florian, S.I.; Wild, T. von. Towards a roadmap in brain protection and recovery. J. Cell. Mol. Med. 2012, 16, 2861–2871. [Google Scholar] [CrossRef]
- Boutin, H.; LeFeuvre, R.A.; Horai, R.; Asano, M.; Iwakura, Y.; Rothwell, N.J. Role of IL-1alpha and IL-1beta in ischemic brain damage. J. Neurosci. 2001, 21, 5528–5534. [Google Scholar] [CrossRef] [PubMed]
- Urnukhsaikhan, E.; Mishig-Ochir, T.; Kim, S.-C.; Park, J.-K.; Seo, Y.-K. Neuroprotective Effect of Low Frequency-Pulsed Electromagnetic Fields in Ischemic Stroke. Appl. Biochem. Biotechnol. 2017, 181, 1360–1371. [Google Scholar] [CrossRef] [PubMed]
- Capone, F.; Dileone, M.; Profice, P.; Pilato, F.; Musumeci, G.; Minicuci, G.; Ranieri, F.; Cadossi, R.; Setti, S.; Tonali, P.A.; et al. Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J. Neural Transm. 2009, 116, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Barth, A.; Ponocny, I.; Ponocny-Seliger, E.; Vana, N.; Winker, R. Effects of extremely low-frequency magnetic field exposure on cognitive functions: Results of a meta-analysis. Bioelectromagnetics 2010, 31, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Leung, A.; Yang, Y.-H.; Lau, B.W.-M.; Wang, Q.; Liao, L.-Y.; Xie, Y.-J.; He, C.-Q. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen. Res. 2021, 16, 1252–1257. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Aliyari, H.; Golabi, S.; Tekieh, E.; Tavakoli, H.; Saberi, M.; Meftahi, G.; Sahraei, H. Improvement of Cognitive Indicators in Male Monkeys Exposed to Extremely Low-Frequency Electromagnetic Fields. Arch. Razi Inst. 2022, 77, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Bagheri Hosseinabadi, M.; Khanjani, N.; Ebrahimi, M.H.; Mousavi, S.H.; Nazarkhani, F. Investigating the effects of exposure to extremely low frequency electromagnetic fields on job burnout syndrome and the severity of depression; the role of oxidative stress. J. Occup. Health 2020, 62, e12136. [Google Scholar] [CrossRef]
- Li, L.; Xiong, D.-F.; Liu, J.-W.; Li, Z.-X.; Zeng, G.-C.; Li, H.-L. A cross-sectional study on oxidative stress in workers exposed to extremely low frequency electromagnetic fields. Int. J. Radiat. Biol. 2015, 91, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Ahmed, M.A.; Fathy, N.; Rothwell, J.C. Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology 2005, 65, 466–468. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, M.; Luo, J.; Huang, L.; Zhang, S.; Pan, C.; Hu, X. Effects of transcranial magnetic stimulation on the performance of the activities of daily living and attention function after stroke: A randomized controlled trial. Clin. Rehabil. 2020, 34, 1465–1473. [Google Scholar] [CrossRef]
- Kirton, A.; Chen, R.; Friefeld, S.; Gunraj, C.; Pontigon, A.-M.; Deveber, G. Contralesional repetitive transcranial magnetic stimulation for chronic hemiparesis in subcortical paediatric stroke: A randomised trial. Lancet Neurol. 2008, 7, 507–513. [Google Scholar] [CrossRef]
- Liepert, J.; Bauder, H.; Wolfgang, H.R.; Miltner, W.H.; Taub, E.; Weiller, C. Treatment-induced cortical reorganization after stroke in humans. Stroke 2000, 31, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.S.; Lim, J.H.; Choi, T.W.; Jang, S.G.; Pyun, S.-B. Effects and safety of combined rTMS and action observation for recovery of function in the upper extremities in stroke patients: A randomized controlled trial. Restor. Neurol. Neurosci. 2019, 37, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Fregni, F.; Boggio, P.S.; Valle, A.C.; Rocha, R.R.; Duarte, J.; Ferreira, M.J.L.; Wagner, T.; Fecteau, S.; Rigonatti, S.P.; Riberto, M.; et al. A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke 2006, 37, 2115–2122. [Google Scholar] [CrossRef]
- Artola, M.; Hernando, A.; Vidal, O.; Vidal, N.; Cuenca, E.; Horno, R.; Robles, M.Á.; Oriol, C.; Peralta, S.; Solana, M.A.J.; et al. The role of specialist nurses in detecting spasticity and related symptoms in multiple sclerosis. J. Clin. Nurs. 2023, 32, 3496–3503. [Google Scholar] [CrossRef] [PubMed]
- van Dalen-Kok, A.H.; Pieper, M.J.C.; de Waal, M.W.M.; van der Steen, J.T.; Scherder, E.J.A.; Achterberg, W.P. The impact of pain on the course of ADL functioning in patients with dementia. Age Ageing 2021, 50, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Kakehi, S.; Isono, E.; Wakabayashi, H.; Shioya, M.; Ninomiya, J.; Aoyama, Y.; Murai, R.; Sato, Y.; Takemura, R.; Mori, A.; et al. Sarcopenic Dysphagia and Simplified Rehabilitation Nutrition Care Process: An Update. Ann. Rehabil. Med. 2023, 47, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhu, H.; Gao, C.; Shi, M.; Yang, D.; Jin, M.; Wang, F.; Sui, X. System-level biological effects of extremely low-frequency electromagnetic fields: An in vivo experimental review. Front. Neurosci. 2023, 17, 1247021. [Google Scholar] [CrossRef] [PubMed]
- Zwolińska, J.; Kasprzak, M.; Kielar, A.; Prokop, M. Positive and Negative Effects of Administering a Magnetic Field to Patients with Rheumatoid Arthritis (RA). J. Clin. Med. 2024, 13, 1619. [Google Scholar] [CrossRef]
- Thamsborg, G.; Florescu, A.; Oturai, P.; Fallentin, E.; Tritsaris, K.; Dissing, S. Treatment of knee osteoarthritis with pulsed electromagnetic fields: A randomized, double-blind, placebo-controlled study. Osteoarthr. Cartil. 2005, 13, 575–581. [Google Scholar] [CrossRef]
- Tsuboyama, M.; Kaye, H.L.; Rotenberg, A. Review of Transcranial Magnetic Stimulation in Epilepsy. Clin. Ther. 2020, 42, 1155–1168. [Google Scholar] [CrossRef]
First Author and Year | N of Participants | Age | Inclusion Criteria | Exclusion Criteria |
---|---|---|---|---|
Capone 2017a [20] | 6 patients (3 in 45 min stimulation group, 3 in 120 min stimulation group) | 76.3 ± 6.1 | >18 years with first mono-hemispheric ischemic stroke, onset of symptoms within 48 h and NIHSS score > 4 | Acute intracranial hemorrhage; previous ischemic or hemorrhagic stroke; history of seizure; contraindications to magnetic field exposure; life expectancy < 3 months; other serious illness or complex disease that may confound treatment assessment; women known to be pregnant, lactating or having a positive or indeterminate pregnancy test; simultaneous participation in another study |
Cichoń 2017a [26] | 48 (25 in EG and 23 in CG) | 48.8 ± 7.7 in EG, and 44.8 ± 8.0 in CG | Post-stroke patients with moderate stroke severity according to NIHSS score | Patients with metal and/or electronic implants |
Cichoń 2017b [27] | 57 (23 in EG and 34 in CG) | 68.0 ± 15.8 in EG, 70.9 ± 15.3 in CG | Agreeing to participation, moderate stroke severity according to NIHSS | Patients with metal and/or electronic implants |
Cichoń 2018a [25] | 48 (25 in EG and 23 in CG) | 48 ± 8 in EG, and 44.8 ± 7.7 in CG | Agreeing to participation, moderate stroke severity according to NIHSS | From EG and CG: neurological illness other than stroke, hemorrhagic stroke, chronic or significant acute inflammatory factors, dementia, and/or decreased consciousness in their medical pre-stroke history. Only from EG: electronic and/or metal implants |
Cichoń 2018b [29] | 48 (25 in EG and 23 in CG) | 48 ± 8 in EG, and 44.8 ± 7.7 in CG | 2–4 weeks after ischemic stroke | From EG and CG: hemorrhagic stroke, neurological illness other than stroke, dementia, chronic or significant acute inflammatory factors. Only from EG: electronic and/or metal implants |
Cichoń 2018c [28] | 57 (23 in EG and 34 in CG) | 68.0 ± 15.6 in EG, 70.9 ± 15.3 in CG | Agreeing to participation, moderate stroke severity according to NIHSS | Patients with metal and/or electronic implants |
Cichoń 2019 [30] | 48 (25 in EG and 23 in CG) | 48 ± 8 in EG, and 44.8 ± 7.7 in CG | Ischemic stroke | Neurological illness other than stroke, other types of stroke than ischemic stroke; chronic or significant acute inflammatory factors; and/or dementia |
Cichoń 2020 [31] | 48 (26 in EG and 22 in CG) | 48 ± 8 in EG, and 44.8 ± 7.7 in CG | Moderate stroke severity, 3–4 weeks after incident | From EG and CG: chronic or significant acute inflammatory factors, dementia, hemorrhagic stroke, neurological illness other than stroke, and/or decreased consciousness in their medical pre-stroke history. Only from EG: metal and/or electronic implants |
Weisinger 2022 [24] | 21 (13 in EG and 8 in CG) | 54.3 ± 17.8 in EG, and 55.3 ± 10.1 in CG | Patients 4–21 days post-ischemic stroke with first stroke or no prior upper extremity impairment, right hand dominant, with a FMA-UE score between 10 and 45. | Patients who were not medically stable, with a physiological, neurological or psychiatric history that might confound study measures or contraindications for MRI scanning |
First Author and Year | Type of Intervention and Control | Magnetic Stimulation Parameters | N of Sessions | Additional Therapies | Measured Outcome | Measurement Tools |
---|---|---|---|---|---|---|
Capone 2017 [20] | First three patients were stimulated for 45 min/day and the following three patients for 120 min/day | Single-pulsed signals at 75 ± 2 Hz, with a pulse duration of 1.3 and peak intensity 1.8 ± 0.2 mT. ELF-MF was applied to head by flexible coil, upon the ischemic hemisphere. | 5 | n/d | Stroke lesion volume, clinical condition of the patients | Volumetric changes in the stroke lesions (calculated based on MRI scans), NIHSS; Barthel index; modified Rankin scale |
Cichoń 2017a [26] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 15 min (frequency—40 Hz, magnetic induction—7 mT), ELF-MF was applied to pelvic girdle. | 20 | Rehabilitation program consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min and psychological therapy for 15 min. | Nitric oxide generation and its metabolism, functional status | Level of 3-NT and nitrate/nitrite concentration in the plasma, TNFα, ADL, GDS and MMSE |
Cichoń 2017b [27] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 15 min (frequency—40 Hz, magnetic induction 7 mT, waveform—bipolar, rectangular). ELF—MF was applied to pelvic girdle. | 20 | Rehabilitation program consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min, and psychological therapy for 15 min. | Oxidative stress, functional status | Catalase activity estimation, superoxide dismutase estimation, determination of TAS, ADL, GDS and MMSE. |
Cichoń 2018a [25] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 15 min (frequency—40 Hz, magnetic induction—5 mT, waveform—bipolar, rectangular). ELF-MF was applied to pelvic girdle. | 10 | Rehabilitation program consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min and psychological therapy for 15 min. | Growth Factors involved in the neuroplasticity process, functional status | BDNF Expression in whole blood and in plasma, VEGF in plasma, level of HGF, SCF, SDF-1α, β-NGF, and LIF, ADL, GDS, MMSE, modified Rankin scale. |
Cichoń 2018b [29] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 15 min (frequency—40 Hz, magnetic induction—5 mT, waveform—bipolar, rectangular). ELF-MF was applied to pelvic girdle. | 10 | Rehabilitation program consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min and psychological therapy for 15 min. | Antioxidant enzyme gene expresion | CAT mRNA, SOD1 mRNA, SOD2 mRNA and GPx mRNA expression |
Cichoń 2018c [28] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 15 min (frequency—40 Hz, magnetic induction—5 mT, waveform—bipolar, rectangular). ELF-MF was applied to pelvic girdle. | 20 | Rehabilitation program consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min and psychological therapy for 15 min. | Changes in the level of oxidative stress markers, independence in activities of daily living, cognitive abilities, depression symptoms | TBARS, thiol groups, and carbonyl groups, ADL, MMSE, GDS. |
Cichoń 2019 [30] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 15 min (frequency—40 Hz, magnetic induction—5 mT, waveform—bipolar, rectangular). ELF-MF was applied to pelvic girdle. | 10 | Rehabilitation consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min, in the control group consisted of a 60 min session in the morning (30 min of shaping techniques and 30 min of balance training), 30 min aerobic training (2–3 times a day for 10 min at 60 min intervals) and 30 min muscle strengthening exercises and psychological therapy for 15 min. | Inflammatory cytokines | Levels of IL-1β, IL-2, INF-γ, TGF-β, level of IL-1β mRNA expression. |
Cichoń 2020 [31] | EG-ELF-MF, CG—placebo exposure to ELF-MF | EG patients were exposed for 30 min (frequency—40 Hz, magnetic induction—5 mT, waveform—bipolar, rectangular). ELF-MF was applied to pelvic girdle. | 10 | Rehabilitation program consisting of aerobic exercise for 30 min, neurophysiological methods for 60 min and psychological therapy for 15 min. | Expression level of genes involved in apoptosis | BAX mRNA, BCL-2 mRNA, CASP8 mRNA, TNFα mRNA, TP53 mRNA expression levels. |
Weisinger 2022 [24] | ELF-MF technique, brain computer interface-based (BCI-based), low frequency, low intensity, frequency-tuned EMF therapy, ENTF therapy | Non-invasive, frequency-specific, extremely low-frequency (1–100 Hz), low intensity (<1 Gauss) electromagnetic field treatment targeted the participant’s central nervous system, ELF-EMF emission was used solely for the EG group, not the CG. EMF was applied to head and the cervical and upper thoracic spine. | 40 | 3 sessions a week, 10 min of upper extremity physical therapy/occupational therapy-based exercises (e.g., gripping a ball, reaching) participants also received 1 h/day | Change in upper extremity motor function, functional status | FMA-UE, action research arm test; box and blocks test; FMA-LE; modified Rankin scale; NIHSS; Patient-Reported Outcome Measurement Information System Global 10. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchewka, R.; Trzmiel, T.; Hojan, K. The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review. Brain Sci. 2024, 14, 430. https://doi.org/10.3390/brainsci14050430
Marchewka R, Trzmiel T, Hojan K. The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review. Brain Sciences. 2024; 14(5):430. https://doi.org/10.3390/brainsci14050430
Chicago/Turabian StyleMarchewka, Renata, Tomasz Trzmiel, and Katarzyna Hojan. 2024. "The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review" Brain Sciences 14, no. 5: 430. https://doi.org/10.3390/brainsci14050430
APA StyleMarchewka, R., Trzmiel, T., & Hojan, K. (2024). The Effect of Extremely Low-Frequency Magnetic Field on Stroke Patients: A Systematic Review. Brain Sciences, 14(5), 430. https://doi.org/10.3390/brainsci14050430