Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Assessment
2.3. Gait Assessment
2.4. Datasets for Machine Learning
2.5. MR Imaging Techniques
2.6. Gray Matter Measurements
2.7. White Matter Hyperintensity Measurements
2.8. Deep Learning Analysis
2.9. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Classification Results
3.3. Top 10 Features of Discriminating between Late- and Early-Stage MCI
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersen, R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004, 256, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef] [PubMed]
- Pandya, S.Y.; Clem, M.A.; Silva, L.M.; Woon, F.L. Does mild cognitive impairment always lead to dementia? A review. J. Neurol. Sci. 2016, 369, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Aisen, P.S.; Petersen, R.C.; Donohue, M.C.; Gamst, A.; Raman, R.; Thomas, R.G.; Walter, S.; Trojanowski, J.Q.; Shaw, L.M.; Beckett, L.A.; et al. Clinical Core of the Alzheimer’s Disease Neuroimaging Initiative: Progress and plans. Alzheimer’s Dement. 2010, 6, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Jessen, F.; Wolfsgruber, S.; Wiese, B.; Bickel, H.; Mosch, E.; Kaduszkiewicz, H.; Pentzek, M.; Riedel-Heller, S.G.; Luck, T.; Fuchs, A.; et al. AD dementia risk in late MCI, in early MCI, and in subjective memory impairment. Alzheimer’s Dement. 2014, 10, 76–83. [Google Scholar] [CrossRef]
- Bovonsunthonchai, S.; Vachalathiti, R.; Hiengkaew, V.; Bryant, M.S.; Richards, J.; Senanarong, V. Quantitative gait analysis in mild cognitive impairment, dementia, and cognitively intact individuals: A cross-sectional case-control study. BMC Geriatr. 2022, 22, 767. [Google Scholar] [CrossRef] [PubMed]
- Ahn, S.; Chung, J.W.; Crouter, S.E.; Lee, J.A.; Lee, C.E.; Anderson, J.G. Gait and/or balance disturbances associated with Alzheimer’s dementia among older adults with amnestic mild cognitive impairment: A longitudinal observational study. J. Adv. Nurs. 2023, 79, 4815–4827. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Park, I.; Choi, H.C.; Ahn, M.E.; Ryu, O.H.; Jang, D.; Lee, U.; Lee, S.K. Relationship of Neural Correlates of Gait Characteristics and Cognitive Dysfunction in Patients with Mild Cognitive Impairment. J. Clin. Med. 2023, 12, 5347. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.H.; Wang, C.C.; Tung, C.W. A Machine Learning Classifier for Predicting Stable MCI Patients Using Gene Biomarkers. Int. J. Environ. Res. Public Health 2022, 19, 4839. [Google Scholar] [CrossRef]
- Blanco, K.; Salcidua, S.; Orellana, P.; Sauma-Perez, T.; Leon, T.; Steinmetz, L.C.L.; Ibanez, A.; Duran-Aniotz, C.; de la Cruz, R. Systematic review: Fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer’s disease. Alzheimer’s Res. Ther. 2023, 15, 176. [Google Scholar] [CrossRef]
- Wen, J.; Varol, E.; Yang, Z.; Hwang, G.; Dwyer, D.; Kazerooni, A.F.; Lalousis, P.A.; Davatzikos, C. Subtyping Brain Diseases from Imaging Data. In Machine Learning for Brain Disorders; Colliot, O., Ed.; Humana: New York, NY, USA, 2023; pp. 491–510. [Google Scholar]
- Frizzell, T.O.; Glashutter, M.; Liu, C.C.; Zeng, A.; Pan, D.; Hajra, S.G.; D’Arcy, R.C.N.; Song, X. Artificial intelligence in brain MRI analysis of Alzheimer’s disease over the past 12 years: A systematic review. Ageing Res. Rev. 2022, 77, 101614. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, M.; Yu, W.; Kuang, W.; Chen, L.; Zhang, W.; Yu, J.; Lu, Y. Differentiating Alzheimer’s disease from mild cognitive impairment: A quick screening tool based on machine learning. BMJ Open 2023, 13, e073011. [Google Scholar] [CrossRef]
- Adelson, R.P.; Garikipati, A.; Maharjan, J.; Ciobanu, M.; Barnes, G.; Singh, N.P.; Dinenno, F.A.; Mao, Q.; Das, R. Machine Learning Approach for Improved Longitudinal Prediction of Progression from Mild Cognitive Impairment to Alzheimer’s Disease. Diagnostics 2023, 14, 13. [Google Scholar] [CrossRef]
- Rykov, Y.G.; Patterson, M.D.; Gangwar, B.A.; Jabar, S.B.; Leonardo, J.; Ng, K.P.; Kandiah, N. Predicting cognitive scores from wearable-based digital physiological features using machine learning: Data from a clinical trial in mild cognitive impairment. BMC Med. 2024, 22, 36. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.H.; Lien, C.W.; Wu, W.C.; Lee, L.S.; Shaw, J.S. Gait-Based Machine Learning for Classifying Patients with Different Types of Mild Cognitive Impairment. J. Med. Syst. 2020, 44, 107. [Google Scholar] [CrossRef]
- Fedorov, A.; Beichel, R.; Kalpathy-Cramer, J.; Finet, J.; Fillion-Robin, J.C.; Pujol, S.; Bauer, C.; Jennings, D.; Fennessy, F.; Sonka, M.; et al. 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn. Reson. Imaging 2012, 30, 1323–1341. [Google Scholar] [CrossRef]
- Dale, A.M.; Fischl, B.; Sereno, M.I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 1999, 9, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Bahureksa, L.; Najafi, B.; Saleh, A.; Sabbagh, M.; Coon, D.; Mohler, M.J.; Schwenk, M. The Impact of Mild Cognitive Impairment on Gait and Balance: A Systematic Review and Meta-Analysis of Studies Using Instrumented Assessment. Gerontology 2017, 63, 67–83. [Google Scholar] [CrossRef]
- Buracchio, T.; Dodge, H.H.; Howieson, D.; Wasserman, D.; Kaye, J. The trajectory of gait speed preceding mild cognitive impairment. Arch. Neurol. 2010, 67, 980–986. [Google Scholar] [CrossRef]
- Watson, N.L.; Rosano, C.; Boudreau, R.M.; Simonsick, E.M.; Ferrucci, L.; Sutton-Tyrrell, K.; Hardy, S.E.; Atkinson, H.H.; Yaffe, K.; Satterfield, S.; et al. Executive function, memory, and gait speed decline in well-functioning older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2010, 65, 1093–1100. [Google Scholar] [CrossRef]
- Poulakis, K.; Pereira, J.B.; Mecocci, P.; Vellas, B.; Tsolaki, M.; Kloszewska, I.; Soininen, H.; Lovestone, S.; Simmons, A.; Wahlund, L.O.; et al. Heterogeneous patterns of brain atrophy in Alzheimer’s disease. Neurobiol. Aging 2018, 65, 98–108. [Google Scholar] [CrossRef] [PubMed]
- van de Mortel, L.A.; Thomas, R.M.; van Wingen, G.A.; Alzheimer’s Disease Neuroimaging, I. Grey Matter Loss at Different Stages of Cognitive Decline: A Role for the Thalamus in Developing Alzheimer’s Disease. J. Alzheimers Dis. 2021, 83, 705–720. [Google Scholar] [CrossRef] [PubMed]
- Henstridge, C.M.; Hyman, B.T.; Spires-Jones, T.L. Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat. Rev. Neurosci. 2019, 20, 94–108. [Google Scholar] [CrossRef] [PubMed]
- Rokem, A.; Takemura, H.; Bock, A.S.; Scherf, K.S.; Behrmann, M.; Wandell, B.A.; Fine, I.; Bridge, H.; Pestilli, F. The visual white matter: The application of diffusion MRI and fiber tractography to vision science. J. Vis. 2017, 17, 4. [Google Scholar] [CrossRef]
- Wang, Y.; West, J.D.; Flashman, L.A.; Wishart, H.A.; Santulli, R.B.; Rabin, L.A.; Pare, N.; Arfanakis, K.; Saykin, A.J. Selective changes in white matter integrity in MCI and older adults with cognitive complaints. Biochim. Biophys. Acta 2012, 1822, 423–430. [Google Scholar] [CrossRef]
- Zhang, H.; Sachdev, P.S.; Wen, W.; Kochan, N.A.; Crawford, J.D.; Brodaty, H.; Slavin, M.J.; Reppermund, S.; Draper, B.; Zhu, W.; et al. Gray matter atrophy patterns of mild cognitive impairment subtypes. J. Neurol. Sci. 2012, 315, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, D.A.; Acevedo, A.; Potter, E.; Schinka, J.A.; Raj, A.; Greig, M.T.; Agron, J.; Barker, W.W.; Wu, Y.; Small, B.; et al. Severity of medial temporal atrophy and amnestic mild cognitive impairment: Selecting type and number of memory tests. Am. J. Geriatr. Psychiatry 2009, 17, 1050–1058. [Google Scholar] [CrossRef]
- Femir-Gurtuna, B.; Kurt, E.; Ulasoglu-Yildiz, C.; Bayram, A.; Yildirim, E.; Soncu-Buyukiscan, E.; Bilgic, B. White-matter changes in early and late stages of mild cognitive impairment. J. Clin. Neurosci. 2020, 78, 181–184. [Google Scholar] [CrossRef]
- Li, W.X.; Yuan, J.; Han, F.; Zhou, L.X.; Ni, J.; Yao, M.; Zhang, S.Y.; Jin, Z.Y.; Cui, L.Y.; Zhai, F.F.; et al. White matter and gray matter changes related to cognition in community populations. Front. Aging Neurosci. 2023, 15, 1065245. [Google Scholar] [CrossRef]
- Byun, S.; Han, J.W.; Kim, T.H.; Kim, K.; Kim, T.H.; Park, J.Y.; Suh, S.W.; Seo, J.Y.; So, Y.; Lee, K.H.; et al. Gait Variability Can Predict the Risk of Cognitive Decline in Cognitively Normal Older People. Dement. Geriatr. Cogn. Disord. 2018, 45, 251–261. [Google Scholar] [CrossRef]
- Du, S.; Ma, X.; Wang, J.; Mi, Y.; Zhang, J.; Du, C.; Li, X.; Tan, H.; Liang, C.; Yang, T.; et al. Spatiotemporal gait parameter fluctuations in older adults affected by mild cognitive impairment: Comparisons among three cognitive dual-task tests. BMC Geriatr. 2023, 23, 603. [Google Scholar] [CrossRef]
- Savica, R.; Wennberg, A.M.; Hagen, C.; Edwards, K.; Roberts, R.O.; Hollman, J.H.; Knopman, D.S.; Boeve, B.F.; Machulda, M.M.; Petersen, R.C.; et al. Comparison of Gait Parameters for Predicting Cognitive Decline: The Mayo Clinic Study of Aging. J. Alzheimer’s Dis. 2017, 55, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.L.; Blizzard, L.; Wood, A.G.; Srikanth, V.; Thomson, R.; Sanders, L.M.; Callisaya, M.L. Cognitive function, gait, and gait variability in older people: A population-based study. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 726–732. [Google Scholar] [CrossRef]
- Cai, S.; Chong, T.; Zhang, Y.; Li, J.; von Deneen, K.M.; Ren, J.; Dong, M.; Huang, L.; Alzheimer’s Disease Neuroimaging, I. Altered Functional Connectivity of Fusiform Gyrus in Subjects with Amnestic Mild Cognitive Impairment: A Resting-State fMRI Study. Front. Hum. Neurosci. 2015, 9, 471. [Google Scholar] [CrossRef]
- Schroeter, M.L.; Stein, T.; Maslowski, N.; Neumann, J. Neural correlates of Alzheimer’s disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients. Neuroimage 2009, 47, 1196–1206. [Google Scholar] [CrossRef]
- Vallar, G.; Di Betta, A.M.; Silveri, M.C. The phonological short-term store-rehearsal system: Patterns of impairment and neural correlates. Neuropsychologia 1997, 35, 795–812. [Google Scholar] [CrossRef] [PubMed]
- Hanggi, J.; Streffer, J.; Jancke, L.; Hock, C. Volumes of lateral temporal and parietal structures distinguish between healthy aging, mild cognitive impairment, and Alzheimer’s disease. J. Alzheimer’s Dis. 2011, 26, 719–734. [Google Scholar] [CrossRef] [PubMed]
- Tullberg, M.; Fletcher, E.; DeCarli, C.; Mungas, D.; Reed, B.R.; Harvey, D.J.; Weiner, M.W.; Chui, H.C.; Jagust, W.J. White matter lesions impair frontal lobe function regardless of their location. Neurology 2004, 63, 246–253. [Google Scholar] [CrossRef]
- McGough, E.L.; Kelly, V.E.; Logsdon, R.G.; McCurry, S.M.; Cochrane, B.B.; Engel, J.M.; Teri, L. Associations between physical performance and executive function in older adults with mild cognitive impairment: Gait speed and the timed “up & go” test. Phys. Ther. 2011, 91, 1198–1207. [Google Scholar] [CrossRef]
Total (n = 80) | Early-Stage MCI (n = 53) | Late-Stage MCI (n = 27) | p Value | |
---|---|---|---|---|
Mean age | 74.6 ± 5.74 | 74.6 ± 5.33 | 74.6 ± 6.58 | 0.950 |
Gender, female number (%) | 58 (72.5) | 43 (81.1) | 15 (55.6) | 0.020 |
Years of education | 6.88 ± 3.980 | 5.94 ± 4.069 | 8.72 ± 3.114 | 0.003 |
Number of comorbidities | 3.7 ± 1.70 | 3.9 ± 1.61 | 3.1 ± 1.77 | 0.047 |
Depression scale | 4.9 ± 4.09 | 4.9 ± 4.24 | 5.1 ± 3.83 | 0.833 |
Anxiety scale | 6.8 ± 6.52 | 7.1 ± 6.87 | 6.3 ± 5.86 | 0.600 |
QOL scale | 34.4 ± 8.67 | 33.3 ± 8.39 | 36.5 ± 9.00 | 0.124 |
Height | 156.1 ± 8.11 | 155.4 ± 7.98 | 157.7 ± 8.30 | 0.232 |
Weight | 61.0 ± 10.92 | 61.9 ± 11.47 | 59.3 ± 9.72 | 0.324 |
BMI, mean (SD) | 25.0 ± 3.70 | 25.6 ± 3.84 | 23.8 ± 3.17 | 0.045 |
Waist circumference (cm) | 87.8 ± 10.12 | 87.6 ± 10.39 | 88.1 ± 9.75 | 0.825 |
Systolic BP (mmHg) | 128.6 ± 18.27 | 130.0 ± 18.44 | 126.0 ± 17.97 | 0.349 |
Diastolic BP (mmHg) | 77.0 ± 9.82 | 77.4 ± 9.41 | 76.1 ± 10.73 | 0.606 |
Fasting glucose (mg/dL) | 108.8 ± 26.28 | 111.3 ± 28.44 | 104.0 ± 21.08 | 0.240 |
Total cholesterol (mg/dL) | 162.4 ± 32.54 | 34.0 ± 4.67 | 30.1 ± 5.79 | 0.913 |
Group | Algorithm for Classification | Algorithm for Feature Reduction | No. of Features Reduced | AUC | ACC | Recall | Precision | F1 |
---|---|---|---|---|---|---|---|---|
Gait | CNN | RP | 40 | 0.98 ± 0.04 | 0.99 ± 0.04 | 0.99 ± 0.03 | 0.99 ± 0.03 | 0.99 ± 0.04 |
Gray matter | CNN | PCA | 20 | 0.92 ± 0.08 | 0.94 ± 0.07 | 0.94 ± 0.10 | 0.97 ± 0.05 | 0.95 ± 0.06 |
White matter | CNN | PCA | 20 | 0.83 ± 0.14 | 0.86 ± 0.13 | 0.88 ± 0.11 | 0.96 ± 0.07 | 0.89 ± 0.11 |
MRI | CNN | PCA | 20 | 0.94 ± 0.10 | 0.96 ± 0.08 | 0.95 ± 0.09 | 0.99 ± 0.03 | 0.97 ± 0.05 |
Gait + gray matter | CNN | PCA | 40 | 0.95 ± 0.08 | 0.96 ± 0.08 | 0.97 ± 0.06 | 0.96 ± 0.08 | 0.96 ± 0.06 |
Gait + white matter | CNN | RP | 60 | 0.96 ± 0.07 | 0.97 ± 0.06 | 0.97 ± 0.06 | 0.98 ± 0.04 | 0.98 ± 0.05 |
Gait + MRI | CNN | RP | 60 | 0.94 ± 0.10 | 0.95 ± 0.10 | 0.95 ± 0.08 | 0.98 ± 0.04 | 0.96 ± 0.07 |
GAIT Data | MRI Data | GAIT + WMH Data |
---|---|---|
Stride Velocity SD R | ThickAvg_L.fusiform | Single Support Time (sec) L |
Stride Length SD L | ThickAvg_R.inferiorparietal | Single Support Time (sec) R |
Stance % of Cycle R | ThickAvg_R.supramarginal | R parietal total WMHs |
Swing Time SD R | ThickAvg_R.middletemporal | Single Support % Cycle R |
Step Time Differential | ThickAvg_L.supramarginal | Cycle Time (sec) R |
Stance Time (sec) L | ThickAvg_R.fusiform | Step Length SD R |
Step Time (sec) L | ThickAvg_L.inferiorparietal | R parietal deep WMHs |
Double Support Unload Time L | ThickAvg_L.precentral | Support Base SD R |
Stride Length SD R | ThickAvg_R.precentral | Heel Off/On SD R |
Double Support Time SD L | ThickAvg_L.lateralorbitofrontal | Toe In/Out R |
Reference | Algorithm | Feature Selection | Objective | Participants | Outcomes |
---|---|---|---|---|---|
Lin et al. [7] | RF | 29 gene biomarkers | To predict stable MCI patients | 195 normal, 271 MCI, and 112 AD | AUC of cross-validation and test dataset was 0.841 and 0.775, respectively |
Lu et al. [11] | XGboost, Bayers, SVM, and LR | ADL, BPSD, and cognitive function | Differentiation of AD from MCI | 458 AD and MCI | XGBoost with Precision was 0.82, Bayes with Precision was 0.75, SVM with Precision was 0.78, and LR with Precision was 0.81 |
Adelson et al. [12] | XGboost, KNN, MLP, and LR | Demographics, family medical history, comorbidities, and neuropsychiatric assessments | Identification of risk of progressing from MCI to AD | 493 MCI | XGBoost with AUC at 12 months was 0.857, at 24 months, it was 0.980, and at 48 months, it was 0.975 |
Rykov et al. [13] | ElasticNet, RF, and XGBoost | 106 digital physiological features | To predict cognitive function | 30 MCI | RF with Pearson r was 0.61 in the individual-based cross-validation, whereas RF with Pearson r was 0.77 in the interval-based cross-validation |
Chen et al. [14] | SVM | Gait analysis system to perform walk, time up and go, and jump test | To predict different types of MCI | 34 PD MCI; 47 non-PD MCI | Accuracy was 91.67% and AUC was 0.9143 with polynomial kernel function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, I.; Lee, S.-K.; Choi, H.-C.; Ahn, M.-E.; Ryu, O.-H.; Jang, D.; Lee, U.; Kim, Y.J. Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images. Brain Sci. 2024, 14, 480. https://doi.org/10.3390/brainsci14050480
Park I, Lee S-K, Choi H-C, Ahn M-E, Ryu O-H, Jang D, Lee U, Kim YJ. Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images. Brain Sciences. 2024; 14(5):480. https://doi.org/10.3390/brainsci14050480
Chicago/Turabian StylePark, Ingyu, Sang-Kyu Lee, Hui-Chul Choi, Moo-Eob Ahn, Ohk-Hyun Ryu, Daehun Jang, Unjoo Lee, and Yeo Jin Kim. 2024. "Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images" Brain Sciences 14, no. 5: 480. https://doi.org/10.3390/brainsci14050480
APA StylePark, I., Lee, S.-K., Choi, H.-C., Ahn, M.-E., Ryu, O.-H., Jang, D., Lee, U., & Kim, Y. J. (2024). Machine Learning Model for Mild Cognitive Impairment Stage Based on Gait and MRI Images. Brain Sciences, 14(5), 480. https://doi.org/10.3390/brainsci14050480